• Nie Znaleziono Wyników

Cu3(As,Sb)S4 minerals from the Baia Mare metallogenic district, Eastern Carpathians, Romania – a case study from the Cisma ore deposit

N/A
N/A
Protected

Academic year: 2022

Share "Cu3(As,Sb)S4 minerals from the Baia Mare metallogenic district, Eastern Carpathians, Romania – a case study from the Cisma ore deposit"

Copied!
12
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2020, 64 (2): 263–274 DOI: http://dx.doi.org/10.7306/gq.1529

Cu

3

(As,Sb)S

4

min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro ma nia – a case study from the Cisma ore de posit

Réka KOVÁCS1, 2 and Cãlin Ga briel TÃMAŸ1, *

1 Babeº-Bolyai Uni ver sity, Fac ulty of Bi ol ogy and Ge ol ogy, De part ment of Ge ol ogy, 1 Mihail Kogãlniceanu street, 400084 Cluj-Napoca, Ro ma nia

2 Vic tor Gorduza County Min er al og i cal Mu seum of Baia Mare, 8 Traian bou le vard, 430212 Baia Mare, Ro ma nia

Kovács, R., Tãmaê, C.G., 2020. Cu3(As,Sb)S4 min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro - ma nia – a case study from the Cisma ore de posit. Geo log i cal Quar terly, 64 (2): 263–274, doi: 10.7306/gq.1529

As so ci ate Ed i tor: S³awomir Oszczepalski

The oc cur rence of Cu3(As,Sb)S4 min er als, i.e. the en ar gite and luzonite-famatinite se ries, is poorly known in the Neo gene Baia Mare met al lo gen ic dis trict, NW Ro ma nia, with few re cords and no an a lyt i cal data. This study pro vides the first EPMA and XRD data on en ar gite/luzonite from the Baia Mare met al lo gen ic dis trict, i.e. the Cisma ore de posit from the Bãiuï met al - lo gen ic field, and the Herja ore de posit. Vein-type ore bod ies bear ing Cu3(As,Sb)S4 min er als from Cisma are hosted by Paleocene–Eocene flysch suc ces sions, while the host rock of the en ar gite-bear ing ore from Herja is un known. The en ar gite and luzonite–famatinite se ries are known as “ex otic” in low sulphidation epi ther mal ore de pos its, “typ i cal” in high sulphidation epi ther mal de pos its in as so ci a tion with ten nan tite, and “some times com mon” in small amounts in in ter me di ate sulphidation epi ther mal ore de pos its. The oc cur rence of en ar gite/luzonite in the Baia Mare dis trict sug gests the need to up date the met al - lo gen ic in ter pre ta tion for sev eral ore de pos its, partly at the dis trict scale in re la tion to other ore de posit/min er al ogy fea tures, e.g. vug gy sil ica, hypogene argillic al ter ation.

Key words: en ar gite, luzonite, Cisma, Bãiuï, Herja, Baia Mare met al lo gen ic dis trict.

INTRODUCTION

Ac cord ing to many au thors (e.g., Mariaê, 1996, 2005;

Grancea et al., 2002; Marcoux et al., 2002; Kouzmanov et al., 2005), the Baia Mare met al lo gen ic dis trict, Ro ma nia (Fig. 1A and B) con sists of typ i cal low-sulphidation epi ther mal ore de - pos its. This in ter pre ta tion is based on early men tion of adu laria al ter ation at the dis trict scale by Giuêcã (1960) and Lang et al.

(1994), the wide spread oc cur rence of car bon ates (e.g., Lang, 1979), the mi nor oc cur rence of covel lite, and the ab sence from the ores of en ar gite, and luzonite-famatinite. How ever, Kovács-Pálffy et al. (1977) de scribed a high-sulphidation-like al ter ation min eral as sem blage with py rite as so ci ated with alu - nite in the Ilba-Nistru area. Mi nor adu laria and fre quent propylitization, sericitization and argillization were re ported by Stanciu (1973) in ore de pos its from the cen tral and east ern Baia Mare dis trict (Dealul Crucii to Bãiuï de pos its), while chlorite-adu laria-seri cite-argillic (lo cally car bon ate and silicic)

al ter ation was men tioned by Stanciu (1984) in the south ern part of the Gutâi Moun tains. A quartz-illite-kaolinite-pyrophyllite as - sem blage was de scribed by Mariaê (2005) in the cen tral part of the Cavnic ore de posit (Bolduï mine), which may be in ter preted as tran si tional from sericitic to argillic al ter ation. Fi nally, in the up per part of the Cavnic ore de posit a kaolinite±pyrophyl - lite±alu nite as sem blage was men tioned by Mariaê (1996).

The pres ent study of fers the first EPMA and XRD data on en ar gite from the Baia Mare met al lo gen ic dis trict. En ar gite (Cu3AsS4) is a sul phide (Takéuchi and Sadanaga, 1969) with orthorhombic hex ag o nal close-packed struc ture. It is a polytype of luzonite, which to gether with famatinite are the end-mem bers of a tetragonal, cu bic close-packed com plete solid so lu tion se - ries be tween Cu3AsS4 and Cu3SbS4 (Gaines, 1957; Pósfai and Buseck, 1998). As shown by Pósfai and Sundberg (1998) and Pósfai and Buseck (1998) the en ar gite and luzonite-famatinite se ries are fre quently intergrown at the atomic level. En ar gite (Cu3AsS4) is com monly used as an in di ca tor of the sulphidation state of sul phide as sem blages in epi ther mal de pos its. En ar gite is con sid ered ”ex otic” in low-sulphidation (LS) epi ther mal ore de pos its (Hedenquist et al., 1994), while, abun dantly as so ci - ated with ten nan tite and py rite, it is typ i cal of high-sulphidation (HS), and in smaller amounts of in ter me di ate-sulphidation (IS) epi ther mal ore de pos its (Einaudi et al., 2003).

* Cor re spond ing au thor, e-mail: calingtamas@ya hoo.fr Received: July 22, 2019; ac cepted: Jan u ary 31, 2020; first pub lished on line: April 23, 2020

(2)

REGIONAL GEOLOGY

The Carpathian chain is sit u ated in the cen tral-east ern part of Eu rope and is part of the Carpathian–Pannonian area that is formed of two microplates, Alcapa and Tisia, which are sep a - rated by the “Mid-Hun gar ian Line”, a ma jor transcrustal fault (Csontos and Nagymarosy, 1998). The Alcapa and the Tisia microplates un der went dif fer ent tec tonic evo lu tion dur ing Me - so zoic and Ce no zoic, i.e. with op po site ro ta tions dur ing the Neo gene (Csontos et al., 1992; Csontos, 1995; Seghedi et al., 1998), and with dif fer ent trans la tions (Márton et al., 1992;

Pãtraºcu et al., 1994; Panaiotu et al., 1996). Dur ing the Early to Mid dle Mio cene the Tisia microplate trans lated eastwards along the Alcapa microplate (Csontos, 1995; Fodor et al., 1999;

Huismans et al., 2001).

Neo gene–Qua ter nary vol ca nic ac tiv ity took place within the Carpathian–Pannonian re gion and it oc curred on both Alcapa and Tisia microplates as a vol ca nic chain lo cated in the in ner part of the East ern Carpathians. This vol ca nic arc is the re sult of subduction, col li sion, post-collisional and extensional pro - cesses among Eu ro pean and Alcapa–Tisia plates (Seghedi and Downes, 2011). The vol ca nism started in the West ern Carpathians and Pannonian Ba sin with Early Mio cene fel sic calc-al ka line vol ca nism (21–18 Ma), which was fol lowed by Mid dle Mio cene–Plio cene fel sic and in ter me di ate calc-al ka line vol ca nism (18–8 Ma) and ended dur ing the Plio cene-Pleis to - cene with al ka line ba saltic vol ca nism (10–0.1 Ma; Szabó et al., 1992; Seghedi et al., 2005). Calc-al ka line vol ca nism was ac tive in the wes tern most part of the East ern Carpathians be tween 15–9 Ma, while in the Apuseni Moun tains area it started as adakitic calc-al ka line vol ca nism be tween 15 – 9 Ma and ended with OIB-like al kali ba saltic (2.5 Ma) and shoshonitic (1.6 Ma) vol ca nism (Seghedi et al., 2005).

GUTÂI MOUNTAINS

The Gutâi Moun tains com prises an im por tant seg ment of the Neo gene–Qua ter nary vol ca nic arc of the East ern Carpathians, lo cated at the north east ern mar gin of Alcapa and Tisia microplates (Grancea et al., 2002). The Gutâi Mts. are com posed of three main geo log i cal units: (1) the pre-vol ca nic base ment; (2) the Neo gene sed i men tary cover; and (3) the Neo gene vol ca nic rocks (Sãndulescu, 1984). The pre-vol ca nic base ment con sists of Pre cam brian/Pa leo zoic meta mor phic rocks and Cre ta ceous to Oligocene flysch de pos its (Sãndulescu, 1984; Sãndulescu et al., 1993). The Neo gene sed i men tary cover is com posed of Badenian/Kosovian (mudstones), Sarmatian/Volhynian–Bessarabian (mudstones, siltstones, sand stones) and Pannonian (mudstones, siltstones, sand stones, microconglomerates, coals) de pos its, which formed more or less syn chro nously with the vol ca nic ac tiv ity (Kovacs and Fülöp, 2010). The Neo gene sed i men tary rocks are over lain by the Neo gene vol ca nic rocks across al most the en tire dis trict (Kovacs and Fülöp, 2010).

Neo gene vol ca nic ac tiv ity in the Gutâi Moun tains started in the Badenian (15.4 Ma; Fülöp, 2001) with silicic calc-al ka line extensional vol ca nism (Fülöp and Kovacs, 2003), com posed of rhyolitic ig nim brites, fall out tuffs and resedimented volcaniclastic rocks in the south west ern part of the area (Fülöp, 2003). The silicic calc-al ka line vol ca nism was fol lowed by in ter - me di ate calc-al ka line arc-type vol ca nism, which started in the Sarmatian (13.4 Ma; Edelstein et al., 1992), and con tin ued south wards un til the Qua ter nary (<0.1 Ma) along the en tire East ern Carpathian chain (Pécskay et al., 2006). The main vol -

ca nic struc tures in the Gutâi Moun tains and East ern Carpathians formed dur ing the in ter me di ate vol ca nism. The sur face vol ca nic rocks that be long to the in ter me di ate vol ca - nism in the Gutâi Moun tains con sist of bas alts, pyroxene ba - saltic andesites, dacites and rhyolites (Kovacs and Fülöp, 2003), while at subvolcanic level gab bros, diorites, microdiorites, monzodiorites and microgranodiorites have been iden ti fied (Fülöp and Kovacs, 2003). The in ter me di ate calc-al - ka line vol ca nic ac tiv ity in the Gutâi Moun tains trig gered im por - tant met al lo gen ic ac tiv ity.

BAIA MARE METALLOGENIC DISTRICT

The Baia Mare met al lo gen ic dis trict in the East ern Carpathian vol ca nic chain is lo cated in the Gutâi Moun tains (Fig. 1B). The ore de pos its in this dis trict are struc tur ally con - trolled by the E–W strik ing Bogdan Vodã–Dragoº Vodã fault sys tem (Neubauer et al., 2005) lo cated along the south ern part of the Gutâi Moun tains; this fault is con sid ered the east ern most pro lon ga tion of the “Mid-Hun gar ian Line” (Csontos and Nagymarossy, 1998; Tischler et al., 2007). Ac cord ing to min ing and drill ing data, sat el lite im ages and grav ity anom a lies, the fault is partly hid den by Neo gene vol ca nic rocks (Sãndulescu et al., 1993; Grancea et al., 2002); how ever, it is well ex posed in the east ern part of the Baia Mare ore dis trict (Grancea et al., 2002). The mag matic con trol on the ore de pos its con sists of a pluton, which ac cord ing to geo phys i cal and drill ing data (Borcoº, 1994; Crahmaliuc et al., 1995; Bailly et al., 1998) is lo - cated along the south ern part of the Gutâi Moun tains (Fig. 1B).

The Baia Mare met al lo gen ic dis trict has been di vided in three met al lo gen ic sub-dis tricts (Fig. 1B), from west to east as fol lows: (1) Ilba–Nistru (Pb-Zn-Cu±Au, Ag); (2) Sãsar–Dealul Crucii (Au, Ag); (3) Herja–Bãiuï (Pb-Zn-Cu and Au-Ag; Kovacs and Fülöp, 2010).

The ore de pos its in the Baia Mare dis trict are ge net i cally linked to the in ter me di ate calc-al ka line vol ca nism (Iancu and Kovacs, 2010) and are con sid ered by many au thors as of low-sulphidation type (e.g., Grancea et al., 2002; Mariaº, 2005), or as tran si tional be tween low- and high-sulphidation (Mârza, 2002). The ore bod ies oc cur mainly as vein struc tures and subordinately as stockworks, brec cia dykes and brec cia pipes (Gurãu et al., 1970; Marcoux et al., 2002; Kouzmanov et al., 2005; Iancu and Kovacs, 2010), which to gether show clear geo - chem i cal ver ti cal zon ing (Manilici et al., 1965; Marcoux et al., 2002; Mârza, 2002; Mariaº, 2005).

At the scale of the Baia Mare met al lo gen ic dis trict Bailly et al. (1998) and Grancea et al. (2002) dis tin guished five ore de - po si tion stages as fol lows: (1) Fe with he ma tite–mag ne - tite±wolf ram ite±schee lite; (2) Cu-Bi-(W) with chal co py rite–py - rite–covel lite–bis muth sulphides and sulphosalts and rare gold;

(3) Pb-Zn with sphalerite–ga lena–chal co py rite–tetrahedri - te– ten nanti te±gold in quartz–adu laria–illite/smectite–rhodo ni - te–cal cite–kutno horite and rhodochrosite gangue; (4) Sb with bour no nite–tetrahedrite–stibnite with sub or di nate gold and rare realgar and orpiment; and (4) Au-Ag with gold–prous tite/pyra - rgyrite–pearceite/polybasite–na tive ar senic.

Ra dio met ric data by Lang et al. (1994) and Kovacs et al.

(1997) in di cate that the over all age of the hy dro ther mal ac tiv - ity in the Baia Mare ore dis trict is Pannonian (11.5–7.9 Ma).

Ac cord ing to these au thors the ore de pos its in the Ilba–Nistru and Sãsar–Dealul Crucii met al lo gen ic sub-dis tricts are of Early Pannonian age (11.5–10.0 Ma), while the ore de pos its in Herja-Bãiuï met al lo gen ic sub-dis trict are Late Pannonian (9.4–7.9 Ma). The ore de posit age pro gres sion from west to

(3)

Cu3(As,Sb)S4 min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro ma nia... 265

Fig. 1. Lo ca tion and ge ol ogy of the area stud ied

A – po si tion of the Baia Mare met al lo gen ic dis trict in Ro ma nia; B – sim pli fied map of the Baia Mare met al lo gen ic dis trict in the Gutâi Moun tains (mod i fied af ter Kovacs and Fülöp, 2010; Kovacs et al., 2017); C – sim pli fied geo log i cal map of the Bãiuï met al lo gen ic field

(mod i fied af ter Sãndulescu and Russo-Sãndulescu, 1981; Kovacs et al., 1997; Mariaê, 2005)

(4)

east fol lows the vol ca nism age pro gres sion (Lang, 1979) with an ~1 Ma gap be tween vol ca nism and ore de po si tion (Mariaº, 2005).

BÃIU£ METALLOGENIC FIELD

The Bãiuï met al lo gen ic field is sit u ated in the east ern most part of the Herja-Bãiuï met al lo gen ic sub-dis trict and is com - posed of three main ore de pos its (Fig. 1C), (from west to east):

Breiner–Bãiuï, Vãratec and Cisma–Poiana Botizei (Borcoº and Gheorghiïã, 1976). Ac cord ing to avail able min er al og i cal data, the Bãiuþ met al lo gen ic field has been con sid ered dur ing the last few de cades as a meso-hypothermal de posit by Lang (1979), and as a low-sulphidation epi ther mal gold-polymetallic ore de - posit by Grancea et al. (2002) and Mariaº (2005).

CISMA–POIANA BOTIZEI ORE DEPOSIT

The Cisma–Poiana Botizei (Cisma) de posit is east ern most in the Baia Mare met al lo gen ic dis trict (Fig. 1C), to gether with the Bãiuï met al lo gen ic field. It com prises the Cisma, Banduriïa (Borcoº and Gheorghiïã, 1976; Istvan et al., 1995; Damian et al., 2016), Prisãcele, Coasta Ursului, Niga, and Olimpiu veins (Edelstein et al., 1992; Mariaº, 2005). These veins are hosted by Paleocene–Eocene schist-like sandy flysch (Sãndulescu and Russo-Sãndulescu, 1981), which is in truded by Neo gene quartz microdiorite and microgranodiorite por phy ries (Plotinskaya et al., 2012). Two min er al iza tion stages were iden - ti fied by Damian and Damian (2004). The first stage is com - posed of he ma tite, py rite, chal co py rite, ten nan tite, and tetrahedrite (dom i nant), and sphalerite, ga lena, wolf ram ite and pyrrhotite, to gether with sev eral min eral com po si tions of the lillianite–gustavite se ries, and na tive Bi (sub or di nate). The sec - ond stage con tains ga lena, sphalerite, py rite, chal co py rite, marcasite, na tive gold, stibnite, realgar, orpiment, semseyite, boulangerite and jamesonite. The veins are mostly mas sive with some re lated dis sem i na tions.

HERJA ORE DEPOSIT

The Herja ore de posit is lo cated in the cen tral part of the Baia Mare met al lo gen ic dis trict, ~8 km NE from the Baia Mare.

It is a Pb, Zn, Ag, Sb and subordinately Au de posit that con sists of a vein sys tem in clud ing 247 struc tures mined un der ground out of >260 known struc tures (Damian, 1996). The veins are hosted by Eocene mudstones and siltstones, Seravallian and Tortonian sand stones, clays, marls and tuffs, and Tortonian quartz andesites and pyroxene an de site lavas and quartz an - de site and microdiorite subvolcanic bod ies (Damian, 1996).

The ore de posit is the type lo cal ity of fizélyite (Pb14Ag5Sb21S48) and is known for well-de vel oped stibnite, a com plex sulphosalt as sem blage (Damian, 1996; Cook and Damian, 1997;

Udubaêa et al., 2002), and the oc cur rence of black cal cite (Tãmaê et al., 2018) that oc ca sion ally forms black and bi-col - oured black and white spheres (M­rza et al., 2019). The de posit was in ter preted as of low- sulphidation type by Damian (1996).

PREVIOUS DATA ON ENARGITE AND LUZONITE–FAMATINITE FROM THE BAIA MARE METALLOGENIC DISTRICT

The oc cur rence of en ar gite and luzonite–famatinite in the Baia Mare met al lo gen ic dis trict is poorly known and su per fi cially de scribed. Pomârleanu (1971) briefly men tioned the pres ence of en ar gite, famatinite and luzonite in the Cavnic ore de posit, while Petrulian et al. (1976) in cluded en ar gite among the ore min er als of the sec ond paragenetic Sb- and Ag-bear ing se - quence they pro posed for the Cavnic ore de posit, with en ar gite as so ci ated with tetrahedrite, bour no nite, stibnite, semseyite, proustite, pyrargyrite, sub or di nate bis muthi nite and germanite.

Bailly et al. (1998) placed en ar gite in the fifth min er al iza tion se - quence of the dis trict, which is dom i nated by electrum, proustite/pyrargyrite, pearceite/polybasite and na tive As.

Damian and Damian (2004) com piled a syn the sis of the ore min er al ogy in the Baia Mare met al lo gen ic dis trict based on four ref er ences, i.e. Cãdere (1925), Rãdulescu and Dimitrescu (1965), Udubaêa et al. (1992) and Damian et al. (1995), and re - ported en ar gite at Nistru (Ilba–Nistru sub-dis trict) and Bãiuï (Herja–Bãiuï sub-dis trict). How ever, none of these four pub li ca - tions re ported the oc cur rence of en ar gite at Nistru and Bãiuï or else where in the Baia Mare met al lo gen ic dis trict. András (2017) made the first men tion of en ar gite in the Bãiuï area based on op ti cal mi cros copy, and sub se quently Kovács and Tãmaê (2017) con firmed it by SEM-EDS data.

MATERIALS AND METHODS

The new min er al og i cal data on en ar gite from the Baia Mare met al lo gen ic dis trict were ac quired from ore sam ples from the Bãiuï and Herja ore de pos its by op ti cal mi cros copy, X-Ray pow - der dif frac tion (XRD), scan ning elec tron mi cros copy (SEM-EDS), and elec tron probe microanalyzer (EPMA). The sam ples from Bãiuï (Fig. 2A, B) were col lected from the for mer ore stock pile of the Cisma ore de posit, lo cated in the vi cin ity of the aban doned Bãiuï pro cess ing plant. A sam ple from Herja (Fig. 2C, D), spec i men no. 2660 from the County Mu seum of Min er al ogy Vic tor Gorduza, Baia Mare, Ro ma nia, was also in - ves ti gated.

The op ti cal mi cros copy was done us ing a Nikon Eclipse LV100N POL po lar iz ing mi cro scope from Géosciences Environnement Toulouse - Observatoire Midi-Pyrénées (GET), Toulouse, France. The X-Ray dif frac tion de ter mi na tions were per formed us ing a Bruker D8 Ad vance diffractometer with Cu Ka ra di a tion (l = 1.5418 ), LynxEye one-di men sional de tec tor and Fe 0.01 mm fil ter at the De part ment of Ge ol ogy, Babeê-Bolyai Uni ver sity in Cluj-Napoca, Ro ma nia. The work ing pa ram e ters of the X-Ray dif frac tion were 40 kV and 40 mA. The dif frac tion data were col lected be tween 5 and 64° 2q with a step in ter val of 0.02° 2q. The PDF2 da ta base has been used for min - eral iden ti fi ca tion.

The SEM ob ser va tions were car ried out us ing a JSM-6360 elec tron mi cro scope with 20 kV volt age at the GET Lab o ra - tory, Toulouse, France. The quan ti ta tive microprobe anal y ses were made at the Cen tre de Microcaractérisation Raimond Castaing, Institut Na tional des Sci ences Appliquées de

(5)

Toulouse, France, by a CAMECA SXFive elec tron microprobe with 25 kV ac cel er a tion, a beam cur rent of 20 nA, a sur face of the ana lysed area of 2 ´ 2 mi crom e ters and a count ing time of 10 s for peaks and 5 s for back ground. The fol low ing stan dards and ra di a tions have been used: CuFeS2 for S, Fe and Cu;

FeAsS for As; pure Ag for Ag; PbS for Pb; pure Sb for Sb; pure Bi for Bi; ZnS for Zn; MnTiO3 for Mn; Cd for Cd; pure Sn for Sn;

Ka lines for Cu, Fe, S, Zn; La lines for Ag, Cd, Sb, Sn; Lb lines for As; and Ma lines for Bi and Pb. The min i mum de tec tion lim - its were 450 ppm for S; 570 ppm for Cu; 1960 ppm for Ag;

650 ppm for Zn; 440 ppm for Fe; 2000 ppm for As; 570 ppm for Sb; 3600 ppm for Pb; 2900 ppm for Bi; 300 ppm for Mn; 470 ppm for Sn; and 600 ppm for Cd.

RESULTS

OPTICAL MICROSCOPY AND SCANNING ELECTRON MICROSCOPY

Re flected light mi cros copy study of ore sam ples from the Cisma ore de posit al lowed the iden ti fi ca tion of en ar gite/luzonite

and tetrahedrite-ten nan tite. These min er als are as so ci ated with chal co py rite, sphalerite, ga lena and he ma tite. The gangue is rep re sented mainly by quartz.

En ar gite/luzonite (Cu3AsS4) is mod er ately abun dant and oc curs as large (up to 300 µm) pale brown subhedral to anhedral grains with a grey ish-pur plish tint that con tain chal co - py rite in clu sions (Fig. 3A). It shows vis i ble bireflectance in plane po lar ized light and strong ani so tropy un der crossed polars (Fig. 3B). En ar gite/luzonite is of ten as so ci ated with ga lena as - so ci ated with chal co py rite (Fig. 3B, C) or sphalerite (Fig. 3D) and con tains lo cal ten nan tite in clu sions con trolled by voids.

Chal co py rite is partly re placed by en ar gite/luzonite (Fig. 3E).

En ar gite/luzonite is also as so ci ated with large (up to 0.25 mm) sphalerite grains (Fig. 3D).

Min er als from the tetrahedrite–ten nan tite se ries ((Cu,Fe)12(As,Sb)4S13) oc cur fre quently as re place ment of en - ar gite/luzonite co ex ist ing with ga lena that is as so ci ated with well-de vel oped sphalerite with chal co py rite in clu sions (Fig. 3D, E), and as euhedral grains (up to 30 µm) hosted by en ar - gite/luzonite (Fig. 3B).

Cu3(As,Sb)S4 min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro ma nia... 267

Fig. 2. En ar gite-bear ing sam ples from the Baia Mare met al lo gen ic dis trict

A – lon gi tu di nal slice of an ore sam ple from Cisma host ing chal co py rite, he ma tite, ga lena, kaolinite and quartz used for XRD (kaolinite) and EPMA (en ar gite) in ves ti ga tions; B – trans verse slice through the ore sam ple shown in Fig ure 2A, show ing the lo ca tion of EPMA points for chal co py rite and en ar gite – cir cles; C, D – ore sam ple show ing grey ish-black pris matic en ar gite crys tals as so ci ated with quartz (pho tos C and D have been taken by Ioan Bereê, mu seum cu ra tor; D is an en large ment of the por tion of the sam ple shown in C); ab bre vi a tions: Ccp – chal co py rite, Eng – en ar gite, Gn – ga lena, Hem – he ma tite, Kln – kaolinite, Qz – quartz

(6)

Fig. 3. Re flected light pho to mi cro graphs of en ar gite/luzonite bear ing a min eral as sem blage from Cisma ore de posit A – large anhedral en ar gite/luzonite grain with small chal co py rite in clu sions; B – large en ar gite/luzonite grain with strong ani so tropy, show - ing creamy and pur ple tints, host ing ten nan tite-chal co py rite in clu sions and as so ci ated with ga lena and chal co py rite; C – nee dle-like he ma tite as so ci ated with en ar gite/luzonite and chal co py rite; D – de tail of en ar gite/luzonite, ten nan tite and ga lena as so ci ated with sphalerite with chal - co py rite dis ease; the en ar gite/luzonite is partly re placed and cut by ten nan tite; ga lena is con cen trated along the for mer en ar - gite/luzonite–sphalerite con tact; E – large sphalerite with chal co py rite dis ease as so ci ated with en ar gite/luzonite and sub or di nate ten nan tite and ga lena; F – en ar gite/luzonite, chal co py rite, and ga lena host ing a nee dle-like he ma tite min eral as sem blage; G – ga lena as so ci ated with chal co py rite and en ar gite/luzonite; H – large chal co py rite grains re placed by en ar gite/luzonite; note the abun dance of voids within en ar - gite/luzonite as com pared to chal co py rite; I – thin nee dle-like he ma tite crys tals as so ci ated with later sphalerite with chal co py rite dis ease; J – ga lena with tri an gu lar pits and vis i ble cleav age; K – fibroradial ag gre gates of he ma tite hosted by quartz gangue; L – en ar gite and he ma tite as so ci ated with ga lena and chal co py rite; ab bre vi a tions: Ccp – chal co py rite, Eng – en ar gite/luzonite, Gn – ga lena, Hem – he ma tite, Qz – quartz, Sp – sphalerite, Tnt – ten nan tite; A, C–F, H–L in plane po lar ized light, B and G un der crossed polars)

(7)

Large (up to 200 µm) subhedral chal co py rite (CuFeS2) grains are as so ci ated with ga lena (Fig. 3C, F) and en ar - gite/luzonite (Fig. 3G). Chal co py rite also oc curs as large (over 250 µm in length) anhedral in clu sions hosted by en ar - gite/luzonite (Fig. 3H). The ir reg u lar shape of the con tact be - tween chal co py rite and en ar gite/luzonite (Fig. 3H) sug gests that chal co py rite was partly re placed by en ar gite/luzonite.

Subhedral to anhedral chal co py rite grains up to 5 µm in size re - lated to ten nan tite oc cur as in clu sions in en ar gite/luzonite (Fig. 3B), as well as in sphalerite show ing lo cally lin ear dis tri bu - tion (Fig. 3E, I).

Sphalerite oc curs as large (up to 250 µm) grains (Fig. 3I), en clos ing elon gated and rounded chal co py rite in clu sions (Fig. 3I). Subhedral to euhedral sphalerite grains are as so ci ated with en ar gite/luzonite, ten nan tite, chal co py rite (Fig. 3E) or ga - lena (Fig. 3D), and lo cally en gulf he ma tite lamellae (Fig. 3I).

Ga lena ap pears as large in di vid ual grains show ing cleav - age and tri an gu lar pits (Fig. 3J). It lo cally marks the con tact zone be tween chal co py rite and en ar gite/luzonite (Fig. 3B, G), or be tween tetrahedrite-ten nan tite and sphalerite (Fig. 3D). Ga - lena also en cir cles acicular he ma tite (Fig. 3F).

He ma tite (Fe2O3) is abun dant within the quartz gangue and ap pears as elon gated lamellae. It may oc cur as fibroradial ag gre - gates com posed of short in di vid ual lamellae (Fig. 3K), or as iso - lated nee dle-like crys tals en gulfed by later de pos ited sulphides, i.e., sphalerite (Fig. 3I), ga lena (Fig. 3L), chal co py rite, tetra -

hedrite– tennantite and en ar gite/luzonite (Fig. 3C). Quartz gangue host ing he ma tite lamellae is mac ro scop i cally red.

The SEM-BSE im ages of en ar gite/luzonite grains (Fig. 4) show dif fer ent shades of grey, which cor re lates with chem i cal het er o ge ne ity of en ar gite/luzonite rep re sented mostly by As and Sb con tent vari a tion. A faint zon ing could be dis cerned lo - cally along the grain bor der as well as an outer whit ish rim (Fig. 4A). The en ar gite/luzonite-ten nan tite re la tion ship is high - lighted by a SEM-BSE im age (Fig. 4B) that shows that en ar - gite/luzonite is cut by a ten nan tite stringer that partly fol lows the chem i cal het er o ge ne ity of en ar gite/luzonite or that cre ated it.

The en ar gite/luzonite grain from Fig ure 4C shows ap par ently mi nor shade vari a tions. The num bers de picted in Fig ure 4 in di - cate the EPMA points dis cussed be low.

ELECTRON MICROPROBE ANALYSIS

EPMA data were ac quired for en ar gite/luzonite and as so ci - ated sulphides and sulphosalts. EPMA data for en ar - gite/luzonite are pre sented in Ta ble 1 and show sig nif i cant chem i cal vari a tions. The en ar gite/luzonite ana lysed con tains vari able con cen tra tions of As (rang ing be tween 12.07 and 17.96 wt.%) and Sb (be tween 0.27 and 8.74 wt.%). The vari able As/Sb ra tios de ter mine the var i ous shades of grey in SEM-BSE im ages of en ar gite/luzonite (Fig. 4), i.e. the darker shades cor re - spond to lower Sb con tent (#5–7; #11–14; 0.27 to 2.42 wt.%) and Cu3(As,Sb)S4 min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro ma nia... 269

Fig. 4. SEM-BSE im ages of en ar gite/luzonite from the Cisma de posit

A – par tial view of the large en ar gite/luzonite grain shown in Fig ure 3A dis play ing dif fer ent shades of grey due to vari able amounts of As and Sb; num bers from 1 to 10 in di cate the po si tion of EPMA points for en ar gite/luzonite; B – the equiv a lent SEM-BSE im age of Fig ure 3D with ga - lena, ten nan tite and en ar gite/luzonite; num bers 11 and 12 show the lo ca tion of EPMA points for en ar gite/luzonite; C – the equiv a lent SEM-BSE im age of Fig ure 3B, with a ten nan tite-chal co py rite in clu sion in en ar gite/luzonite as so ci ated with ga lena and chal co py rite; num bers show the lo ca tion of EPMA points as fol lows, 13 and 14 for en ar gite/luzonite, Tnt1–Tnt4 for ten nan tite–tetrahedrite, and Ccp1 for chal co py - rite; other ex pla na tions as in Fig ure 3

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Av.

Cu 47.41 47.5 47.89 47.80 48.25 47.90 48.39 47.11 47.50 47.19 47.50 46.93 47.44 47.67 47.61

Ag 0.000.00 – – 0.00 0.00 0.30

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.670.00 0.07

Fe 0.37 0.26 0.19 0.22 0.54 1.32 0.53 0.25 0.29 0.29 1.43 1.32 2.61 2.29 0.85

As 12.92 14.35 14.17 15.30 16.68 16.55 16.91 12.52 13.20 12.07 16.31 16.17 17.96 17.71 15.20

Sb 6.15 6.08 5.94 4.84 2.10 2.04 1.65 8.74 7.17 8.38 2.42 2.20 0.27 0.27 4.16

S 34.57 32.24 32.33 32.51 32.55 32.75 33.18 31.98 32.53 32.68 32.12 32.29 32.85 32.39 32.64 To tal 101.42 100.44 100.52 100.67 100.12 100.56 100.66 100.60 100.69 100.61 100.15 99.88 101.13 100.33 100.53*

The value marked with * rep re sents the sum of the av er age value of the el e ments, while “–” rep re sents val ues be low the de tec tion limit; the Pb, Mn, Cd, Sn con tents are be low the de tec tion limit, while Bi was not de tected

T a b l e 1 Rep re sen ta tive EPMA re sults (in wt.%) for en ar gite/luzonite from the Cisma ore de posit (Bãiuï met al lo gen ic field)

(8)

the lighter shades cor re spond to higher Sb con tent (#8–10; 7.17 to 8.74 wt.%). The cal cu lated av er age chem i cal for mula of en ar - gite/luzonite is (Cu2.97,Fe0.06,Zn0.004)S=3.03(As0.80,Sb0.14)S=0.94S4.03.

The ac quired EPMA data for min er als from the tetrahedrite–ten nan tite se ries (Ta ble 2) show higher av er age val ues for As (17.38 wt.%) than for Sb (2.17 wt.%), with chem i cal com po si tions rang ing be tween 15.48–18.10 wt.% (As), and 1.67–3.12 wt.% (Sb), re spec tively (Ta ble 2). The min eral grains ana lysed are closer to ten nan tite com po si tion. Sil ver is com monly pres ent in ten nan tite with val ues rang ing from 0.35 to 0.60 wt.%

(Ta ble 2). Over all, a higher Fe con tent cor re lates well to higher Sb amount. The cal cu lated av er age chem i cal for mula of ten nan tite is (Cu10.22,Fe1.76,Ag0.07,Pb0.05,Cd0.01)S=12.11(Sb0.26,As3.43)S=3.69S13.20.

The EPMA data on chal co py rite re veals al most ideal Cu, Fe, and S val ues (Ta ble 2). The cal cu lated chem i cal for mula of the ana lysed chal co py rite grain is Cu0.99Fe1.00S2.01.

The sphalerite ana lysed (Ta ble 2), con tains less than 4.2 wt.% of all mi nor met als re plac ing Zn, i.e. (in wt.%), Fe (min = 2.62; max = 3.21); Cd (min = 0.61; max = 0.64); Cu (min = 0.21; max = 0.32), and Mn (min = 0.06; max = 0.08). The av er age chem i cal for mula of the sphalerite is (Zn0.91,Cu0.004,Fe0.05,Cd0.01,Mn0.001,As0.0003)S=0.97S1.03.

X-RAY POWDER DIFFRACTION

Whit ish-yel low al ter ation min er als de pos ited in voids within en ar gite-bear ing ore from Cisma were sep a rated for XRD anal - y ses from the sam ple shown in Fig ure 2A. The XRD data con - firms the pres ence of kaolinite, cal cite and ga lena.

An ore sam ple from Herja held by the County Mu seum of Min er al ogy “Vic tor Gorduza”, Baia Mare, Ro ma nia la beled

“quartz–en ar gite” was also in ves ti gated (Fig. 2C). The spec i - men is com posed of 0.5–1 cm long grey ish-black pris matic crys tals with me tal lic luster (Fig. 2D) as so ci ated with py rite and quartz. The XRD of the pris matic me tal lic crys tals con firms the oc cur rence of en ar gite and the mi nor pres ence of ten nan tite and ga lena.

DISCUSSION

En ar gite/luzonite–famatinite oc cur rences in Ro ma nia are mi nor. Sev eral ex am ples are known from the Apuseni Moun - tains in com pat i ble well-doc u mented ore de posit en vi ron ments,

e.g., the P­r­ul lui Avram HS de posit (Socolescu et al., 1963), the Roêia Poieni Cu-Au por phyry and over print ing HS veins, and HS veins over print ing Bucium-Tarniïa Cu-Au por phyry (Cioacã et al., 2014). En ar gite, famatinite and luzonite are only briefly men tioned in the Baia Mare met al lo gen ic dis trict (cf.

Pom­rleanu, 1971; Petrulian et al., 1976; Bailly et al., 1998) with out any an a lyt i cal data or geo log i cal in for ma tion on the ore de posit con text.

SEM-BSE im ages and EPMA data on en ar gite/luzonite grains in di cate rarely ho mo ge neous (Fig. 4C) and more fre - quently het er o ge neous (Fig. 4A, B) com po si tions due mostly to vari able Sb and As con tents (Ta ble 1). The op ti cal mi cros copy study on the ore sam ples avail able from Cisma did not al low clear dis crim i na tion be tween en ar gite and famatinite. How ever, as shown in Fig ure 5, the com po si tion of the min eral grains ana - lysed in di cates in ter me di ate phases closer to en ar gite/luzonite.

Op ti cal mi cros copy dis tinc tion be tween en ar gite and luzonite is un cer tain (Uytenbogaardt and Burke, 1971;

Pracejus, 2015), and their ideal chem i cal com po si tion is also iden ti cal. Based on high-res o lu tion trans mit ted elec tron mi cros - copy and elec tron dif frac tion on se lected ar eas in sam ples from the Recsk por phyry-HS sys tem (NE Hun gary), Pósfai and Sundberg (1998) dem on strated that en ar gite and luzonite are com monly intergrown at the atomic level. How ever, Springer (1969) has shown that the max i mum con tent of Sb in en ar gite

Min eral tetrahedrite–tennantite chal co py rite sphalerite

El e ments tn1 tn2 tn3 tn4 av er age 1 1 2 av er age

Cu 43.99 44.70 43.36 43.81 43.97 34.55 0.21 0.32 0.27

Ag 0.60 0.35 0.54 0.58 0.52 0.00 0.00 – 0.00

Zn – 0.00 0.08 0.00 – 0.00 62.77 61.94 62.36

Fe 6.33 5.70 8.15 6.49 6.67 30.64 2.62 3.21 2.92

Pb 0.78 0.54 –- 0.61 0.48 0.00 0.00 – 0.00

As 18.02 17.91 15.48 18.10 17.38 0.00 0.02 0.02 0.02

Sb 1.73 2.14 3.12 1.67 2.17 0.00 0.00 0.00 0.00

Cd 0.06 –- 0.10 0.06 0.06 0.00 0.61 0.64 0.63

Mn 0.00 0.00 0.00 – 0.00 – 0.06 0.08 0.07

S 28.82 28.86 28.03 28.82 28.63 35.26 34.05 34.54 34.30

To tal 100.33 100.20 98.86 100.14 99.88 100.45 100.34 100.75 100.55

“–” rep re sents val ues be low the de tec tion limit

T a b l e 2 Rep re sen ta tive EPMA re sults (in wt.%) for tetrahedrite–ten nan tite, chal co py rite and sphalerite

Fig. 5. Plot of compositional vari a tions of ana lysed en ar gite/luzonite and ten nan tite from Cisma

in the di a gram of Ciobanu et al. (2005)

(9)

can reach up to 6 wt.%, and Gaines (1957) dem on strated by XRD and chem i cal data that there is a com plete solid so lu tion be tween luzonite and famatinite. Con se quently, cer tain dis tinc - tion be tween en ar gite and luzonite can be made based on microchemical data only if the Sb con tent ex ceeds the limit high lighted by Springer (1969), i.e. 6 wt.% Sb that cor re sponds to ~20 mol % Cu3SbS4. Among the avail able EPMA re sults ac - quired from Cisma there are three com po si tions ex ceed ing this Sb limit (Ta ble 1), i.e. #8 (8.74 wt.%), #9 (7.17 wt.%), and #10 (8.38 wt.%), three other points are close to the limit, i.e. #1 (6.15 wt.%), #2 (6.08 wt.%), and #3 (5.94 wt.%), and the re - main ing ones are largely be low. The EPMA points #8–10 thus in di cate the oc cur rence of luzonite, which likely cor re sponds to the lighter spots in Fig ure 4A. The Sb val ues of the EPMA points #1–3 are too close to the limit (6 wt.%) to re ally dis crim i - nate be tween en ar gite and luzonite, and the re main ing EPMA points did not sup port such dis crim i na tion. Pósfai and Buseck (1998) stated that when en ar gite and luzonite co ex ist, luzonite typ i cally con tains more Sb than en ar gite. More over, the same au thors sug gest that en ar gite that co ex ists with luzonite-famatinite can con tain a max i mum of 11 mol%

Cu3SbS4, which cor re sponds ap prox i mately to 3.3 wt.% Sb.

How ever, higher val ues were en coun tered for en ar gite as so ci - ated with Mn-bear ing tetrahedrite. Ac cord ing to these ad di tional ob ser va tions, the EPMA points #1–4 with Sb con tent rang ing from 4.84 to 6.15 rep re sent luzonite, and the re main ing EPMA points #5–7 and #11–14 with Sb con tent rang ing from 0.27 to 2.42 (Ta ble 1) cor re spond to en ar gite. A sim i lar Sb con tent range in en ar gite was re ported by Deyell and Hedenquist (2011) from the Lepanto high-sulphidation Cu-Au de posit and the nearby Far South east Cu-Au por phyry de posit, Mankayan dis trict, Phil ip pines, i.e., 0.19 to 3.59 wt.% Sb.

EPMA and LA-ICP-MS stud ies of trace el e ments in en ar gite from por phyry and HS ores in the Far South east and Lepanto de pos its, Phil ip pines re veal Ag, Fe and Pb en rich ment in en ar - gite from the main HS ore body (Deyell and Hedenquist, 2011).

The Fe con tent in en ar gite from Cisma, i.e., up to 2.61 wt.%, ex - ceeds the max i mum Fe con tent re ported from the Lepanto main ore body that ranges from 0.21 to 0.75 wt.%. As re gards the en ar gite from Cisma, the EPMA de tec tion lim its are too high for the iden ti fi ca tion of Pb and Ag con tents in en ar gite as re - ported by Deyell and Hedenquist (2011), per formed by LA-ICP-MS, and con se quently it is im pos si ble to pro pose other cor re la tions. Based on EPMA and LA-ICP-MS data on en ar gite from por phyry, HS and IS ore de pos its from the Zijinshan Cu-Au ore dis trict (south east ern China), Liu et al. (2019) have shown that the trace el e ment pat tern of en ar gite is spe cific for each de - posit type and for the case of epi ther mal de pos its it cor re lates to the tran si tion from HS to IS and re flects the hy dro ther mal fluid evo lu tion. The en ar gite from Cisma shows sim i lar de ple tion in Zn as does the en ar gite from the Longjiangting IS de posit (Liu et al., 2019), and en rich ment in Sb and Fe as in the IS en ar gite rim formed on en ar gite from the Wuziqilong Cu de posit (Liu et al., 2019). Over all, these au thors stated that at least for the Zijinshan ore dis trict in China, en ar gite from HS de pos its is en - riched in Te and Sn, and en ar gite from IS de pos its is de pleted in these el e ments and en riched in Sb and Se. Ac cord ingly, the trace el e ment chem i cal pat tern of en ar gite from Cisma (Ta - ble 1), e.g., Sn be low the de tec tion limit and en rich ment in Sb, sug gests its IS af fin ity.

The op ti cal mi cros copy study of the Cisma ores shows that he ma tite pre dated the sulphides and chal co py rite is partly re - placed by en ar gite/luzonite, which is cut and partly re placed by ten nan tite (Figs. 3D and 4C). He ma tite was pre vi ously iden ti fied in the paragenesis of Vãratec ore de posit, Bãiuï met al lo gen ic field as men tioned by Costin and Vlad (2005) in the first two min er al iza tion stages, i.e., quartz–Fe-ox ides±py rite±wo -

lframates (1), and quartz–chal co py rite–Bi-min er als–py - rite±Fe-ox ides (2). The wide spread oc cur rence of he ma tite in the ore sam ples from Cisma in di cates an in ter me di ate sulphidation stage ac cord ing to the log f(S2) – tem per a ture di a - gram of Einaudi et al. (2003).

These min eral re la tion ships, in di cat ing the paragenetic se - quence he ma tite–chal co py rite–en ar gite and luzonite–ten nan - tite, sug gest an early in ter me di ate sulphidation en vi ron ment (he ma tite and chal co py rite) fol lowed by a pas sage to wards high-sulphidation con di tions as in di cated by chal co py rite re - place ment by en ar gite/luzonite and a fi nal over print by an in ter - me di ate sulphidation stage sug gested by en ar gite/luzonite re - place ment by ten nan tite and the ab sence of bornite and py rite.

Sim i lar sulphidation state evo lu tion trend was found in the Recsk por phyry–skarn–epi ther mal met al lo gen ic sys tem, Hun - gary, by Takács et al. (2017). The abun dant hypogene kaolinite closely re lated to the en ar gite–ten nan tite–chal co py rite min eral as sem blage in di cates the in ter me di ate/high sulphidation state.

Sim i larly, the pres ence of sig nif i cant en ar gite as so ci ated with ten nan tite and ga lena in the sam ple stud ied from the Herja ore de posit sug gests a sim i lar in ter me di ate/high sulphidation en vi - ron ment dur ing ore de po si tion.

Based mostly on LA-ICP-MS data on en ar gite from en ar - gite-rich HS ore bod ies, Deyell and Hedenquist (2011) showed a lat eral vari a tion of trace el e ments in en ar gite from por phyry to prox i mal (HS) and dis tal (IS) en vi ron ments. This vari abil ity is char ac ter ized by: Au and Te en rich ment prox i mal to cogenetic por phyry; Ag, Fe, and Pb en rich ment in the main HS ore body;

and Zn±Cd en rich ment in dis tal veins. Thus, the chem i cal char - ac ter of the en ar gite could be used as a vectoring tool for ex plo - ra tion in por phyry to epi ther mal en vi ron ments. The oc cur rence of Cu3(As,Sb)S4 min er als (en ar gite and luzonite) in the Cisma and Herja ore de pos its sug gests that IS and HS con di tions ex - isted dur ing the for ma tion of these de pos its. Strongly leached and highly si lici fied zones, e.g., mas sive and vug gy sil ica hosted by rocks with argillic/ad vanced argillic al ter ation ha los and con tain ing dis sem i nated min er al iza tion, were ig nored in the Baia Mare dis trict. Sim i larly, the pres ence of por phyry de - pos its was gen er ally ne glected. An over view of the ore de pos its from the Baia Mare met al lo gen ic dis trict us ing up-to-date ore de posit mod els based on avail able geo log i cal and min er al og i - cal data, as pro posed by Nieæ et al. (2016) for the Pol ish Carpathians, could re veal pro spec tive spots at least for HS style ores.

The com mon sulphides have been pre vi ously de scribed from all ore de pos its within the Bãiuï met al lo gen ic field. Ga lena was iden ti fied in the up per part of the veins from the Cisma–Poiana Botizei de posit (Damian et al., 2010) and from the dom i nantly Pb-rich Vãratec ore de posit, be ing as so ci ated with sphalerite and sub or di nate chal co py rite (Cook, 1998).

The sphalerite ana lysed has sim i lar amounts of Fe (2.62 and 3.21 wt.% Fe) as the sphalerite-1 de scribed by Plotinskaya et al. (2014), char ac ter ized by low Fe con tent (1.3 to 4.6 wt.%).

How ever, the sphalerite ana lysed has lower Mn (0.06–0.08 wt.%) and higher Cd (0.61–0.64 wt.%) con tents as com pared to the sphalerite-1 (cf. Plotinskaya et al., 2014), i.e.

0.5–0.7 wt.% Mn and 0.2 wt.% Cd, re spec tively. Sim i larly, chal - co py rite in clu sions have been de scribed in the zoned sphalerite-2 from the Cisma vein re ported by Plotinskaya et al.

(2012). Pre vi ous stud ies on the Baia Mare met al lo gen ic dis trict (Bailly et al., 1998) and the Vãratec ore de posit (Costin, 2003;

Costin and Vlad, 2005) in ter preted chal co py rite as part of the sec ond paragenetic se quence, as so ci ated with quartz, Fe-ox - ides, py rite and Bi-min er als.

The ten nan tite grains ana lysed (Ta ble 2) have As apfu >3 (As apfu rang ing be tween 3.09–3.56, av er age 3.43), as com - pared to ten nan tite–tetrahedrite with As apfu <2.2 from Bãiuï Cu3(As,Sb)S4 min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro ma nia... 271

(10)

re ported by Damian and Damian (2003). The vari a tion of As and Sb con tent in the ten nan tite grains ana lysed is shown in Fig ure 5. Ac cord ing to Damian and Damian (2003) the ore de - pos its from the Baia Mare area con tain Zn-rich tetrahedrites and Fe-rich tennantites, with up to 7.69 wt.% Zn and 6.46 wt.%

Fe, re spec tively. How ever, only one out of 4 ten nan tite grains ana lysed in the pres ent study con tains Zn (0.08 wt.%) close to the de tec tion limit (0.065 wt.%), while all the grains ana lysed have high Fe val ues, rang ing from 5.70 to 8.15 wt.%, ex ceed ing the up per limit pre vi ously men tioned.

The ten nan tite from Cisma has high Fe (rang ing from 5.70 to 8.15 wt.%), low Zn (from be low the de tec tion limit up to 0.8 wt.%), no Mn and a clear Cu-ex cess with Cu >10 apfu (Ta ble 2 and Fig. 4C). Man ga nese-free fahlore min er als were re ported by Takács et al. (2017) from the Lahóca Hill, Recsk ore com - plex, Hun gary, from pre- and post-en ar gite depositional stages in HS ore bod ies. Contrastingly, fahlore min er als con tain ing Mn were iden ti fied by the same au thors in the Lejtanka tran si tional HS-IS and Parád IS de pos its from the Recsk ore com plex, Hun - gary, and these geo chem i cal pe cu liar i ties were con sid ered ev i - dence of lower sulphidation state hy dro ther mal flu ids, likely re - spon si ble for IS min er al iza tion. Con se quently, the ab sence of Mn in ten nan tite from Cisma could be also in ter preted as an in - di ca tor of the HS char ac ter of the host ore. The Ag con tent of ten nan tite from Cisma (0.35–0.60 wt.%) is in agree ment with the pre vi ously re ported data by Damian and Damian (2003), which stated that the Ag con tent in tetrahedrite-ten nan tite from the Baia Mare dis trict is <2 wt.%.

CONCLUSIONS

EPMA re sults ac quired from the Cisma ore de posit in the Bãiuï ore field and XRD data on an ore sam ple from the Herja

ore de posit rep re sent the first an a lyt i cal ev i dence for the oc cur - rence of en ar gite and luzonite in the Baia Mare ore dis trict. The newly ac quired mi cro-chem i cal re sults on en ar gite/luzonite, sphalerite and ten nan tite, and the sig nif i cant oc cur rence of kaolinite, re veal a clear in ter me di ate to high sulphidation state en vi ron ment of Cu-rich ore at Cisma. An evo lu tion trend of the sulphidation state of the hy dro ther mal flu ids is in ferred for Cisma from an early IS stage with he ma tite and chal co py rite to a HS stage with en ar gite and luzonite and a fi nal IS stage with ten nan tite and base metal sulphides.

The hith erto gen er ally ac cepted low sulphidation char ac ter of the Neo gene Baia Mare met al lo gen ic dis trict should be re - con sid ered from these re sults, and this ap proach may open new min eral ex plo ra tion chal lenges for IS/HS ores and their deep/hid den por phyry roots in this dis trict. The mas sive and/or vug gy sil ica bod ies hosted by argillic/ad vanced argillic al ter ation with dis sem i nated Au min er al iza tion seem to rep re sent a new ex plo ra tion tar get in the Baia Mare met al lo gen ic dis trict.

Ac knowl edg ments. Many thanks to I. Denuï , di rec tor of the “Vic tor Gorduza” County Min er al og i cal Mu seum of Baia Mare for pro vid ing ac cess to the ore sam ple col lec tion of the mu seum and per mis sion to sam ple the en ar gite spec i men from the Herja ore de posit. Thanks are ad dressed to D. Béziat (GET Toulouse) for grant ing ac cess to ore mi cros copy fa cil i ties.

T. Aigouy (GET Toulouse) and P. de Parseval (UMS 3623 – Cen tre de MicroCaractérisation Raimond Castaing, Toulouse) for as sis tance dur ing SEM and EPMA ses sions. The XRD de - vice from the De part ment of Ge ol ogy, Babeê-Bolyai Uni ver sity, Cluj-Napoca used for this work was ac quired in the frame work of the RICI/INIR pro gram with the fi nan cial sup port of PNCDI II (2007–2013). The re view made by P. Lattanzi and an anon y - mous re viewer and the sug ges tions of fered by S. Oszczepalski greatly im proved the qual ity of the manu script.

REFERENCES

András, K., 2017. Studiul mineralogic al minereurilor din perimetrul Bãiuï (judeïul Maramureê), cu privire specialã asupra zãcãmintelor Vãratec, Cisma, Coasta Ursului, Johan Hell, Breiner êi Poiana Botizei (in Ro ma nian). Un pub lished Mas ter the sis, Uni ver sity Babeê-Bolyai, Cluj-Napoca.

Bailly, L., Milési, J.P., Leroy, J., Marcoux, E., 1998. The Au-Cu-Zn-Sb epi ther mal mineralisations of the Baia Mare dis - trict (North Ro ma nia): new min er al og i cal and microthermometric re sults (in French with Eng lish sum mary).

Académie des Sci ences, Géomatériaux, Paris, 327: 385–390.

Borcoê, M., 1994. Neo gene vol can ici ty/metallogeny in the Oaê-Gutâi Mts. In: Field trip guide IGCP 356, Bu cha rest: Plate Tec ton ics and Metallogeny in the East Carpathians and Apuseni Mts. (eds. M. Borcoê and Ÿ. Vlad): 20–22.

Borcoº, M., Gheorghiïã, I., 1976. Neo gene hy dro ther mal ore de - pos its in the vol ca nic Gutâi Moun tains. IV. Bãiuï-Vãratec-Botiza met al lo gen ic field. Re vue Roumaine de Géologie, Géophysique et Géographie, Série de Géologie, 20: 197–209.

Cãdere, D., 1925. Fapte pentru a servi la descrierea mineralogicã a Rom­niei (in Ro ma nian). Acad emy of Ro ma nia, Memoriile Secïiunii Ÿtiinïifice, 3.

Cioacã, E.M., Munteanu, M., Qi, L., Costin, G., 2014. Trace el e - ment con cen tra tions in por phyry cop per de pos its from Metaliferi Moun tains, Ro ma nia: a re con nais sance study. Ore Ge ol ogy Re - views, 63: 22–39.

Ciobanu, C.L., Cook, N.J., Capraru, N., Damian, G., Cristea, P., 2005. Min eral as sem blages from the veins salband at

Sãcãrâmb, Golden Quad ri lat eral, Ro ma nia: I. Sulphides and sulphosalts. Geo chem is try, Min er al ogy and Pe trol ogy, 45:

47–55.

Cook, N.J., 1998. Bis muth sulphosalts from hy dro ther mal vein de - pos its of Neo gene Age, N.W. Ro ma nia. Mitteilungen der Österreichische Mineralogische Gesselschaft, 143:19–39.

Cook, N.J., Damian, G.S., 1997. New data on “plumosite” and other sulphosalt min er als from the Herja hy dro ther mal vein de posit, Baia Mare dis trict, Ru ma nia. Geologica Carpathica, 48:

387–399.

Costin, D., 2003. Compositional data on bour no nite–CuPbSb3 from Vãratec ore de posit, Bãiuï mine field, East ern Carpathians, Ro - ma nia. Studia Universitatis Babeê-Bolyai, Geologia, 48:45–54.

Costin, D., Vlad, ª., 2005. Ore for ma tion at Vãratec–Bãiuï, Baia Mare re gion, East Carpathians, Ro ma nia. Geo chem is try, Min er - al ogy and Pe trol ogy, 43: 64–68.

Crahmaliuc, R., Andrei, J., Crahmaliuc, A., 1995. The mag netic mod el ing of the Gutâi Neo gene plutonic body. Ro ma nian Jour - nal of Stra tig ra phy, 76: 63–64.

Csontos, L., 1995. Ter tiary tec tonic evo lu tion of the Intra-Carpathian area: a re view. Acta Vulcanologica 7:1–15.

Csontos, L., Nagymarosy, A., 1998. The Mid-Hun gar ian Line: a zone of re peated tec tonic in ver sions. Tectonophysics, 297:

51–71.

Csontos, L., Nagymarosy, A., Horváth, F., Kovacs, M., 1992. Ter - tiary evo lu tion of the Intra-Carpathian area: a model.

Tectonophysics, 208: 221–241.

(11)

Damian, G.Ÿ., 1996. Studiul mineralogic, geochimic êi ge netic al zãcãm­ntului polimetalic de la Herja (in Ro ma nian). Un pub - lished Ph.D. the sis, Uni ver sity of Bu cha rest, Ro ma nia.

Damian, F., Damian, G., 2004. Min eral paragenesis of the hy dro - ther mal ore de pos its from Baia Mare area Ro ma nia. Sci en tific Bul le tin of North Uni ver sity Cen tre of Baia Mare, Se ries D, Min - ing, Min eral Pro cess ing, Non-fer rous Met al lurgy, Ge ol ogy and En vi ron men tal En gi neer ing, 18: 155–172.

Damian, G., Damian, F., 2003. Com par a tive study of the tetrahedrites from the Metaliferous Mts. and Baia Mare dis trict (Ro ma nia) based on microprobe anal y ses. Studia Universitatis Babeº-Bolyai, Seria Geologia, Spe cial Is sue: 27–29.

Damian, G., Nedelcu, L., Istvan, D., 1995. Two rep re sen ta tive vein de pos its (Au-Ag and Pb-Zn) re lated to Neo gene vol ca nic struc - tures. Ro ma nian Jour nal of Min er al ogy, 77: 45–63.

Damian, G., Damian, F., Kovalenker, V., Plotinskaya, O.Y., 2010.

Na tive bis muth and bis muth sulphosalts in Cisma Poiana Botizei mineralizations, Baia Mare Dis trict. Analele Stiintifice ale Universitãïii. Al. I. Cuza din Iaêi, Geologie: 189–191.

Damian, G., Damian, F., Koneèný, P., Kollárová, V., 2016. A new oc cur rence of wolf ram ite-fer ber ite in Ro ma nia. Ro ma nian Jour - nal of Min eral De pos its, 89: 49–54.

Deyell, C.L., Hedenquist, J.W., 2011. Trace el e ment geo chem is try of en ar gite in the Mankayan dis trict, Phil ip pines. Eco nomic Ge - ol ogy, 106: 1465–1478.

Edelstein, O., Bernád, A., Kovacs, M., Crihan, M., Pécskay, Z., 1992. Pre lim i nary data re gard ing the K-Ar ages of some erup - tive rocks from Baia Mare Neo gene vol ca nic zone. Re vue Roumaine de Géologie, Géophysique et Géographie, Série de Géologie, 36: 45–60.

Einaudi, M.T., Hedenquist, J.W., Inan, E.E., 2003. Sulfidation state of flu ids in ac tive and ex tinct hy dro ther mal sys tems: tran si tion from por phyry to epi ther mal en vi ron ments. SEG Spe cial Pub li - ca tion, 10: 283–313.

Fodor, L., Csontos, L., Bada, G., Györfi, I., Benkovics, L., 1999.

Ce no zoic tec tonic evo lu tion of the Pannonian ba sin sys tem and neigh bor ing orogens: a new syn the sis of paleostress data. Geo - log i cal So ci ety Spe cial Pub li ca tions, 156: 295–334.

Fülöp, A., 2001. Analiza secvenïialã a piroclastitelor acide din baza complexului vulcanic al Munïilor Gutâi; reconstituiri paleovulcanice ºi paleosedimentologice (in Ro ma nian). Ph.D.

the sis, Uni ver sity of Bu cha rest.

Fülöp, A., 2003. Debutul vulcanismului Ðn Munïii Gut­i. Reconstituiri paleovulcanologice êi paleosedimentologice (in Ro ma nian).

Dacia Pub lish ing House, Cluj-Napoca.

Fülöp, A., Kovacs, M., 2003. Pe trol ogy of Badenian ig nim brites, Gutâi Mts. (East ern Carpathians). Studia Universitatis Babeê-Bolyai, Geologia., 48:17–28.

Gaines, R.V., 1957. Luzonite, famatinite and some re lated min er als.

Amer i can Min er al o gist, 42: 766–779.

Giuºcã, D., 1960. Adularizarea vulcanitelor din regiunea Baia Mare (in Ro ma nian). Studii êi Cercetãri de Geologie, Geografie, Seria Geologia, 5: 499–507.

Grancea, L., Bailly, L., Leroy, J., Banks, D., Marcoux, E., Milesi, J.P., Cuney, M., An dre, A.S., Istvan, D., Fabre, C., 2002. Fluid evo lu tion in the Baia Mare epi ther mal gold/polymetallic dis trict, In ner Carpathians, Ro ma nia. Mineralium Deposita, 37:

630–647.

Gurãu, A., Roºu, N., Bãlaºa, E., Bordea, R., 1970. Con sid er ations re gard ing the struc ture and gen e sis of the Borzaê ore de posit (Baia Mare). Dãri de Seamã ale Ÿedinïelor Institutului Geo logic, 56 (2 for 1968–1969): 27–48.

Hedenquist, J.W., Matsuhisa, Y., Izawa, E., White, N.C., Giggenbach, W.F., Aoki, M., 1994. Ge ol ogy, geo chem is try, and or i gin of high sulfidation Cu-Au min er al iza tion in the Nansatsu dis trict, Ja pan. Eco nomic Ge ol ogy, 89: 1–30.

Huismans, R.S., Podladchikov, Y.I., Cloething, S., 2001. Dy namic mod el ling of the tran si tion from pas sive to ac tive rift ing, ap pli ca - tion to the Pannonian Ba sin. Tec ton ics, 20: 1021–1039.

Iancu, O.G., Kovacs, M., 2010. Ore de pos its and other clas sic lo - cal i ties in the East ern Carpathians: From metamorphics to volcanics. Acta Mineralogica-Petrographica, Field Guide Se - ries, 19: 1–55.

Iºtvan, D., Vârºescu, I., Halga, S., Grancea, L., 1995. Gold-sil ver epi ther mal lev els and as so ci a tions in the east ern area of the Gutâi Mts. and in the Vãratec Mts. (Firiza-Botiza area), East Carpathians, Ro ma nia. Studia Universitatis Babeê-Bolyai, Geologia, 40: 195–210.

Kouzmanov, K., Bailly, L., Tãmaº, C., Ivãºcanu, P., 2005. Epi ther - mal Pb-Zn-Cu(Au) de pos its in the Baia Mare dis trict, East ern Carpathians, Ro ma nia. Ore Geol. Re views, 27: 48–49.

Kovacs, M., Fülöp, A., 2003. Neo gene vol ca nism in Gutâi Mts.

(East ern Carpathians): a re view. Studia Universitatis Babeê-Bolyai, Geologia, 48: 3–16.

Kovacs, M., Fülöp A., 2010. Baia Mare metallogenetic dis trict. Acta Mineralogica-Petrographica, Field Guide Se ries, 19: 5–13.

Kovacs, M., Edelstein, O., Gabor, M., Bon homme, M., Pécskay, Z., 1997. Neo gene magmatism and metallogeny in Oaê-Gutâi-£ibleê Mts.; a new ap proach based on ra dio met ric datings. Ro ma nian Jour nal of Min eral De pos its, 78: 35–45.

Kovacs, M., Seghedi, I., Yamamoto, M., Fülöp, A., Pécskay, Z., Jurje, M., 2017. Mio cene vol ca nism in the Oaº-Gutâi Vol ca nic Zone, East ern Carpathians, Ro ma nia: re la tion ship to geodynamic pro cesses in the Transcarpathian ba sin. Lithos, 294–295: 304–318.

Kovács, R., Tãmaº, C.G., 2017. Cu-sulfosalts in Bãiuï metallogenetic field, Baia Mare dis trict, Gutâi Moun tains–pre - lim i nary scan ning elec tron mi cros copy data (in Ro ma nian).

Volumul Sesiunii ªtiinþifice „Ion Popescu Voiteºti”, Universitatea Babeº-Bolyai Cluj Napoca, Departamentul de Geologie: 24–30.

Kovács-Pálffy, P., Paulini, P., Rãduï, M., Cioroianu, V., 1977.

Alunitizarea din Valea Brada, Negreºti Oaº (Munþii Gutâi) (in Ro ma nian). Studii tehnice ºi economice, 11: 205–221.

Lang, B., 1979. The base met als-gold hy dro ther mal ore de pos its of Baia Mare, Ro ma nia, Eco nomic Ge ol ogy, 74: 1336–l351.

Lang, B., Edelstein, O., Steinitz G., Kovacs M., Halga S., 1994.

Ar-Ar dat ing of adu laria – a tool in un der stand ing ge netic re la - tion be tween vol ca nism and min er al iza tion: Baia Mare area (Gutâi Moun tains), North west ern Ro ma nia. Eco nomic Ge ol ogy, 89: 174–180.

Liu, W., Cook, N.J., Ciobanu, C.L., Gilbert, S.E., 2019. Trace el e - ment sub sti tu tion and grain-scale compositional het er o ge ne ity in en ar gite. Ore Ge ol ogy Re views, 111: 103004.

Manilici, V., Giuêcã, D., Stiopol, V., 1965. Studiului zãcãmântului de la Baia Sprie (Reg.Baia Mare) (in Ro ma nian). Memorii, 7:

1-95.

Marcoux, E., Grancea, L., Lupulescu, M., Milési, J.P., 2002. Lead iso tope sig na tures of epi ther mal and por phyry-type ore de pos its from the Ro ma nian Carpathian Moun tains. Mineralium Deposita, 37: 173–184.

Mariaê, F., 1996. C­mpul metalogenetic Cavnic. Caracterizare geostructuralã êi petrometalogeneticã (in Ro ma nian). Ph.D.

the sis, Uni ver sity Babeê-Bolyai, Cluj-Napoca.

Mariaê, F., 2005. Metalogeneza districtului minier Baia Mare. Model bazat pe sistemul hidrotermal Cavnic (Maramureê). Evaluãri com par a tive cu alte sisteme epitermale din lume (in Ro ma nian).

Editura Cornelius.

Márton, E., Pogac, P., Tunyi, I., 1992. Paleomagnetic in ves ti ga - tions on Late Cre ta ceous-Ce no zoic sed i ments from the NW part of the Pannonian Ba sin. Geologica Carpathica, 43: 363–369.

Mârza, I., 2002. Geneza zãcãmintelor de origine magmaticã. 4.

Metalogenia hidrotermalã (in Ro ma nian). Presa Universitarã Clujeanã.

Mârza, I., Tãmaê, C.G., Tetean, R., Andreica, A., Denuï, I., Kovács, R., 2019. Epi ther mal bicolor black and white cal cite spheres from Herja ore de posit, Baia Mare Neo gene ore dis trict, Ro ma nia-ge netic con sid er ations. Min er als, 9: 352.

Neubauer, F., Lips, A., Kouzmanov, K., Lexa, J., Ivãºcanu, P., 2005. Subduction, slab de tach ment and min er al iza tion: the Neo gene in the Apuseni Moun tains and Carpathians. Ore Ge ol - ogy Re views, 27: 13–44.

Nieæ, M., Radwanek-B¹k, B., Lenik, P., 2016. Out line of metallogeny of the Pol ish Carpathians – Ore de posit mod els and the pos si bil ity of dis cov ery hid den ore de pos its. Biuletyn Pañstwowego Instytutu Geologicznego, 467: 9–40.

Cu3(As,Sb)S4 min er als from the Baia Mare met al lo gen ic dis trict, East ern Carpathians, Ro ma nia... 273

(12)

Panaiotu, C., Pécskay, Z., Panaiotu, C., 1996. Which is the time of ro ta tion? Re view of paleomagnetic and K-Ar data from Ro ma - nia. Mitteilungen Gesellschaft der Geologie und Bergbaustudenten, 41: 125.

Pãtraºcu, S., Panaiotu, C., ªeclãman, M., Panaiotu, C.E., 1994.

Tim ing of ro ta tional mo tion of Apuseni Moun tains (Ro ma nia):

paleomagnetic data from Ter tiary mag matic rocks.

Tectonophysics, 233:163–176.

Petrulian, N., Steclaci, L., Jude, R., ªtefan, H., Popescu, R., Cioran, A., 1976. Con tri bu tions to the metallogenesis and geo - chem is try of the Cavnic vein area. Révue Roumaine de Géologie, Géophysique et Géographie, Série de Géologie, 20:

157–167.

Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konecny, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E., Panaiotu, C., Cvetkovic, V., 2006. Geo chron ol ogy of Neo gene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica, 57: 511–530.

Plotinskaya, O.Y., Prokofiev, V.Y., Damian, G., Damian, F., Lehmann, B., 2012. The Cisma de posit, Bãiuï dis trict, East ern Carpathians, Ro ma nia: sphalerite com po si tion and for ma tion con di tions. Carpathian Jour nal of Earth and En vi ron men tal Sci - ences, 7: 265–273.

Plotinskaya, O.Y., Damian, G., Damian, F., 2014. Sphalerite com - po si tion in the Baia Mare re gion, East ern Carpathians, Ro ma nia (pre lim i nary data). Ro ma nian Jour nal of Min eral De pos its, 87:

87–90.

Pomârleanu, V.V., 1971. Geotermometria êi aplicarea ei la unele minerale din România (in Ro ma nian). Editura Academiei Republicii Socialiste România.

Pósfai, M., Buseck, P., 1998. Re la tion ships be tween microstructure and com po si tion in en ar gite and luzonite. Amer i - can Min er al o gist, 83: 373–382.

Pósfai, M., Sundberg, M., 1998. Stack ing dis or der and polytypism in en ar gite and luzonite. Amer i can Min er al o gist, 83: 365–372.

Pracejus, B., 2015. The Ore Min er als un der the Mi cro scope. An Op ti cal Guide. 2nd edi tion, Elsevier.

Rãdulescu, D., Dimitrescu, R., 1965. Topografia mineralogicã a Rom­niei (in Ro ma nian). Editura Academiei Republicii Socialiste România.

Sãndulescu, M., 1984. Geotectonica Rom­niei (in Ro ma nian).

Editura Tehnicã.

Sãndulescu, M., Russo-Sãndulescu, D., 1981. Geo log i cal map of Ro ma nia, 1:50 000, sheet 19c. Institutul de Geologie êi Geofizicã, Bucureêti.

Sãndulescu, M., Visarion, M., Stanica, D., Stanica, M., Atanasiu, L., 1993. Deep struc ture of the in ner Carpathians in the Maramures-Tisa zone (East Carpathians). Ro ma nian Jour nal of Geo phys ics, 16: 67–76.

Seghedi, I., Balintoni, I., Szakács, A., 1998. In ter play of tec ton ics and Neo gene post-collisional magmatism in the Intracarpathian area. Lithos, 465: 483–499.

Seghedi, I., Downes, H., Harangi, S., Ma son, P.R.D., Pécskay, Z., 2005. Geo chem i cal re sponse of mag mas to Neo gene-Qua ter - nary con ti nen tal col li sion in the Carpathian Pannonian re gion: a re view. Tectonophysics, 410: 485–499.

Seghedi, I., Downes, H., 2011. Geo chem is try and tec tonic de vel op - ment of Ce no zoic magmatism in the Carpathian–Pannonian re - gion. Gond wana Re search, 20: 655–672.

Socolescu, M., Bonea, L., Haiduc, P., 1963 Contribuïii la cunoaºterea mineralizaïiei cuprifere de la Pârâul lui Avram (Munïii Apuseni) (in Ro ma nian). Revista Minelor 14: 393–402.

Springer, G., 1969. Compositional vari a tions in en ar gite and luzonite. Mineralium Deposita, 4: 72–74.

Stanciu, C., 1973. Hy dro ther mal al ter ation of Neo gene volcanics rocks from ore de pos its in Gutâi Moun tains (East Carpathians).

Re vue Roumaine de Géologie, Géophysique et Géographie, Série de Géologie, 17: 43–62.

Stanciu, C., 1984. Hypogene al ter ation ge netic types re lated to the Neo gene vol ca nism of the East Carpathians, Ro ma nia. Anuarul Institutului de Geologie si Geofizicã, 44: 235–244.

Szabó, C., Harangi, S., Csontos, L., 1992. Re view of Neo gene and Qua ter nary vol ca nism of the Carpathian–Pannonian re gion.

Tectonophysics, 208:243–256.

Takács, A., Molnár, F., Turi, J., Mogessie, A., Men zies, J.C., 2017.

Ore min er al ogy and fluid in clu sion con straints on the tem po ral and spa tial evo lu tion of a high-sulfidation epi ther mal Cu-Au-Ag de posit in the Recsk ore com plex, Hun gary. Eco nomic Ge ol ogy, 112: 1461–1481.

Takéuchi, Y., Sadanaga, R., 1969. Struc tural prin ci ples and clas si fi - ca tion of sulfosalts. Zeitschrift für Kristallographie, 130:

346–368.

Tãmaê, C.G., Har, N., Mârza, I., Denuï, I., 2018. The black cal cite and its min eral as sem blage in Herja ore de posit, Ro ma nia. Eu - ro pean Jour nal of Min er al ogy, 6: 1141–1153.

Tischler, M., Gröger, H.R., Fügenschuh, B., Schmid, S.M., 2007.

Mio cene tec ton ics of the Maramureº area (North ern Ro ma nia):

im pli ca tions for the Mid-Hun gar ian fault zone. In ter na tional Jour nal of Earth Sci ences, 96: 473–496.

Udubaêa, G., Ilinca, G., Marincea, Ÿ., Sãbãu, G., Rãdan, S., 1992.

Min er als in Ro ma nia: the state of the art 1991. Ro ma nian Jour - nal of Min er al ogy, 75: 1–51.

Udubaêa, G., Szakáll, S., Duda, R., Kvasnytsya, V., Koszowska, E., Novak, M., 2002. Min er als of the Carpathians. Granit Pub - lish ing House, Prague, Czech Re pub lic.

Uytenbogaardt, W., Burke, E.A.J., 1971. Ta bles for mi cro scopic iden ti fi ca tion of ore min er als. 2nd ed., Elsevier, Am ster dam.

Cytaty

Powiązane dokumenty

The min er al og i cal and geo chem i cal in ves ti ga tions of cala mines from both the supergene sites con firm that the pri - mary ore con sisted mainly of marcasite,

Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabówka compos- ite

Illite, illite-rich illite-smectite mixed-layer clay and chlorite are regarded as primary minerals in ma- rine sediments in the sense that they are derived di- rectly from the

Zeta potential effect of the isopropyl ethyl thionocarbamate collector (IPETC) for (A) chalcopyrite, (B) pyrite, and (C) kaolinite in the NaCl and KCl solutions... The effects of Na

There are many gangue minerals and some silicate minerals in low-grade quartz ores, therefore the effect of removing impurity by magnetic separation and conventional flotation

Although, Paenibacillus polymyxa showed higher adsorption by pyrolusite mineral but FTIR results proved that the type of adsorption occurred on hematite is mainly chemical

8(b), where the trend predicted by simulation is approximately followed by the practical data. Another interesting result arises from the crossed LP-LP case. If there is no

2, ”Die Reiskirche nach Konstantin dem Grosen”, cz.. 1, ”Die Kirche von Nikaia bis