• Nie Znaleziono Wyników

On the exceptional set of Goldbach numbers in a short interval

N/A
N/A
Protected

Academic year: 2021

Share "On the exceptional set of Goldbach numbers in a short interval"

Copied!
81
0
0

Pełen tekst

(1)

LXXVII.3 (1996)

On the exceptional set of Goldbach numbers in a short interval

by

Chao Hua Jia (Beijing)

1. Introduction. An even number which can be written as a sum of two primes is called a Goldbach number .

In 1937, I. M. Vinogradov proved the famous three primes theorem. Soon after that, employing Vinogradov’s idea, Hua Loo Keng [3] proved that if B is a sufficiently large positive constant and N is sufficiently large, then the even numbers in (2, N ), except for O(N log

−B

N ) values, are all Goldbach numbers.

In 1973, Ramachandra [18] obtained the result in a short interval. He showed that if A = N

ϕ+ε

with ϕ =

35

, then the even numbers in (N, N + A), except for O(A log

−B

N ) values, are all Goldbach numbers. If the estimation for the zero density of Huxley [4] is applied, ϕ =

127

can be arrived at. In 1991, Jia Chao Hua [8] employed the sieve method combined with the circle method to get ϕ =

2342

.

In 1993, Perelli and Pintz [17] developed a new technique in the circle method to make great progress in solving this problem. They showed ϕ =

367

. Mikawa [13] proved ϕ =

487

by the sieve method.

In 1994, Jia Chao Hua [10] proved ϕ =

787

. Li Hongze [12] improved it to ϕ =

817

. Jia Chao Hua [11] got further ϕ =

121

. In [10], the new tech- nique of [17], the sieve method and the mean value estimation for Dirichlet polynomials were applied.

In this paper, we shall develop further the technique of [10] to prove the following:

Theorem. Suppose that B is a sufficiently large positive constant, ε is a sufficiently small positive constant, N is sufficiently large and A = N

1087 +12ε

. Then the even numbers in (N, N + A), except for O(A log

−B

N ) values, are all Goldbach numbers.

Project supported by the Tian Yuan Item in the National Natural Science Foundation of China.

[207]

(2)

For A = N

1087 +12ε

, we can also get the conclusion of Theorem 2 of [10].

Throughout this paper, we always suppose that B is a sufficiently large positive constant, ε is a sufficiently small positive constant and E = B

2

, δ = ε

13

. We also suppose that N is sufficiently large and that A = N

1087 +12ε

, Y = N

127

, Q =

12

A log

−64B

N . Let c, c

1

and c

2

denote positive constants which have different values at different places. m ∼ M means that there are positive constants c

1

and c

2

such that c

1

M < m ≤ c

2

M . We often use M (s, χ) (M may be another capital letter) to denote a Dirichlet polynomial of the form

M (s, χ) = X

m∼M

a(m)χ(m) m

s

,

where a(m) is a complex number with a(m) = O(1), and χ is a character mod q.

The author would like to thank Professors Wang Yuan and Pan Cheng- biao for their encouragement.

2. Some preliminary work. Let χ be a character mod q and let χ

0

be a principal character. Set E

0

= 1 if χ = χ

0

, and E

0

= 0 if χ 6= χ

0

.

We divide the characters mod q into two classes. We call χ a good char- acter if L(s, χ) has no zeros in the region

(1) 1 − 24E log log Y

ε log Y ≤ σ ≤ 1, |t| ≤ 6Y.

Otherwise, we call χ a bad character .

By Siegel’s theorem and the zero free region of the L-function (see pp. 255 and 257 of [15]), we know that L(s, χ) 6= 0 in the region

σ > 1 − c(µ)

max(q

µ

, log

45

(|t| + 2)) , where µ (> 0) is arbitrary and c(µ) > 0.

Take µ = ε/(500E). If a bad character exists, then

(2) q ≥ log

300Eε

N.

Moreover, by the estimation for the zero density (see [14] and [5]), X

χ (mod q)

N (σ, T, χ)  (qT )

(125+ε)(1−σ)

log

14

qT,

we know that for any modulus q ≤ Q, the number of bad characters is O(log

64Eε

N ). Let

I(a, q) =

 a

q log

2E

N qY , a

q + log

2E

N qY



(3)

and let

E

1

= [

q≤logEN

[

q (a,q)=1a=1

I(a, q), E

2

= [1/Q, 1 + 1/Q) − E

1

.

Lemma 1. Assume that r (≥ 2) and q are positive integers, d

r

(n) = P

n=n1...nr

1 and x

ε

< y ≤ x. Then X

x−y<n≤x

d

qr

(n)  y(log x)

rq−1

.

P r o o f. See Theorem 2 of [20].

Let

(3) τ (χ) =

X

q r=1

χ(r)e

 r q

 .

Lemma 2. τ (χ

0

) = µ(q). For any character χ mod q, |τ (χ)| ≤ q.

P r o o f. See pp. 24 and 28 of [15].

Lemma 3. For any complex numbers a(n),

η

\

−η

X

n

a(n)e(nt)

2

dt  η

2

\

−∞

X

x<n≤x+1/(2η)

a(n)

2

dx.

P r o o f. See Lemma 1 of [1].

Lemma 4. Suppose T ≥ 1, χ is a character modq, and P

m∼M

|a(m)|

2

 M log

c

T . Then X

χ (mod q) T

\

−T

X

m∼M

a(m)χ(m) m

12+it

2

dt  (M + qT ) log

c

T.

P r o o f. See Theorem 3 on p. 38 of [15].

3. Mean value estimate (I)

Lemma 5. Assume that Y

δ

 H  Y

13516

, M H = Y , q ≤ Q, χ is a character modq, M (s, χ) is a Dirichlet polynomial and

H(s, χ) = X

h∼H

Λ(h)χ(h)

h

s

.

(4)

Let η = qQ/Y , b = 1 + 1/ log N and T

0

= log

δ2E

Y . Then for T

0

≤ T ≤ Y , we have

min

2

 η, 1

T

 X

χ (good) 2T

\

T

|M (b + it, χ)H(b + it, χ)|

2

dt  η

2

log

−6E

N.

P r o o f. Let s = b + it and let χ be a good character modq. By (1) and the zero free region of the L-function, we know that for |t| ≤ 2Y ,

(4) X

c1H<h≤c2H

Λ(h)χ(h)

h

s

= E

0

(c

2

H)

1−s

− (c

1

H)

1−s

1 − s + O(log

2Eδ2

Y ).

So, for T

0

≤ |t| ≤ 2Y ,

(5) H(s, χ)  log

δ2E

Y.

According to the discussion in [2], there are O(log

2

Y ) sets S(V, W ), where S(V, W ) = {t

j

(χ) : χ runs through all good characters mod q, j = 1, . . . , J(χ), |t

r

(χ) − t

s

(χ)| ≥ 1 (r 6= s)}. For t

j

(χ) ∈ S(V, W ),

V ≤ M

12

|M (b + it

j

(χ), χ)| < 2V, W ≤ H

12

|H(b + it

j

(χ), χ)| < 2W,

where Y

−1

≤ M

12

V , Y

−1

≤ H

12

W and V  M

12

, W  H

12

log

δ2E

Y . Thus

(6) X

χ (good) 2T

\

T

|M (b + it, χ)H(b + it, χ)|

2

dt  V

2

W

2

Y

−1

log

2

Y |S(V, W )|, where S(V, W ) is one of the sets with the above properties.

Assume Y

k+11

≤ H ≤ Y

1k

, where k is a positive integer, k ≥ 8 and kδ  1. Applying the mean value estimate (see Theorem 3 on p. 632 of [16]) and Lemma 1 to M (s, χ) and H

k

(s, χ), we have

|S(V, W )|  V

−2

(M + qT ) log

d

Y,

|S(V, W )|  W

−2k

(H

k

+ qT ) log

d

Y,

where d = c/δ

2

. Applying the Hal´asz method (see Theorem 6 on p. 650 of [16]) to M (s, χ) and H

k

(s, χ), we have

|S(V, W )|  (V

−2

M + V

−6

qT M ) log

d

Y,

|S(V, W )|  (W

−2k

H

k

+ W

−6k

qT H

k

) log

d

Y.

Thus,

V

2

W

2

|S(V, W )|  V

2

W

2

F log

d

Y,

(5)

where

F = min{V

−2

(M + qT ), V

−2

M + V

−6

qT M, W

−2k

(H

k

+ qT ),

W

−2k

H

k

+ W

−6k

qT H

k

}.

It will be proved that

(7) min

2

 η, 1

T



V

2

W

2

F  η

2

Y log

2δ2E

N.

We consider four cases.

(a) F ≤ 2V

−2

M , 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

M, W

−2k

H

k

}

≤ V

2

W

2

(V

−2

M )

1−2k1

(W

−2k

H

k

)

2k1

= V

k1

W M

1−2k1

H

12

 Y log

2δ2E

N.

(b) F > 2V

−2

M, 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

qT, V

−6

qT M, W

−2k

qT, W

−6k

qT H

k

}

≤ V

2

W

2

(V

−2

)

1−2k3

(V

−6

M )

2k1

(W

−2k

)

1k

qT = qT M

2k1

. Since k ≥ 8, we have H ≥ Y

k+11

≥ Y

1−k9

, M

2k1

 Y

181

and so

min

2

 η, 1

T



V

2

W

2

F  η

T Y

181

qT  η

2

Y

1−ε

. (c) F ≤ 2V

−2

M, F > 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

M, W

−2k

qT, W

−6k

qT H

k

}

≤ V

2

W

2

(V

−2

M )

1−3k1

(W

−6k

qT H

k

)

3k1

 M H

13

(qT )

3k1

,

since V  M

12

. As H ≥ Y

k+11

≥ (

YQ

)

2k1

Y

, we have

min

2

 η, 1

T



V

2

W

2

F  η

2−3k1

T

3k1

Y

 Y Q



1

3k

(qT )

3k1

Y

−ε

 η

2

Y

1−ε

. (d) F > 2V

−2

M , F ≤ 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

qT, V

−6

qT M, W

−2k

H

k

}

≤ V

2

W

2

(V

−2

qT )

1−2k3

(V

−6

qT M )

2k1

(W

−2k

H

k

)

k1

= (qT )

1−k1

HM

2k1

.

(6)

If k ≥ 9, then H ≤ Y

1k

≤ Y

1−17(k−1)9(2k−1)

, M  Y

17(k−1)9(2k−1)

, and so min

2

 η, 1

T



V

2

W

2

F  η

2

Y

 Y Q



1−1

k

Y

1718(1−1k)

 η

2

Y

1−ε

. If k = 8, then Y

19

≤ H  Y

13516

, M  Y

119135

, and so

min

2

 η, 1

T



V

2

W

2

F  η

2

Y

 Y Q



7

8

Y

119144

 η

2

Y

1−ε

. Combining the above, we obtain (7). Hence, Lemma 5 follows.

Lemma 6. Assume that M  Y

1936

, M L = Y , q ≤ Q, χ is a character modq, M (s, χ) is a Dirichlet polynomial, and

F (s, χ) = M (s, χ) X

l∼L

χ(l) l

s

. Let η = qQ/Y , b = 1 + 1/ log N and T

1

= p

L/q. Then for T

1

≤ T ≤ Y , we have

min

2

 η, 1

T

 X

χ (mod q) 2T

\

T

|F (b + it, χ)|

2

dt  η

2

Y

−ε

.

P r o o f. Perron’s formula yields X

l∼L

χ(l) l

b+it

= 1

2πi

4iT

\

−4iT

L(b + it + s, χ) (c

2

L)

s

− (c

1

L)

s

s ds

+ O

 Y

ε

T

 + O

 1 L



= 1 2πi

12−b+4iT

\

1 2−b−4iT

L(b + it + s, χ) (c

2

L)

s

− (c

1

L)

s

s ds

+ O

 Y

ε

T

 + O

 1 L

 + O

 L

12

(qT )

14

T

 ,

X

l∼L

χ(l) l

b+it

2

 L

−1

log T

6T

\

−6T

L

 1

2 + iu, χ



2

du

1 + |t − u|

+ O

 Y

T

2

 + O

 1 L

2

 + O

 L

−1

(qT )

12+2ε

T

2



.

(7)

By Lemma 4 and the mean value estimate for the fourth power of the L-function, we have

X

χ (mod q) 2T

\

T

|F (b + it, χ)|

2

dt

 L

−1

log N X

χ (mod q) 2T

\

T

|M (b + it, χ)|

2

dt



6T

\

−6T

L

 1

2 + iu, χ



2

du

1 + |t − u|



+ O

 Y

T

2

+ 1

L

2

+ L

−1

(qT )

12+2ε

T

2

 X

χ (mod q) 2T

\

T

|M (b + it, χ)|

2

dt

 L

−1

log

2

N

 X

χ (mod q) 2T

\

T

|M (b + it, χ)|

4

dt



1

2

×

 X

χ (mod q) 2T

\

T

dt

6T

\

−6T

|L(

12

+ iu, χ)|

4

1 + |t − u| du



1

2

+ O

 Y

T

2

+ 1

L

2

+ L

−1

(qT )

12+2ε

T

2



1 + qT M



 L

−1

 1 + qT

M

2



1

2

(qT )

12

log

10

N + Y

−2ε

. Hence,

min

2

 η, 1

T

 X

χ (mod q) 2T

\

T

|F (b + it, χ)|

2

dt

 min

2

 η, 1

T



Y

−1

(Y

1918

+ qT )

12

(qT )

12

log

10

N + η

2

Y

−2ε

 η

2

Y

−1



Y

1918

+ Y Q



1

2

 Y Q



1

2

log

10

N + η

2

Y

−2ε

 η

2

Y

−2ε

. Thus Lemma 6 follows.

4. Mean value estimate (II)

Lemma 7. Assume that M HK = Y , q ≤ Q, χ is a character mod q,

M (s, χ), H(s, χ) and K(s, χ) are Dirichlet polynomials and G(s, χ) =

M (s, χ)H(s, χ)K(s, χ). Let η = qQ/Y , b = 1 + 1/ log N , T

0

= log

δ2E

Y .

Assume further that for T

0

≤ |t| ≤ 2Y , M (b + it, χ)  log

δ2E

Y and

(8)

H(b + it, χ)  log

δ2E

Y . Moreover , suppose that M and H satisfy one of the following four conditions:

1) M H  Y

142261

, Y

1799

 H, M

29

/H  Y

919

, Y

1757

 M , H

29

/M  Y

193

, Y

1733

 M

1211

H;

2) M H  Y

4781

, Y

13516

 H, M

2919

H  Y

11489

, Y

6881

 M

2

H, H

4

/M  Y

12

, Y

14785

 M

5849

H;

3) M H  Y

113198

, Y

1790

 H, M

6

H  Y

209

, Y

1763

 M , M

18

H  Y

247

, Y

1730

 M

65

H;

4) M H  Y

2542

, Y

13516

 H, M

2315

H  Y

79

, Y

1721

 M

2

H, H

3

/M  Y

187

, Y

13568

 M

1415

H, Y

59

 M H.

Then for T

0

≤ T ≤ Y , we have (8) min

2

 η, 1

T

 X

χ (good) 2T

\

T

|G(b + it, χ)|

2

dt  η

2

log

−6E

N.

P r o o f. We only show that for T = 1/η = Y /(qQ),

(9) I = X

χ (good) 2T

\

T

|G(b + it, χ)|

2

dt  log

−6E

N.

I. First, we assume condition 1). On applying the mean value estimate and Hal´asz method to M

3

(s, χ), H

5

(s, χ) and K

2

(s, χ), we get

I  U

2

V

2

W

2

Y

−1

F log

c

N, where

F = min{V

−6

(M

3

+ qT ), V

−6

M

3

+ V

−18

qT M

3

, W

−10

(H

5

+ qT ),

W

−10

H

5

+ W

−30

qT H

5

, U

−4

(K

2

+ qT ), U

−4

K

2

+ U

−12

qT K

2

}.

We discuss the following cases:

(a) F ≤ 2V

−6

M

3

, 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

165

(W

−10

H

5

)

15

(U

−4

K

2

)

3980

= V

18

M

1516

U

201

K

3940

H  Y log

−7E

N.

(b) F ≤ 2V

−6

M

3

, 2W

−10

H

5

, F > 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−10

H

5

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−10

H

5

)

15

(U

−4

qT )

209

(U

−12

qT K

2

)

601

= (qT )

157

M HK

301

 Y

1−ε

.

(9)

(c) F ≤ 2V

−6

M

3

, F > 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−10

qT, W

−30

qT H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−10

qT )

203

(W

−30

qT H

5

)

601

(U

−4

K

2

)

12

= (qT )

16

M KH

121

 Y

1−ε

.

(d) F ≤ 2V

−6

M

3

, F > 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

M

3

, W

−10

qT, W

−30

qT H

5

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−10

qT )

15

(U

−4

qT )

209

(U

−12

qT K

2

)

601

= (qT )

23

M K

301

 Y

1−ε

.

(e) F > 2V

−6

M

3

, F ≤ 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

qT, V

−18

qT M

3

, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

qT )

1760

(V

−18

qT M

3

)

601

(W

−10

H

5

)

15

(U

−4

K

2

)

12

= (qT )

103

M

201

HK  Y

1−ε

.

(f) F > 2V

−6

M

3

, F ≤ 2W

−10

H

5

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

qT, V

−18

qT M

3

, W

−10

H

5

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−6

qT )

13

(W

−10

H

5

)

15

(U

−4

qT )

209

(U

−12

qT K

2

)

601

= (qT )

45

HK

301

 Y

1−ε

.

(g) F > 2V

−6

M

3

, 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

qT, V

−18

qT M

3

, W

−10

qT, W

−30

qT H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

qT )

13

(W

−10

qT )

203

(W

−30

qT H

5

)

601

(U

−4

K

2

)

12

= (qT )

12

H

121

K  Y

1−ε

.

(h) F > 2V

−6

M

3

, 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

, V

−18

M

3

, W

−10

, W

−30

H

5

, U

−4

, U

−12

K

2

}qT

≤ U

2

V

2

W

2

(V

−6

)

1760

(V

−18

M

3

)

601

(W

−10

)

15

(U

−4

)

12

qT

= qT M

201

 Y

1−ε

,

since M  Y .

(10)

II. Next, we assume condition 2). On applying the mean value estimate and Hal´asz method to M

2

(s, χ)H(s, χ), H

5

(s, χ) and K

2

(s, χ), we get

I  U

2

V

2

W

2

Y

−1

F log

c

N, where

F = min{V

−4

W

−2

(M

2

H + qT ), V

−4

W

−2

M

2

H + V

−12

W

−6

qT M

2

H, W

−10

(H

5

+ qT ), W

−10

H

5

+ W

−30

qT H

5

, U

−4

(K

2

+ qT ), U

−4

K

2

+ U

−12

qT K

2

}.

We consider several cases:

(a) F ≤ 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(W

−10

H

5

)

121

(U

−4

K

2

)

125

= W

16

H

1112

U

13

K

56

M  Y log

−7E

N.

(b) F ≤ 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

H

5

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(W

−10

H

5

)

101

(U

−4

qT )

207

(U

−12

qT K

2

)

201

= (qT )

25

M HK

101

 Y

1−ε

.

(c) F ≤ 2V

−4

W

−2

M

2

H, F > 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

qT, W

−30

qT H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(W

−30

qT H

5

)

301

(U

−4

K

2

)

157

= (qT )

301

U

152

K

1415

M H

23

 (qT )

301

M H

23

K  Y

1−ε

.

(d) F ≤ 2V

−4

W

−2

M

2

H, F > 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

qT, W

−30

qT H

5

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(W

−30

qT H

5

)

301

(U

−4

qT )

209

(U

−12

qT K

2

)

601

= (qT )

12

M H

23

K

301

 Y

1−ε

.

(11)

(e) F > 2V

−4

W

−2

M

2

H, F ≤ 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

qT, V

−12

W

−6

qT M

2

H, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

qT )

207

(V

−12

W

−6

qT M

2

H)

201

(W

−10

H

5

)

101

(U

−4

K

2

)

12

= (qT )

25

M

101

H

1120

K  Y

1−ε

.

(f) F > 2V

−4

W

−2

M

2

H, F ≤ 2W

−10

H

5

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

qT, V

−12

W

−6

qT M

2

H, W

−10

H

5

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

qT )

12

(W

−10

H

5

)

101

(U

−4

qT )

207

(U

−12

qT K

2

)

201

= (qT )

109

H

12

K

101

 Y

1−ε

.

(g) F > 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

qT, V

−12

W

−6

qT M

2

H, W

−10

qT, W

−30

qT H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

qT )

209

(V

−12

W

−6

qT M

2

H)

601

(W

−30

qT H

5

)

301

× (U

−4

K

2

)

12

= (qT )

12

M

301

H

1160

K  Y

1−ε

.

(h) F > 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−4

W

−2

, V

−12

W

−6

M

2

H, W

−10

, W

−30

H

5

, U

−4

, U

−12

K

2

}qT

≤ U

2

V

2

W

2

(V

−4

W

−2

)

12

(W

−10

)

101

(U

−4

)

207

(U

−12

K

2

)

201

qT

= qT K

101

 Y

1−ε

,

since Y

49

 M H (the latter follows from Y

13516

 H and Y

6881

 M

2

H).

III. Now, we assume condition 3). On applying the mean value estimate and Hal´asz method to M

3

(s, χ), H

4

(s, χ) and K

2

(s, χ), we get

I  U

2

V

2

W

2

Y

−1

F log

c

N, where

F = min{V

−6

(M

3

+ qT ), V

−6

M

3

+ V

−18

qT M

3

, W

−8

(H

4

+ qT ), W

−8

H

4

+ W

−24

qT H

4

, U

−4

(K

2

+ qT ), U

−4

K

2

+ U

−12

qT K

2

}.

(12)

Consider the following cases:

(a) F ≤ 2V

−6

M

3

, 2W

−8

H

4

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−8

H

4

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

103

(W

−8

H

4

)

14

(U

−4

K

2

)

209

= V

15

M

109

U

15

K

109

H  Y log

−7E

N.

(b) F ≤ 2V

−6

M

3

, 2W

−8

H

4

, F > 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−8

H

4

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−8

H

4

)

14

(U

−4

qT )

38

(U

−12

qT K

2

)

241

= (qT )

125

M HK

121

 Y

1−ε

.

(c) F ≤ 2V

−6

M

3

, F > 2W

−8

H

4

, F ≤ 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−8

qT, W

−24

qT H

4

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−8

qT )

18

(W

−24

qT H

4

)

241

(U

−4

K

2

)

12

= (qT )

16

M KH

16

 Y

1−ε

.

(d) F ≤ 2V

−6

M

3

, F > 2W

−8

H

4

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

M

3

, W

−8

qT, W

−24

qT H

4

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−8

qT )

18

(W

−24

qT H

4

)

241

(U

−4

qT )

12

= (qT )

23

M H

16

 Y

1−ε

.

(e) F > 2V

−6

M

3

, F ≤ 2W

−8

H

4

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

qT, V

−18

qT M

3

, W

−8

H

4

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

qT )

245

(V

−18

qT M

3

)

241

(W

−8

H

4

)

14

(U

−4

K

2

)

12

= (qT )

14

M

18

HK  Y

1−ε

.

(f) F > 2V

−6

M

3

, F ≤ 2W

−8

H

4

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

qT, V

−18

qT M

3

, W

−8

H

4

, U

−4

qT, U

−12

qT K

2

}

≤ U

2

V

2

W

2

(V

−6

qT )

245

(V

−18

qT M

3

)

241

(W

−8

H

4

)

14

(U

−4

qT )

12

= (qT )

34

M

18

H  Y

1−ε

.

Cytaty

Powiązane dokumenty

Using the Kronecker class number relation for quadratic forms, Hartung [3] proved that there exist infinitely many imaginary quadratic fields k whose class numbers are not divisible

For any fixed 20/21 &lt; γ ≤ 1, every sufficiently large odd integer N can be written as a sum of three Piatetski-Shapiro primes of type γ..

Heath- Brown [6] proved that there exist infinitely many arithmetic progressions of four different terms, three of which are primes and the fourth is P 2 (as usual, P r denotes

In each table, following the convention of [6], the entries indicate that if λ 1 does not exceed the first entry, then λ 2 is no smaller than the second entry.. The

It is easy to see that Theorem I becomes false if the hypothesis that θ 6∈ Q is dropped: in particular it follows from Lemma 2.3 below that T (p; x) ∼ p −1 T (1; x) does not hold

Taking the idea from the author’s paper [3] dealing with squarefull in- tegers, we first give a reduction of our problem, which connects (∗) with some exponential sums, but this

Hence for algebraic integers γ and δ with (γ, δ) = 1, the arithmetic progression {γt + δ} t∈O k contains infinitely many first degree primes (in a general number field,

In 1920’s, Hardy and Littlewood introduced an ana- lytic method for solving Waring’s problem: That is, they showed that every sufficiently large natural number can be expressed as a