• Nie Znaleziono Wyników

CO2 sorption properties of selected lithotypes of lignite from Polish deposits

N/A
N/A
Protected

Academic year: 2022

Share "CO2 sorption properties of selected lithotypes of lignite from Polish deposits"

Copied!
15
0
0

Pełen tekst

(1)

CO

2

sorp tion prop er ties of se lected lithotypes of lig nite from Pol ish de pos its

Barbara BIELOWICZ1, * and Pawe³ BARAN2

1 AGH Uni ver sity of Sci ence and Tech nol ogy, Fac ulty of Ge ol ogy, Geo phys ics and En vi ron ment Pro tec tion, al. A. Mickiewicza 30, 30-059 Kraków, Po land

2 AGH Uni ver sity of Sci ence and Tech nol ogy, Fac ulty of En ergy and Fu els, al. A. Mickiewicza 30, 30-059 Kraków, Po land

Bielowicz, B., Baran, P., 2019. CO2 sorp tion prop er ties of se lected lithotypes of lig nite from Pol ish de pos its. Geo log i cal Quar terly, 63 (4): 786–800, doi: 10.7306/gq.1508

As so ci ate ed i tor: Wojciech Drzewicki

Sorp tion stud ies, to de ter mine the CO2 sorp tion ca pac ity of coal, were car ried out us ing eight ortho-lig nite sam ples of dif fer - ent lithotypes, to in ves ti gate the pos si bil ity of CO2 stor age in lig nite de pos its. Equa tions de ter min ing a num ber of pa ram e ters and in di ca tors used to de lin eate the ex per i men tal data and to dif fer en ti ate the sam ples ex am ined in clude: Langmuir iso - therms; the Dubinin-Radushkevich (DR) equa tion that de scribes the the ory of vol ume fill ing of micropores; and the Brunauer, Emmett and Teller (BET) equa tion used to cal cu late the vol ume and sur face area of a monolayer. The re sults ob tained were com pared with the petrographic com po si tion and ul ti mate and prox i mate anal y sis of lig nite. There is a large cor re la tion be - tween sorp tion and petrographic com po si tion, a pos i tive im pact of the Gelification In dex on the sorp tion pro cess and a clear re la tion ship be tween the sorp tion (Langmuir and DR) and ash con tent. The best CO2 sorp tion prop er ties were found for xylo-detritic and detro-xylitic lig nites. Based on the tests car ried out, a pre lim i nary as sess ment of the suit abil ity of lig nite for CO2 stor age can be made.

Key words: sorp tion CO2, lig nite, Gelification In dex, maceral com po si tion.

INTRODUCTION

With in creas ing con cern for the en vi ron ment, new ma te ri als that can be used to elim i nate harm ful sub stances are be ing sought. The search for and anal y sis of new meth ods for the stor age of gas eous and waste fu els can help to achieve this ob - jec tive. Deep, un de vel oped coal seams can po ten tially be used for the stor age of CO2 of anthropogenic or i gin. The car bon di ox - ide may be in jected into coal seams, where it can be stored per - ma nently, pro vided that the coal seams will be never mined.

There is cur rently in creased in ter est in the idea of CO2 stor age in coal seams com bined with en hanced coal bed meth ane re - cov ery (ECBM; Reznik et al., 1984; Gale and Freund, 2001;

Mazzotti et al., 2009; Harpalani and Mitra, 2010; Li and Fang, 2014; Perera and Ranjith, 2015; Kudasik et al., 2017; Pan et al., 2018).

Stud ies of this type are be ing con ducted world wide, mainly in the USA (e.g., the ARC ECBM Re cov ery Pro ject, Coal-seq), In dia, China, and Eu rope (CO2 stor age in the Up per Silesian Coal Ba sin in Po land, RECOPOL pro ject). Due to the na ture of

the pro cess it self and as so ci ated safety is sues, a seam used for the stor age of car bon di ox ide has to meet a num ber of cri te ria.

The char ac ter is tic prop er ties of lig nite, mainly the well-de - vel oped po ros ity and chem i cal na ture of the spe cific sur face, al - low one to de ploy it as a po ten tial pre cur sor for the prep a ra tion of microporous adsorbents. On ac count of the pos si bil ity of chang ing its struc ture, rang ing from one of low po ros ity to one of strictly microporous char ac ter and of sur face mod i fi ca tion by frag men ta tion into fine grained coal, there are nu mer ous ap pli - ca tions for lig nite e.g. pu ri fi ca tion of soils from heavy met als (Karczewska et al., 1996).

Pol ish lig nites range in age from Tri as sic to Paleogene (Paleocene, Eocene and Oligocene) and Neo gene (Mio cene and Plio cene). In the Paleogene and Neo gene for ma tions in Po land, 10 groups of coal seams are found, of which na tion ally only three (the first Mid-Pol ish lig nite seam, the sec ond Lusatian lig nite seam and the third Œcinawa lig nite seam) and lo cally five (ad di tion ally, the Lubin IIA lig nite seam and the fourth D¹browa lig nite seam) are of eco nomic im por tance. Lig nite from Paleogene and Neo gene for ma tions, most com monly found in Po land, are of the great est eco nomic sig nif i cance. The larg est lig nite de pos its in Po land were de vel oped in the Mio - cene. The de pos its were formed un der con di tions of light pres - sure, slightly el e vated tem per a ture and un der an over bur den with a thick ness from 30 to 300 m. The thick ness of the lig nite de pos its ranges from sev eral to sev eral tens of metres; they may also oc cur in the form of lenses. The to tal re sources are es ti mated to be 23,516.19 mil lion tons ac cord ing to the United

* Cor re spond ing au thor, e-mail: bbiel@agh.edu.pl

Re ceived: February 9, 2019; ac cepted: September 17, 2019; first pub lished on line: December 31, 2019

(2)

Na tions Frame work Clas si fi ca tion of Re sources (UNFC). As of De cem ber 31, 2016, 91 lig nite de pos its were ex plored in Po - land, of which 74 were doc u mented and are still un de vel oped.

Pol ish extractable lig nite re sources amount to 1,129.06 mil lion tons, which is ~0.8% of the global re serves of this type (PGI-NRI, 2017). Lig nite de pos its whose ex ploi ta tion is not eco - nom i cally vi a ble can be used for CO2 se ques tra tion. At ten tion is there fore fo cused on deep lig nite de pos its and seam thick ness, the ex ploi ta tion of which is not eco nom i cally fea si ble. At the same time, the de pos its dis cussed are in su lated de pos its; thus, the pre vail ing geo log i cal con di tions could en able car bon cap - ture and stor age. The geo log i cal and depositional con di tions re - quired for CO2 stor age are gen er ally sim i lar to the re quire ments for UCG, e.g. the depth of the de posit, thick ness and na ture (low-per me abil ity, struc tur ally co her ent and lat er ally con tin u - ous) of in su lat ing lay ers, pres ence of ground wa ter res er voirs and the lack of tec tonic dis tur bances in the di rect ex ploi ta tion zone. Stud ies per formed on the pos si bil ity of un der ground gasi - fi ca tion in Po land have shown that the de pos its at Œcinawa–G³ogów, Gostyñ, Krzywiñ, Wêglewice and Kamieñsk can be po ten tially used for CO2 stor age (Bielowicz and Kasiñski, 2014). Gen er ally, the lim ited ac cess to sam ples from these lig nite de pos its pre vents sorp tion stud ies. There fore, it is cru cial to de ter mine trends al low ing a pre lim i nary as sess ment of the suit abil ity of coal for CO2 stor age based on the avail able ar chi val data, in clud ing petrographic com po si tion and prox i - mate and ul ti mate anal y sis. In ad di tion, CO2 sorp tion stud ies are im por tant from the point of view of coal struc ture anal y sis.

Low-tem per a ture ni tro gen ad sorp tion, widely used for ad sor - bent struc ture anal y sis, does not give sat is fac tory re sults in the case of coal (both bi tu mi nous coal and lig nite) due to the very slow rate of the ac ti vated dif fu sion. The rel a tively high value of the crit i cal tem per a ture of car bon di ox ide (304.5 K) is the rea - son why ad sorp tion mea sure ments at room tem per a ture are jus ti fied due to the high rate of ac ti vated if fu sion. This is sup - ported by the re sults of low-an gle XRD anal y sis of sur faces (Grimes, 1982).The pres ent study in ves ti gated the sorp tion prop er ties of lig nite from four Pol ish de pos its: JóŸwin, Sieniawa, Be³chatów and Turów. Sam ples of the var i ous lig nite lithotypes were col lected. Mea sure ments of CO2 sorp tion iso therms un der el e vated pres sures were car ried out. A for mal math e mat i cal de - scrip tion of the iso therms ob tained, based on the Langmuir, Dubinin-Radushkevich and Brunauer, Emmett and Teller (BET) equa tions, was de vel oped. The re la tion ships be tween coal qual ity, maceral com po si tion and sorp tion prop er ties were also in ves ti gated.

The sorp tion prop er ties of lig nite have been ex am ined by many au thors in clud ing Azmi et al. (2006), Botnen et al. (2009), Gensterblum et al. (2010) and Zelenka and Taraba (2014). In Po land, sorp tion char ac ter is tics have also ana lysed (Baran et al., 2010, 2014, 2013; Macuda et al., 2011). The im pact of petrographic com po si tion on the CO2 sorp tion in low-rank coals has not been widely stud ied. Most of the pre vi ous stud ies have fo cused on bi tu mi nous coal and meth ane sorp tion (Lamberson et al., 1991; Clark son and Bustin, 1997; Crosdale et al., 1998;

Laxminarayana and Crosdale, 1999; Mastalerz et al., 2004).

RESEARCH METHODOLOGY

The study used eight lig nite sam ples from Pol ish de pos its, namely: the JóŸwin de posit (three sam ples), the Turów de posit (two sam ples), the Sieniawa de posit (two sam ples) and the Be³chatów de posit (one sam ple). Sam ples of var i ous lig nite lithotypes such as detritic, detro-xylitic and xylitic lig nite were collected.

The sam ples were air-dried for one week to reach air-dry equi lib rium. It is well-known that mois ture has a sig nif i cant im - pact on the sorp tion ca pac ity of coal (Wang et al., 2011;

Švábová et al., 2012). There fore, in or der to avoid ox i da tion of the sur face, which in the case of car bon di ox ide could af fect its sorp tion ca pac ity due to the pres ence of a quadrupole mo ment in the mol e cule, the sam ples were not dried at el e vated tem per - a tures, but in the open air.

The sam ples were ground to a size of <1 mm and used as ma te rial for pol ished sec tions (pol ished pel lets), which were pre pared ac cord ing to the ISO 7404-2:2009 stan dard.

Petrographic ex am i na tion to de ter mine maceral group com po - si tion was car ried out in both re flected white and blue light with the use of a Zeiss Opton mi cro scope and in ac cor dance with the ISO 7404-3:2009 stan dard. The maceral com po si tion of lig - nite was de ter mined ac cord ing to ICCP guide lines (ICCP, 2001a, b; Sýkorová et al., 2005; Pickel et al., 2017). Macerals from the liptinite group were ex am ined un der flu o res cent light.

The maceral no men cla ture for the liptinite group was ap plied ac cord ing to Pickel et al. (2017). The av er age ran dom reflectance of ulminite B was de ter mined un der stan dard con di - tions, i.e. in mono chro matic light with a wave length of 546 nm and im mer sion oil (n = 1.518), us ing a Zeiss MPM-400 pho tom - e ter equipped with a MSP-20 sys tem pro ces sor. Ran dom reflectance mea sure ments in ortho-lig nite were car ried out on the sur face of ulminite B (Sýkorová et al., 2005). The maceral group con tent anal y ses were car ried out at 500 equally spaced points on the pol ished pel let sur faces. Tis sue Pres er va tion In - dex (TPI) and Gelification In dex (GI) were de ter mined based on the equa tion of Diessel (1986) mod i fied ac cord ing to the guide - lines of Kalaitzidis et al. (2004):

GI = (ulminite+humocollinite+densinite)/(textinite+attri - nite +inertinite);

TPI = (humotelinite+corpohuminite+fusinite)/(attrinite+d ensinite+gelinite+inertodetrinite).

Prox i mate and ul ti mate anal y ses were car ried out for both coal and ash ac cord ing to ISO stan dards. The sam ples were ground to a size of 0.2 mm. Prox i mate anal y sis cov ered: mois - ture con tent, ash con tent, vol a tile mat ter con tent and the gross cal o rific value de ter mi na tion. Ul ti mate anal y sis in cluded car - bon, hy dro gen, ni tro gen and sulphur con tent de ter mi na tion us - ing a Leco an a lyzer. The chem i cal com po si tion of coal was ana lysed by ICP-OES/MS at the Bu reau Veri tas Min er als Lab o - ra tory. ICP-MS anal y sis was per formed on a 15 g sam ple af ter mod i fied aqua regia di ges tion (1:1:1 HNO3:HCl:H2O) for low to ul tra-low de ter mi na tion of both coal and ash.

The ex am i na tion of the po rous tex ture of the coal sam ples ex am ined was car ried out at the AGH Uni ver sity of Sci ence and Tech nol ogy (Fac ulty of En ergy and Fu els), us ing Pascal 140 CE and Pascal 440 porosimeters. The porosimeters (140-low pres sure and 440-high pres sure) work in the pres sure range from 0.3 kPa up to 150.0 MPa, which en ables the mea sure ment of pore ra dii from ~7500 nm to 2 nm. The ap pa ra tus reg is ters the vol ume of mer cury pen e trat ing the pores of the ma te rial ex - am ined, show ing the de pend ence curves of open pore vol ume and pore vol ume dis tri bu tion on the pres sure ap plied and ra dii, re spec tively. Pore ra dii cor re spond ing to the spec i fied pres sure val ues are cal cu lated based on the Washburn equa tion. Tak ing into ac count the large spread of the pa ram e ters, the re sults are pre sented us ing a log a rith mic num ber sys tem. Sorp tion tests were per formed us ing a vol u met ric ap pa ra tus (Fig. 1).

De tails of car ry ing out the mea sure ments and de ter min ing sorp tion ca pac ity can be found in Baran and Zarêbska (2015).

The cri te rion for achiev ing ther mo dy namic equi lib rium was to achieve a con stant gas pres sure in the am poule. The next iso ther mal point was ob tained by dos ing the sub se quent amount of gas.

(3)

The ad sorbed vol ume was cal cu lated from the pres sure dif - fer ence be fore and af ter the sorp tion pro cess, tak ing into ac - count the dead vol ume of the ap pa ra tus (de ter mined by sub - tract ing the vol ume of coal grains from the to tal vol ume of the ap pa ra tus). The vol ume of gas con tained in the coal mass unit was con verted into stan dard con di tions: p = 0.1 MPa, T = 298.2 K), at a given pres sure and the tem per a ture mea sured in - side the am poule. The ex act pro ce dure of cal cu lat ing the sorp - tion ca pac ity can be found in Baran et al. (2014).

Car bon di ox ide sorp tion iso therms for each sam ple ex am - ined were mea sured at 298 K. Be fore the mea sure ments, the sam ples were de gassed for 24 hours. The cri te rion of sorp tion equi lib rium is ful filled on the con di tion that the time-con stant gas pres sure in the am poule is reached for ~24 hours. The next point of the iso therm was ob tained by dos ing the sub se quent por tion of gas. In the case of CO2, a di ver gence from ideal gas prop er ties shall be taken into ac count. The cal cu la tions were car ried out us ing the Span-Wag ner equa tion of state (Span and Wag ner, 1996).

The ex per i men tal re sults were de scribed us ing three mod - els of sorp tion iso therms: Langmuir: (1 – Langmuir, 1918), BET (2 – Brunauer et al., 1938) and Dubinin–Radushkevich (3 – Dubinin, 1960) in the fol low ing forms:

( )

n n

=

´ ´

+ ´

m L L

s

L s

K p

p

K p

1 p

[1]

( )

( )

n n

=

´ ´

æ - è çç

ö ø

÷÷é + - ´ ëê

ù ûú

m BET

s

s s

C p

p p

p C p

1 1 1 p

[2]

V V e

RT E

p p s

=

- æ

èçç ö ø÷÷

é ë êê

ù û úú 0

2

b 0ln [3]

where: nm(L) and nm(BET) – the ca pac ity of the Langmuir and BET sorp - tion monolayers [cm3g–1]; KL – the con stant of the Langmuir equa - tion; C – the con stant of the BET equa tion; V0 – the to tal micropore vol ume [cm3g–1]; ps – sat u rated va por pres sure [hPa]; E0 – char ac - ter is tics of the en ergy of sorp tion for stan dard va por [kJ/mol]; b – the co ef fi cient of sim i lar ity (con ver gence) of a sorbate.

The con stants of Langmuir, BET and DR equa tions were cal cu lated by fit ting the lin ear forms of iso therms to the ex per i - men tal data. Lin ear iso therms can be rep re sented by the fol low - ing equations:

( ) ( )

p p

K

p p

s

L m BET m BET s

n = n n

´ 1 + 1 ´

[4]

( ) ( )

p p

p p

C C

p p

s

m BET m BET s

0

1

1 1

n n n

æ - è çç

ö ø

÷÷

= + -

´ ´

[5]

lnV lnV RT ln E

p ps

= -æ

è çç

ö ø

÷÷ æ è çç

ö ø

÷÷

0 0

2 2

b

[6]

Cor re la tion and re gres sion anal y ses were used to de ter - mine cor re la tions be tween the dif fer ent pa ram e ters. Pearson's lin ear cor re la tion co ef fi cients (r) were cal cu lated. The sig nif i - cance of cor re la tion co ef fi cients has been as sessed and ana - lysed. The test of sta tis ti cal sig nif i cance has been per formed us ing the Stu dent's t dis tri bu tion. When cal cu lat ing the re gres - sion equa tion, the least squares sum method was used. Fi nally, the re verse re gres sion was per formed. In ad di tion, the in verse re gres sion and re sid ual stan dard er ror were cal cu lated and the es ti ma tion of re gres sion co ef fi cients was car ried out in or der to de ter mine the con fi dence in ter val for re gres sion, Neyman in ter - vals and the re gres sion pre dic tion er ror. Cor re la tion co ef fi cient val ues were char ac ter ized based on Ta ble 1.

Fig. 1. The test equip ment for mea sur ing sorp tion iso therms – a sche matic di a gram

(4)

T a b l e 1 The in ter pre ta tion of cor re la tion co ef fi cient val ues

Value of r In ter pre ta tion

(0.00–0.20) slight, al most neg li gi ble re la tion ship,

<0.20–0.40) low cor re la tion; def i nite but poor re la tion ship

<0.40–0.70) mod er ate cor re la tion; sub stan tial re la tion ship

<0.70–0.90) high cor re la tion; marked re la tion ship

<0.90–1.00) very high cor re la tion; very de pend able re la tion ship

GEOLOGY OF THE DEPOSITS STUDIED The Turów de posit, lo cated in the Zittau Ba sin (Niecka

¯ytawska), formed dur ing orogenic sub si dence. The Neo gene and Paleogene for ma tions are ~350 metres thick and con tain three lig nite seams (Fig. 2). Based on palynological anal y sis, the lower seam was de ter mined to be of Lower Mio cene age, which al lows cor re la tion with the third Œcinawa lig nite seam (Piwocki and Ziembiñska-Tworzyd³o, 1997). Its thick ness ranges from 20 to 30 metres. The up per seam reaches 42 m in the cen tral part of the south ern area and ex tends to wards the edge of the ba sin. It is es ti mated to be of Lower Mio cene – low - est Mid dle Mio cene age, which cor re lates with the sec ond Lusatia lig nite seam. Chan nel sam ples of lig nite for the de tailed anal y sis were col lected from the ex ploi ta tion walls in the east - ern part of the de posit ac cord ing to the ISO 13909-1:2016 stan - dard.

The JóŸwin de posit is lo cated in the north east ern part of the Mogilno–£ódŸ Synclinorium (Fig. 2). It has the form of a wide lens and is clas si fied as a plat form-type de posit (stratoidal type).The lig nite-bear ing suc ces sion is mainly com posed of Neo gene de pos its (Mid dle Mio cene) un der lain by weath ered marls of Paleocene age and over lain by Pleis to cene de pos its.

The main part of the lig nite de pos its is the lig nite suc ces sion lo - cated in the lower part of the Poznañ For ma tion and within the first Mid-Pol ish lig nite seam, also re ferred to as the Konin seam (Sadowska and Gi¿a, 1991). The thick ness of the coal seam ranges from 0.2 to 30 m. The seam dis ap pears in tun nel val - leys. Green clays, sands and red clays of the Poznañ For ma tion (Piwocki, 2004) and Pleis to cene and Ho lo cene de pos its char - ac ter ized by highly vari able li thol ogy and fa cies de vel op ment can be found lo cally in the roof of the de posit.

The Sieniawa de posit (Fig. 2) is lo cated in the north ern part of the Lubuska Up land. It is the small est and the lon gest (since 1873) ex ploited de posit in Po land. It is a plat form-type de posit (glaciotectonic type). As a re sult of glaciotectonic fold ing of the Paleogene and Neo gene de pos its, 27 anticlines are de vel oped within the sec ond Lusatian lig nite seam de pos its. Cur rently, the Sieniawa de posit is a pri vate (com mer cial) opencast mine, con - duct ing min ing ac tiv i ties in the IX anticline. The lig nite-bear ing for ma tion is the Œcinawa For ma tion, in clud ing a sin gle sec ond Lusatian lig nite seam with a thick ness in the range from 6 to 18 m. In glaciotectonically dis turbed zones, the thick ness of the lig nite-bear ing for ma tion in creases up to 30 m (Bielowicz and Kasiñski, 2014). The ac com pa ny ing seams (1–5) are lo cated lo cally at the floor of the main de posit and have a thick ness in the range from 0.3 up to 3 m. They are over lain by the Paw³owice For ma tion com posed of sand and mudstones (Szwed-Lorenz, 1991).

The Be³chatów de posit (Fig. 2) is lo cated in the south ern part of the Mid dle Pol ish synclinorium, within the Kleszczów graben. The Be³chatów and Szczerców de pos its are sep a rated by up domed Zechstein rocks re lated to the “Dêbina” salt dome.

The de posit dis cussed is cratonic, of tec tonic (graben) type.

The thick ness of Neo gene de pos its ranges from 150 to 400 m and com prise suc ces sions of lig nite, lig nite, clay and lig nite and sand-clay, over lain by a con tin u ous cover of Pleis to cene de - pos its with a thick ness from a few to >100 m. In the pro file, there are one or two lig nite seams con tain ing four thin sub-seams in - clud ing de pos its of Lower and Mid dle Mio cene age. Ac cord ing to the ma rine strati graphic scheme of the Paratethys area, the one or two lig nite seams cor re spond to the Ottnang, Carpathian and the Lower Badenian. In the lithostratigraphic scheme of the Pol ish Low lands, the thin lig nite sub-seams noted cor re spond to the third Œcinawa, the sec ond Lusatian and the first Mid-Pol - ish lig nite seams. The sec ond Lusatia and third Œcinawa seams, of ten oc cur ring to gether (as a lig nite suc ces sion), are of the great est eco nomic im por tance. Their av er age to tal thick - ness in the Be³chatów de posit is in the range be tween 50–60 m and up to 240 m of the to tal thick ness of the sec ond Lusatian lig nite seam (PGE Be³chatów). The to tal thick ness of lig nite in the Szczerców de posit var ies from a few metres in the west ern part to ~40–70 m in the east ern part, in clud ing ~140 m in the up stream ba sin (Drobniak and Mastalerz, 2006).

RESULTS

Petrographic anal y sis of the lig nite has used the fol low ing three lithotypes: detritic, detro-xylitic and xylitic. The sam ples from the JóŸwin (2B), Turów (4B) and Sieniawa (8B) de pos its are xylitic lig nite or xylite-rich lig nite ac cord ing to the ICCP clas - si fi ca tion. In the sam ples dis cussed, xylites rep re sent at least 90% of the en tire vol ume. Based on petrographic com po si tion and the GI and TPI di a gram (Fig. 3), it has been sug gested that the lig nite ex am ined orig i nated in a wet for est swamp en vi ron - ment. The sam ple col lected from the JóŸwin (2B) de posit is char ac ter ized by the high est inertinite con tent among all sam - ples ana lysed, reach ing al most 20%, of which 14% is iden ti fied as fusinite.

The gelification of lig nite is an im por tant in di ca tor of its po - ten tial ap pli ca tions, e.g. in the gasi fi ca tion pro cess (Bielowicz, 2019). Gelification, de ter mined by the pres ence of dark amor - phous gels in lig nite, can be as sessed thanks to lithological de - scrip tion of coal and – more pre cisely – mi cro scopic ex am i na - tion, al low ing the dis tin guish ing of macerals from the humocollinite sub group, namely ulminite and densinite (Rus - sell, 1984; Rus sell and Barron, 1984). The humocollinite sub - group be longs to a for mer maceral clas si fi ca tion (ICCP, 1971).

Fusinite orig i nates from ligno-cel lu losic cell walls. The bo tan i cal af fin ity of fusinite can be es tab lished when the cell struc ture is well-pre served ICCP, 2001a, b).It is sug gested that the lig nite seam ex am ined from the JóŸwin de posit was af fected by fire (Wang et al., 2019). A detritic lig nite sam ple was col lected from the JóŸwin de posit (1B). Detritic lig nite, or lig nite ma trix ac cord - ing to the ICCP clas si fi ca tion (Tay lor et al., 1998), con sists of fine humic par ti cles (de tri tus) form ing a more or less ho mo ge - neous mac ro scopic mass. As a lithotype, it con tains up to 10%

by vol ume of other com po nents. The petrographic com po si tion is dom i nated by macerals from the detrohuminite group, amount ing to 83.5%. How ever, it should be noted that attrinite and densinite are ac com pa nied by sig nif i cant amounts of clay min er als and sand, lo cally up to 50%. Based on the GI and TPI in di ces, it is sug gested that the detritic lig nite sam ple ex am ined was formed in an open marsh en vi ron ment (Fig. 3).

Detro-xylitic coal and xylo-detritic lig nite are both com plex lithotypes, com posed usu ally of xylites and humic de tri tus.

Detro-xylitic coal is dom i nated by xylites, which should ac count by vol ume for more than half of the xylites and humic de tri tus

(5)

Fig. 2. Lo ca tion of lig nite de pos its, Paleogene and Neo gene strati graphic col umns in the Pol ish Low land and geo log i cal cross-sec tions of lig nite de pos its in the sur face mines ex am ined (modified ac cord ing to Czarnecki et al.,

1992; Kozula, 1998, 2002; Kasiñski et al., 2010; Bielowicz, 2012)

(6)

oc cur ring in the spec i fied layer (with at least 90% vol ume).

Xylo-detritic lig nite is dom i nated by humic de tri tus (Kwieciñska and Wag ner, 1997, 2001). These lithotypes are rep re sented by sam ples from the JóŸwin (3B), Turów (5B), Sieniawa (8B) and Be³chatów (10B) de pos its.

The macerals from the telohuminite and detrohuminite sub - groups dom i nate, in dif fer ent pro por tions, in the sam ples ex am - ined (Ta ble 2). It has been sug gested that the lig nite formed in a clastic marsh en vi ron ment.

Gen er ally, low pro por tions of macerals from the liptinite group were re corded in all of the lig nite sam ples col lected. The high est con tent (3.4%) was found for the xylo-detritic lig nite from the Turów de posit. Macerals from the liptinite group found in the sam ples ex am ined are mainly resinite, sporinite and cutinite. Macerals from the inertinite group are less com monly vis i ble in the petrographic im age. An inertinite con tent of up to 19.9% has been ob served in only one sam ple (2B – JóŸwin xylitic).

In the sam ples ex am ined of lig nite, the ash con tent on a dry ba sis ranges from 2.3 wt.% (Ta ble 3) in xylitic lig nite from the Sieniawa de posit to 46.2 wt.% in detritic lig nite from the JóŸwin de posit. The to tal sul phur con tent on a dry ba sis ranges from 0.53 wt.% in xylitic lig nite from the Sieniawa de posit to 2.77 wt.% in detro-xylitic lig nite from the JóŸwin de posit. The high est gross cal o rific value (daf), reach ing up to 29.2 MJ/kg, is ob served in the Turów de posit, while the low est was in the JóŸwin de posit. Gross cal o rific value is as so ci ated with the rank of lig nite. In the case of the sam ples ana lysed, the rank of lig - nite, the reflectance and the Cdaf con tent is the high est in the

Turów de posit. In gen eral, ac cord ing to the In ter na tional Clas si - fi ca tion of In-Seam Coal (UN-ECE, 1998), all tested sam ples are clas si fied as ortho lig nite or low-rank C coal. The to tal po - ros ity in the lig nite ex am ined ranges from 8.38% in xylo-detritic lig nite from the Be³chatów de posit to 35.91% in xylo-detritic lig - nite from the Sieniawa de posit. The re sults ob tained have shown that the lithotype com po si tion has no ef fect on the po ros - ity of the lig nite.

The to tal po ros ity of up to 101.325 kPa can be ex plained by the pres ence of pores (cracks) with a di am e ter of ~7500 nm.

The mer cury pres sure from 101.325 to 150 MPa cor re sponds to a pore range be tween 5 and 7500 nm. Thus, the dif fer ence be tween these val ues more or less cor re sponds to macro- and mesopores. Nat u rally, ac cord ing to the IUPAC clas si fi ca tion (Niè, 1997), the mesopore area is in the range of 50–2 nm, but ex clud ing the 5–2 nm range does not seem to sig nif i cantly af - fect the low value of po ros ity in the meso- and macropore area.

As for po ros ity, it can be ob served that the sam ples ex am - ined are dom i nated by trans port via pores and cracks. In the case of macro- and mesopores, that is, the ar eas where the sorp tion of gases and va pors takes place, the po ros ity is much lower. How ever, in the case of sorp tion phe nom ena, the vol ume of the pores, which was de ter mined dur ing sorp tion stud ies, is much more im por tant than the porosity itself.

The re sults of lin ear ad just ment of iso therms to ex per i men - tal data are sum ma rized in Ta ble 4.

The ta ble also in cludes the to tal pore vol ume Vp, sur face area SBET and the spe cific sur face area of micropores SDR.

The re sults of sorp tion anal y sis are sum ma rized in Fig ure 4.

Fig. 3. The Gelification In dex (GI) and Tis sue Pres er va tion In dex (TPI) di a gram, mod i fied from Diessel (1986): 1B – JóŸwin detritic lig nite; 2B – JóŸwin xylitic lig nite; 3B – JóŸwin detro-xylitic lig nite; 4B – Turów xylitic lig nite; 5B – Turów xylo-detritic lig nite; 7B – Sieniawa xylo-detritic lig nite; 8B – Sieniawa xylitic lig nite; 10B – Be³chatów xylo-detritic lig nite

(7)

Sam ple 1B 2B 3B 4B 5B 7B 8B 10B De posit, lithotype JóŸwin

detritic JóŸwin

xylitic JóŸwin

detro-xylitic Turów

xylitic Turów

xylo-detritic Sieniawa

xylo-detritic Sieniawa

xylitic Be³chatów xylo-detritic

Textinite [vol %] 2.8 5.3 7.0 18.1 1.3 2.4 6.9 17.9

Ulminite [vol %] 2.8 28.0 27.8 55.2 34.2 30.4 40.6 13.4

Telohuminite [vol %] 5.6 33.3 34.8 73.2 35.5 32.9 47.5 31.3

Attrinite [vol %] 49.9 21.6 17.5 4.2 16.8 18.9 16.5 21.3

Densinite [vol %] 33.6 18.3 28.6 15.4 41.6 40.2 22.1 36.2

Detrohuminite [vol %] 83.5 40.0 46.2 19.6 58.4 59.0 38.7 57.4

Corpohuminite [vol %] 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gelinite [vol %] 1.0 1.5 8.6 1.2 0.5 1.8 5.1 1.1

Gelohuminite [vol %] 1.0 1.5 8.6 1.2 0.5 1.8 5.1 1.1

HUMINITE [vol %] 90.6 74.8 89.6 94.0 94.5 93.7 91.3 89.9

Sporinite [vol %] 0.5 0.3 1.0 0.3 0.7 0.6 0.2 0.3

Cutinite [vol %] 0.2 0.1 0.1 0.1 0.3 0.1 0.0 0.2

Resinite [vol %] 0.7 1.0 0.5 2.1 2.0 1.6 2.1 0.8

Suberinite [vol %] 0.3 0.1 0.1 0.2 0.0 0.1 0.0 0.2

Alginite [vol %] 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1

Liptodetrinite [vol %] 0.5 0.2 0.2 0.0 0.4 0.5 0.0 1.1

LIPTINITE [vol %] 2.3 1.7 2.0 2.7 3.4 2.9 2.3 2.7

Fusinite [vol %] 1.3 14.0 2.4 0.0 0.3 0.0 0.0 0.7

Semifusinite [vol %] 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.4

Funginite [vol %] 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Micrinite [vol %] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Inertodetrinite [vol %] 0.0 4.7 1.3 0.3 0.5 0.6 0.0 0.7

INERTINITE [vol %] 2.5 19.9 3.8 0.3 0.8 0.6 0.0 1.9

Py rite [vol %] 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4

Car bon ates [vol %] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4

Quartz+Clays [vol %] 3.6 3.6 4.6 3.0 1.3 2.7 6.4 4.8

MINERAL MATTER [vol %] 4.6 3.6 4.6 3.0 1.3 2.7 6.4 5.6

The Gelification In dex (GI) – 0.7 1.0 2.3 3.2 4.0 3.3 2.9 1.2

The Tis sue Pres er va tion In -

dex (TPI) – 0.1 1.0 0.7 3.5 0.6 0.5 1.1 0.5

Ran dom reflectance (Ro) [vol %] 0.24 0.24 0.24 0.28 0.28 0.25 0.25 0.28

T a b l e 2 Petrographic com po si tion of the lig nite

(8)

Sam ple 1B 2B 3B 4B 5B 7B 8B 10B De posit, lithotype JóŸwin

detritic JóŸwin

xylitic JóŸwin

detro-xylitic Turów

xylitic Turów

xylo-detritic Sieniawa

xylo-detritic Sieniawa

xylitic Be³chatów xylo-detritic Prox i mate anal y sis

Mois ture Mad [%] 7.6 8.2 9.6 8.4 10.0 10.5 7.6 9.8

Ash Aad [%] 42.7 5.7 22.2 4.6 3.4 6.2 2.1 14.6

To tal sul phur Stad

[%] 1.5 1.5 2.5 1.8 0.7 0.9 0.5 1.5

Gross cal o rific value

GCVad [MJ/kg] 11.9 22.3 17.8 25.2 25.3 21.9 22.4 19.4

Gross cal o rific value

GCVdaf [MJ/kg] 23.9 25.9 26.1 28.9 29.2 26.2 24.8 25.6

Net cal o rific value

NCVad [MJ/kg] 11.1 21.1 16.8 23.9 24.1 20.6 21.1 18.3

To tal po ros ity

(0–101.3 kPa) : [%] 32.5 17.2 30.3 10.1 25.7 34.5 30.2 7.3

To tal po ros ity (from

0.1 MPa to 150 MPa ) [%] 33.4 25.0 31.5 11.5 26.5 35.9 31.6 8.4

Macro +meso po ros ity [%] 0.9 7.8 1.2 1.4 0.8 1.4 1.4 1.1

Ul ti mate anal y sis of lig nite

Car bon con tent Cad [%] 31.8 55.9 45.2 60.2 61.2 55.0 55.8 49.7

Hy dro gen con tent Had [%] 2.3 4.6 3.5 5.1 5.2 4.4 5.0 3.8

Car bon con tent Cdaf [%] 64.0 64.9 66.3 69.2 70.7 66.0 61.8 65.7

Hy dro gen con tent Hdaf [%] 4.7 5.3 5.1 5.8 6.0 5.2 5.6 5.0

Fe % 0.5 0.3 1.1 0.7 0.1 0.5 0.2 0.6

Ca % 1.8 0.7 1.8 0.2 0.2 1.3 0.4 2.3

P % 0.0 0.0 0.0 0.0 0.0 <0.00 0.0 0.0

Mg % 0.4 0.1 0.4 0.2 0.2 0.1 0.0 0.1

Al % 0.6 0.2 0.2 0.2 0.2 0.1 0.1 0.5

Na % 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0

K % 0.0 <0.01 <0.01 0.0 0.0 <0.01 <0.01 0.0

Chem i cal com po si tion of ash

SiO2 % 66.8 37.4 64.3 19.3 18.2 20.4 7.4 25.5

Al2O3 % 16.9 9.9 3.0 15.0 19.0 3.5 3.2 16.7

Fe2O3 % 2.2 7.8 6.3 21.9 6.2 11.7 17.6 7.2

MgO % 1.6 3.5 2.3 6.4 11.0 2.4 2.1 2.2

CaO % 6.1 18.1 9.4 4.9 8.4 26.1 30.0 23.6

Na2O % 0.1 0.3 0.1 7.8 12.3 0.3 0.1 0.5

K2O % 0.6 0.6 0.2 1.2 1.0 0.3 0.1 0.2

TiO2 % 1.7 0.6 0.5 1.6 2.4 0.3 0.3 0.6

P2O5 % 0.0 0.3 0.0 0.2 0.2 0.0 0.0 0.2

MnO % 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.2

Cr2O3 % 0.2 0.1 0.2 0.1 0.1 0.0 0.0 0.0

Other % 3.8 21.2 13.6 21.5 21.2 34.9 38.9 23.1

ad – air dried con tent, daf – dry ash free con tent

T a b l e 3 Prox i mate and ul ti mate anal y sis of lig nite sam ples

(9)

The ex per i men tal data were de scribed us ing the Langmuir, BET and DR iso therms based on the cal cu lated con stants of the re spec tive equa tions. The fit ting of iso therms is very good for each sam ple, which in di cates that all mod els ac cu rately de - scribe the coal-gas sys tem. In the pres sure range con sid ered, the 4B and 1B sam ples were char ac ter ized by the high est and low est CO2 sorp tion ca pac ity, re spec tively. Com par ing the amounts ob tained of the sorbed car bon di ox ide to pub lished data, this amount is ei ther rel a tively high, slightly lower or com - pa ra ble to the CO2 sorp tion ca pac ity of bi tu mi nous coal (Ozdemir et al., 2004; Dutka et al., 2013; Romanov et al., 2013;

Zhang and Liu, 2017). In the case of bi tu mi nous coal, the sorp - tion pro cess takes place mainly in the area of micropores (Maphala and Wag ner, 2012). When it co mes to lig nite, the low de gree of meta mor phism of the rock is the rea son for lack of micropores in the struc ture and the pres ence of pores with larger di am e ters (Zhang and Liu, 2017). The DR equa tions for the sam ples ex am ined, es pe cially the value of SDR, con firm that the lig nites ana lysed are al most de void of micropores. The re - sults ob tained of porosimetry stud ies in the field of high pres - sure (Ta ble 3) sup port a low con tent of micropores. The low vol - ume of W0 micropores and the cal cu lated spe cific sur face area of SDR micropores in di cate that the share of the small est pores in re la tion to the to tal pore vol ume and spe cific sur face area is small. The rel a tively high sorp tion ca pac ity in di cates that the sorp tion takes place in the mesopores. How ever, the sorp tion stud ies con ducted do not al low di rect mea sure ment of the mesopores' dis tri bu tion. Sorp tion ca pac ity val ues are sim i lar to those ob tained for other Pol ish lig nites (Baran et al., 2014), for which the ab sence of a microporous area were also found.

THE RELATIONSHIP BETWEEN PETROGRAPHIC COMPOSITION AND THE QUALITY AND SORPTION PROPERTIES OF LIGNITE

Anal y sis of the cor re la tion be tween the petrographic com - po si tions de ter mined, prox i mate and ul ti mate anal y sis of lig nite and the con stants used in the Langmuir, DB and BET equa - tions, was car ried out. A clear re la tion ship be tween sorp tion (Langmuir and DR) and ash con tent was ob served (Fig. 5A).

The ash con tent in creases with de creas ing sorp tion. This is be cause the min eral mat ter, in par tic u lar quartz, a com po nent of sands, has dif fer ent sorp tion prop er ties than lig nite. A cor re - la tion be tween the chem i cal com po si tion of ash and sorp tion ca pac ity is clearly vis i ble. The sorp tion ca pac ity de creases with in creas ing SiO2 con tent (Fig. 5B). The SiO2 con tent in ash is mainly as so ci ated with quartz and clay min er als that oc cur in lig nite. A very strong cor re la tion be tween the coalification de - gree pa ram e ters ex pressed as NCV (Fig. 5C), Cdaf and DR m2/g, can be ob served. Mean while, a re la tion ship be tween Langumir DR, BET and mean ran dom huminite reflectance is sup ported. The cor re la tions marked in red in Ta ble 5 should be con sid ered as strong (Ta ble 5).

There is also a very strong cor re la tion be tween petrographic com po si tion and sorp tion ca pac ity. This re la tion ship is par tic u - larly ev i dent in the case of the Gelification In dex and all con - stants of the sorp tion iso therm (Fig. 5D). A strongly neg a tive cor re la tion be tween attrinite and sorp tion ca pac ity can also be ob served (Ta ble 5), al though the po ros ity of attrinite should con trib ute to an in crease in the sorp tion ca pac ity. Attrinite may Pa ram e ter

Sam ple

1B 2B 3B 4B 5B 7B 8B 10B

JóŸwin

detritic JóŸwin

xylitic JóŸwin

detro-xylitic Turów

xylitic Turów

xylo-detritic Sieniawa

xylo-detritic Sieniawa

xylitic Be³chatów xylo-detritic

To tal pore vol ume Vp [cm3/g] 0.186 0.026 0.144 0.088 0.231 0.395 0.243 0.014

The Langmuir iso therm equa tion nL

m [dm3 STP /kg] 8.3 11.8 14.6 26.0 25.3 27.5 26.8 28.2

The DR iso therm equa tion

W0 [cm3/g] 0.011 0.017 0.021 0.032 0.029 0.030 0.028 0.028

E0 [kJ/mol] 23.6 24.3 25.2 26.0 24.7 21.2 21.7 20.3

SDR [m2/g] 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1

The BET iso therm equa tion nBET

m [dm3 STP/kg] 5.6 8.5 22.1 17.3 16.5 17.1 15.8 16.5

SBET [m2/g] 28.6 43.3 53.8 87.8 83.7 86.8 80.2 83.8

nL m, nBET

m – Langmuir and BET monolayer ad sorp tion ca pac i ties; W0 – the to tal micropore vol ume; E0 – the char ac ter is tic en ergy of ad sorp - tion for a stan dard va por; SDR, SBET – sur face area de ter mined us ing BET, DR equa tions

T a b l e 4 Com par i son of iso therm con stants

(10)

Fig. 4. Iso therms of CO2 sorption for the fol low ing sam ples: A – 1B JóŸwin detritic lig nite; B – 2B JóŸwin xylitic lig nite; C – 3B JóŸwin detro-xylitic lig nite; D – 4B Turów xylitic lig nite; E – 5B Turów xylo-detritic lig nite; F – 7B Sieniawa xylo-detritic lig nite;

G – 8B Sieniawa xylitic lig nite; H – 10B Be³chatów xylo-detritic lig nite

(11)

con tain finely dis persed min eral mat ter at sub-mi cron scale, in - vis i ble un der the mi cro scope, ac com pa ny ing the lignitic mat ter and this min eral mat ter sig nif i cantly in hib its sorp tion onto or - ganic mol e cules. By con trast, the higher the con tent of telohuminite and liptinite in lig nite, the more CO2 is be ings orbed. Mod er ately neg a tive cor re la tions be tween sorp tion ca - pac ity and inertinite were also ob served.

The pro cess of gelification starts dur ing the peat stage, whereas at the stage of diagenesis this un der goes con ver sion into the vitrinites of subbituminous and bi tu mi nous coal (vitrinitization). The pro cess in volves a frag men ta tion of humic par ti cles into a col loi dal state and is par al leled by chem i cal trans for ma tions, man i fested by an in crease in car bon con tent in coal, a black col our and gloss. Gelification of hu mus can be con sid ered tak ing into ac count phys i cal, chem i cal or bio chem i - cal trans for ma tions of in di vid ual plant com po nents, usu ally cel -

lu lose and lignin. In the light of cur rent knowl edge, it is the first stage of trans for ma tion (de com po si tion) of plant ma te rial, the prod uct of which is known as humic gel (gelified coal) or organo-min eral gel (dopplerite; Wag ner, 1982; Wag ner et al., 1983). The trans for ma tions of plant ag gre ga tions, tak ing place at the peat stage, are re ferred to as humification or bio chem i cal gelification (Stach and Murchi son, 1982). This is one of the first stages dur ing the gelification, i.e., the en rich ment of the de com - pos ing or ganic mat ter in car bon. It in volves mod er ate ox i da tion and the de vel op ment of so-called humic ac ids in the course of humification, peatification and pu tre fac tion, which, in fur ther stages of the pro cess, are trans formed into humines, i.e. chem i - cal com pounds with out re ac tive func tional groups. In the aquatic sed i men tary en vi ron ment, humic ac ids can re act with in or ganic bases or their salts. These re ac tions pro duce or ganic and min eral com pounds in clud ing dopplerite (Wag ner, 1982).

Fig. 4. cont.

(12)

A set of phys i cal and chem i cal phe nom ena lead ing to the for - ma tion of such com pounds can be called doppleri tization (Wag - ner, 1982; Rus sell and Barron, 1984).

Gelified lig nite sig nif i cantly dif fers from ungelified va ri et ies.

Highly gelified va ri et ies have a vis i bly conchoidal, un even struc - ture. Va ri et ies of this type of coal are char ac ter ized by high brit - tle ness, which is as so ci ated with a net work of endogenous cracks.

Mac ro scopic fea tures do not al low dis tin guish ing humified coal from dopplerized coal. How ever, it is pos si ble to dis tin guish both va ri et ies based on the ash con tent, bound or gan i cally to car bon. Dopplerite coal is a mix ture of Ca, K and Fe huminites.

The ash con tent in coals with the high est de gree of doppleritization is >10% by weight (Wag ner et al., 1983). While the de gree of gelification can be es ti mated mac ro scop i cally, its de ter mi na tion takes place by ap pli ca tion of mi cro-petrographic anal y sis, e.g. the so-called Gelification In dex (Diessel, 1986).The lig nite sam ples ex am ined were iden ti fied mainly as gelified coals. While no dopplerization has been ob served, the Ca and Fe con tent in the detro-xylitic lig nite sam ple from the JóŸwin de posit was higher (Ca – 1.8 ppm, Fe – 1.1 ppm) when com pared to other coals ex am ined and the ash con tent on a dry ba sis amounted to 24.6%. At the same time, this detro-xylitic lig nite sam ple has a GI of 2.3 and a rel a tively low sorp tion ca - pac ity. Based on these re sults, it can be as sumed that the in - crease in sorp tion ca pac ity is af fected only by the in crease in the gelified mat ter con tent, while the con tent of dopplerized mat ter is ir rel e vant. The mesopores are formed in cracks (fis -

sures) of the gelified lig nite, where the ma jor ity of CO2 sorp tion takes place. In the sam ple from the Be³chatów de posit, the low GI and a rel a tively high sorp tion ca pac ity can be ob served with a Ca con tent of 2.26%. A rel a tively high con tent of Ca is re lated to the pres ence of lac us trine chalk ac com pa ny ing the humic mat ter (Wag ner, 2007). It is sug gested that the CaCO3 con tent in lig nite can in crease its sorp tion ca pac ity of CO2.

The above anal y sis has shown that strongly gelified xylo-detritic and xylitic lig nites with a high de gree of coalification dis play the best sorp tion ca pac i ties. In the case of lig nite, sorp - tion is usu ally as so ci ated with mesopores (2–50 nm in di am e - ter). The con tent of micropores (pores <2 nm in di am e ter) in the lig nite ex am ined is rel a tively low. The only ex cep tion is xylitic lig nite with an inertinite con tent of 19.9% and micropore con tent of 7.75%. How ever, this micropore con tent has not led to an in - crease in the sorp tion ca pac ity of lig nite from the JóŸwin de - posit. Gen er ally, it can be con cluded that lig nite from this de - posit has the low est sorp tion ca pac ity. This is re lated to the low - est rank of coal among all of the lignite seams examined.

CONCLUSION

The car bon di ox ide sorp tion ca pac ity of the lig nites ex am - ined is highly vari able de spite their sim i lar lithological de vel op - ment. The sorp tion iso therms de ter mined were de scribed us ing the Langmuir, BET and DR equa tions. The for mal de scrip tion of ex per i men tal iso therms al lowed a de ter mi na tion of con stant Fig. 5. The re la tion ship be tween (A) ash in lig nite and nL

m; (B) SiO2 in ash and nL

m; (C) net cal o rific value and SBET; (D) Gelification In dex and nL

m

(13)

nL

m [dm3 STP /kg] W0 [cm3/g] SDR [m2/g] nBET

m [dm3 STP/kg] SBET [m2/g]

Mad [%] 0.46 0.49 0.49 0.61 0.51

Aad [%] –0.70 –0.77 –0.47 –0.43 –0.74

S tad

[%] –0.49 –0.36 –0.30 0.19 –0.42

GCVad [MJ/kg] 0.66 0.79 0.63 0.44 0.74

GCVdaf[MJ/kg] 0.45 0.63 0.80 0.46 0.58

NCVad [MJ/kg] 0.66 0.78 0.63 0.43 0.74

Cad [%] 0.68 0.79 0.60 0.43 0.75

Had [%] 0.64 0.74 0.54 0.38 0.70

Cdaf [%] 0.28 0.44 0.75 0.37 0.40

Hdaf [%] 0.51 0.66 0.63 0.38 0.61

To tal po ros ity [%] (from 101,3 kPa) –0.27 –0.30 0.00 –0.05 –0.29

To tal po ros ity [%] (from 150 kPa ) –0.38 –0.39 –0.07 –0.15 –0.39

High-pres sure po ros ity [%] –0.43 –0.37 –0.28 –0.46 –0.40

Textinite [%] 0.39 0.40 –0.06 0.30 0.39

Ulminite [%] 0.52 0.70 0.57 0.51 0.62

Telohuminite [%] 0.58 0.74 0.46 0.54 0.66

Attrinite [%] –0.67 –0.83 –0.48 –0.74 –0.76

Densinite [%] 0.20 0.07 0.24 0.11 0.16

Detrohuminite [%] –0.35 –0.53 –0.20 –0.45 –0.44

Corpohuminite [%] –0.64 –0.74 –0.29 –0.71 –0.70

Gelinite [%] –0.16 –0.09 –0.42 0.54 –0.14

Gelohuminite [%] –0.16 –0.09 –0.42 0.54 –0.14

HUMINITE [%] 0.57 0.55 0.56 0.49 0.57

LIPTINITE [%] 0.69 0.67 0.79 0.32 0.71

INERTINITE [%] –0.58 –0.53 –0.39 –0.48 –0.56

Py rite [%] –0.50 –0.66 –0.39 –0.66 –0.59

Quartz+Clays [%] 0.01 –0.11 –0.76 0.09 –0.10

Min eral mat ter [%] –0.07 –0.23 –0.82 –0.05 –0.19

GI 0.67 0.79 0.79 0.64 0.75

TPI 0.31 0.48 0.42 0.25 0.40

Ro [%] 0.72 0.72 0.54 0.36 0.74

Fe [%] –0.25 –0.14 –0.16 0.44 –0.19

Ca [%] –0.26 –0.40 –0.53 –0.02 –0.34

P [%] 0.06 –0.07 –0.45 –0.14 –0.01

Mg [%] –0.65 –0.59 –0.21 –0.08 –0.61

Al [%] –0.38 –0.53 –0.46 –0.43 –0.46

Na [%] 0.37 0.50 0.72 0.25 0.47

K [%] –0.48 –0.52 0.03 –0.61 –0.50

Ash com po si tion

SiO2 [%] –0.87 –0.83 –0.49 –0.29 –0.85

Al2O3 [%] –0.03 –0.07 0.19 –0.38 –0.03

Fe2O3 [%] 0.59 0.68 0.40 0.36 0.63

MgO [%] 0.30 0.42 0.68 0.19 0.40

CaO [%] 0.47 0.30 –0.23 0.11 0.36

Na2O [%] 0.34 0.47 0.72 0.21 0.44

K2O [%] 0.01 0.16 0.63 –0.17 0.12

TiO2 [%] –0.09 –0.02 0.47 –0.21 –0.02

P2O5 [%] –0.01 0.04 0.03 –0.24 0.03

MnO [%] –0.07 –0.21 –0.73 0.02 –0.18

Cr2O3 [%] –0.93 –0.85 –0.34 –0.42 –0.89

T a b l e 5 The cor re la tion be tween sorp tion pa ram e ters and ul ti mate, prox i mate and petrographic anal y sis

(in red – the cor re la tion is sta tis ti cally sig nif i cant, with sta tis ti cal sig nif i cance a = 0.1)

(14)

equa tions of sorp tion iso therms. It has been shown that all the three equa tions de scribe well the coal-gas sys tem ex am ined.

The anal y sis of the con stants of the DR equa tion has shown that the lig nite sam ples ana lysed con tain prac ti cally no micropores, hence the mesopore pores are the rea son be hind their rel a tively high sorp tion ca pac ity. The cal cu lated con stants were sub jected to sta tis ti cal anal y sis in re la tion to the pa ram e - ters ob tained as a re sult of el e men tal, tech no log i cal and petrographic anal y sis. It has been found that the CO2 sorp tion ca pac ity is clearly as so ci ated with the Gelification In dex. The de gree of gelification of macerals from the huminite group is in - di cated by the Gelification In dex (GI), which dif fer en ti ates gelified macerals from ungelified ones. A con tin u ous pres ence of wa ter is a pre req ui site for gelification, while fluc tu a tion in the wa ter ta ble af fects the GI; this is due to the fact that inertinites are usu ally formed dur ing dry pe ri ods. There fore, it can be con - cluded that the sorp tion prop er ties in crease with an in creas ing

con tent of gelified com po nents. In the case of the sam ples ex - am ined, the low est sorp tion ca pac ity has been re corded for detritic lig nite with a high ash con tent, which, at the same time, dis played the low est rank. The CO2 sorp tion ca pac ity of coal in - creases with the de gree of coalification and is the high est in mixed detro–xylitic and xylo-detritic lithotypes with low attrinite con tent. Based on the re sults ob tained, a pre lim i nary de ter mi - na tion of the sorp tion prop er ties of the pro spec tive de pos its can be made and the suit abil ity of coal for CO2 stor age can be as - sessed.

Ac knowl edge ments. This ar ti cle was sup ported by the Pol ish Na tional Sci ence Cen tre through a re search pro ject awarded by de ci sion No. DEC-2013/09/D/ST10/04045. The au thors would like to thank Dr. A. Pajdak and the anon y mous re viewer for in sight ful re views.

REFERENCES

Azmi, AS., Yusup, S., Muhamad, S., 2006. The in flu ence of tem - per a ture on ad sorp tion ca pac ity of Ma lay sian coal. Chem i cal En gi neer ing and Pro cess ing: Pro cess In ten si fi ca tion, 45:

392–396.

Baran, P., Zarêbska, K., 2015. Es ti mat ing the lim it ing ab so lute sorp tion of car bon di ox ide by coal for coal-bed stor age of car bon di ox ide. In ter na tional Jour nal of Oil, Gas and Coal Tech nol ogy, 10: 179–193.

Baran, P., Broœ, M., Nodzeñski, A., 2010. Stud ies on CO2 sorp tion on hard coal in the near-crit i cal area with re gard to the as pect of se ques tra tion. Archiwum Górnictwa, 55: 59–68.

Baran, P., Cygankiewicz, J., Zarêbska, K., 2013. Car bon di ox ide sorp tion on Pol ish ortholignite coal in low and el e vated pres - sure. Jour nal of CO2 Uti li za tion, 3–4: 44-48.

Baran, P., Zarêbska, K., Nodzeñski, A., 2014. En ergy as pects of CO2 sorp tion in the con text of se ques tra tion in coal de pos its.

Jour nal of Earth Sci ence, 25: 719–726.

Bielowicz, B., 2012. A new tech no log i cal clas si fi ca tion of low-rank coal on the ba sis of Pol ish de pos its. Fuel, 96: 497–510.

Bielowicz, B., 2019. The suit abil ity of Pol ish lig nite for gasi fi ca tion.

Clean Tech nol o gies and En vi ron men tal Pol icy, 21: 1115–1130.

Bielowicz, B., Kasiñski, J.R., 2014. The pos si bil ity of un der ground gasi fi ca tion of lig nite from Pol ish de pos its. In ter na tional Jour nal of Coal Ge ol ogy, 131: 304–318.

Botnen, L.S., Fisher, D.W., Dobroskok, A.A., Bratton, T.R.H., Greaves, K., McLendon, T., Steiner, G., Sorensen, J.A., Steadman, E.N., Harju, J.A., 2009. Field test of CO2 in jec tion and stor age in lig nite coal seam in North Da kota. En ergy Procedia, 1: 2013–2019.

Brunauer, S., Emmett, P.H., Teller, E., 1938. Ad sorp tion of gases in multimolecular lay ers. Jour nal of the Amer i can Chem i cal So ci - ety, 60: 309–319.

Clark son, C.R., Bustin, R.M., 1997. Vari a tion in per me abil ity with lithotype and maceral com po si tion of Cre ta ceous coals of the Ca na dian Cor dil lera. In ter na tional Jour nal of Coal Ge ol ogy, 33:

135–151.

Crosdale, P.J., Beamish, B.B., Valix, M., 1998. Coalbed meth ane sorp tion re lated to coal com po si tion. In ter na tional Jour nal of Coal Ge ol ogy, 35: 147–158.

Czarnecki L., Frankowski R., Œlusarczyk G., 1992. Syntetyczny profil litostratygraficzny rejonu z³o¿a Be³chatów dla potrzeb Bazy Danych Geologicznych (in Pol ish). Górnictwo Odkrywkowe, 3–4.

Diessel, C.F.., 1986. On the cor re la tion be tween coal fa cies and depositional en vi ron ments. In: Pro ceed ings of the 20th Sym po -

sium on Ad vances in the Study of the Syd ney Ba sin, Deparment of Ge ol ogy, Uni ver sity of New cas tle: 19–22.

Drobniak, A., Mastalerz, M., 2006. Chem i cal evo lu tion of Mio cene wood: ex am ple from the Belchatow brown coal de posit, cen tral Po land. In ter na tional Jour nal of Coal Ge ol ogy, 66: 157–178.

Dubinin, M.M., 1960. The po ten tial the ory of ad sorp tion of gases and va pors for adsorbents with en er get i cally non uni form sur - faces. Chem i cal Re views, 60: 235–241.

Dutka, B., Kudasik, M., Pokryszka, Z., Skoczylas, N., Topolnicki, J., Wierzbicki, M., 2013. Bal ance of CO2/CH4 ex change sorp - tion in a coal bri quette. Fuel Pro cess ing Tech nol ogy, 106:

95–101.

Gale, J., Freund, P., 2001. Coal-bed meth ane en hance ment with CO2 se ques tra tion world wide po ten tial. En vi ron men tal Geosciences, 8: 210–217.

Gensterblum, Y., van Hemert, P., Billemont, P., Battistutta, E., Busch, A., Krooss, B.M., De Weireld, G., Wolf, K.-H.A.A., 2010. Eu ro pean inter-lab o ra tory com par i son of high pres sure CO2 sorp tion iso therms II: nat u ral coals. In ter na tional Jour nal of Coal Ge ol ogy, 84: 115–124.

Grimes, W.R., 1982. The Phys i cal Struc ture of Coal: 21–42. Ac a - demic Press.

Harpalani, S., Mitra, A., 2010. Im pact of CO2 in jec tion on flow be - hav ior of coalbed meth ane res er voirs. Trans port in Po rous Me - dia, 82: 141–156.

ICCP, 1971. In ter na tional Hand book of Coal Pe trog ra phy, 1st Sup - ple ment to 2nd Edi tion. CNRS, Paris.

ICCP, 2001a. The new inertinite clas si fi ca tion (ICCP Sys tem 1994).

Fuel, 80: 459–471.

ICCP, 2001b. The new vitrinite clas si fi ca tion (ICCP Sys tem, 1994).

Fuel, 80: 459–471.

ISO 13909-1:2016. Hard coal and coke – Me chan i cal sam pling.

ISO 7404-2:2009. Meth ods for the petrographic anal y sis of coals – Part 2: Meth ods of pre par ing coal sam ples. Meth ods for the petrographic anal y sis of coals – Part 3: Method of de ter min ing maceral group com po si tion.

Kalaitzidis, S., Bouzinos, A., Papazisimou, S., Christanis, K., 2004. A short-term es tab lish ment of for est fen hab i tat dur ing Plio cene lig nite for ma tion in the Ptolemais Ba sin, NW Mac e do - nia, Greece. In ter na tional Jour nal of Coal Ge ol ogy, 57:

243–263.

Karczewska, A., Chodak, T., Kaszubkiewicz, J., 1996. The suit - abil ity of brown coal as a sorbent for heavy met als in pol luted soils. Ap plied Geo chem is try, 11: 343–346.

(15)

Kasiñski, J.., Piwocki, M., Sadowska, E., Ziembiñska- Tworzyd³o, M., 2010. Lig nite of the Pol ish Low lands Mio cene:

char ac ter is tics on a base of se lected pro files (in Pol ish with Eng - lish sum mary). Biuletyn Pañstwowego Instytutu Geologicznego, 439: 99–154.

Kozula, R., 1998. Dodatek nr 1 do dokumentacji eologicznej w kategorii B z³o¿a wêgla brunatnego P¹tnów IV w Kleczewie (in Pol ish). Archiwum KWB Konin.

Kozula, R., 2002. Dokumentacja geologiczna z³o¿a wêgla brunatnego „Sieniawa” w kategorii C1 (in Pol ish). Archiwum KWB Sieniawa S.A.

Kudasik, M., Skoczylas, N., Pajdak, A., 2017. The re peat abil ity of sorp tion pro cesses oc cur ring in the coal-meth ane sys tem dur - ing mul ti ple mea sure ment se ries. En er gies, 10.

Kwieciñska, B., Wag ner, M., 1997. Typizacja cech jakoœciowych wêgla brunatnego z krajowych z³ó¿ wed³ug kryteriów petrograficznych i chemiczno-technologicznych do celów dokumentacji geologicznej z³ó¿ oraz obs³ugi kopalñ (in Pol ish).

Wydawnictwo Centrum PPGSMiE PAN, Kraków.

Kwieciñska, B., Wag ner, M., 2001. At las petrograficzny wêgla brunatnego – litotypy i macera³y (in Pol ish). Wydawnictwo JAK Andrzej Choczewski, Kraków.

Lamberson, M.N., Bustin, R.M., Kalkreuth, W., 1991. Lithotype (maceral) com po si tion and vari a tion as cor re lated with paleo-wet land en vi ron ments, Gates For ma tion, north east ern Brit ish Co lum bia, Can ada. In ter na tional Jour nal of Coal Ge ol - ogy, 18: 87–124.

Langmuir, I., 1918. The ad sorp tion of gases on plane sur faces of glass, mica and plu to nium. Jour nal of the Amer i can Chem i cal So ci ety, 40: 1361–1403.

Laxminarayana, C., Crosdale, P.J., 1999. Role of coal type and rank on meth ane sorp tion char ac ter is tics of Bowen Ba sin, Aus - tra lia coals. In ter na tional Jour nal of Coal Ge ol ogy, 40: 309–325.

Li, X., Fang, Z., 2014. Cur rent sta tus and tech ni cal chal lenges of CO2 stor age in coal seams and en hanced coalbed meth ane re - cov ery: an over view. In ter na tional Jour nal of Coal Sci ence and Tech nol ogy, 1: 93–102.

Macuda, J., Nodzeñski, A., Wag ner, M., Zawisza, L., 2011. Sorp - tion of meth ane on lig nite from Pol ish de pos its. In ter na tional Jour nal of Coal Ge ol ogy, 87: 41–48.

Maphala, T., Wag ner, N.J., 2012. Ef fects of CO2 stor age in coal on coal prop er ties, 6th Trondheim Car bon Cap ture and Stor age Con fer ence (TCCS-6). En ergy Procedia, 23: 426–438.

Mastalerz, M., Gluskoter, H., Rupp, J., 2004. Car bon di ox ide and meth ane sorp tion in high vol a tile bi tu mi nous coals from In di ana, USA. In ter na tional Jour nal of Coal Ge ol ogy, 60: 43–55.

Mazzotti, M., Pini, R., Storti, G., 2009. En hanced coalbed meth ane re cov ery. The Jour nal of Super criti cal Flu ids, 47: 619–627.

Niè, M., 1997. IUPAC Com pen dium of Chem i cal Ter mi nol ogy 2nd Edi tion. IUPAC Com pen dium of Chem i cal Ter mi nol ogy Gold Book 2.

Ozdemir, E., Morsi, B.I., Schroeder, K., 2004. CO2 ad sorp tion ca - pac ity of argonne pre mium coals. Fuel, 83: 1085–1094.

Pan, Z., Ye, J., Zhou, F., Tan, Y., Connell, L.D., Fan, J., 2018. CO2

stor age in coal to en hance coalbed meth ane re cov ery: a re view of field ex per i ments in China. In ter na tional Ge ol ogy Re view, 60:

754–776.

Perera, M.S.A., Ranjith, P.G., 2015. En hanced Coal Bed Meth ane Re cov ery: Us ing In jec tion of Ni tro gen and Car bon Di ox ide Mix - ture. Hand book of Clean En ergy Sys tems. John Wiley & Sons.

PGI-NRI, 2017. PGI-NRI [WWW Doc u ment].

http://geoportal.pgi.gov.pl/surowce

Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wag ner, N., 2017. Clas si fi - ca tion of liptinite – ICCP Sys tem 1994. In ter na tional Jour nal of Coal Ge ol ogy, 169: 40–61.

Piwocki, M., 2004. Paleogen (in Pol ish). In: Budowa Geologiczna Polski, 1: Stratygrafia. Part 3a: Kenozoik, Paleogen, Neogen

(eds. T.M. Peryt and M. Piwocki): 22–71. Pañstwowy Instytut Geologiczny.

Piwocki, M., Ziembiñska-Tworzyd³o, M., 1997. Neo gene of the Pol ish Low lands – lithostratigraphy and pol len-spore zones.

Geo log i cal Quar terly, 41 (1): 21–40.

Reznik, A.A., Singh, P.K., Foley, W.L., 1984. An anal y sis of the ef - fect of CO2 in jec tion on the re cov ery of in-situ meth ane from bi tu - mi nous coal: an ex per i men tal sim u la tion. So ci ety of Pe tro leum En gi neers Jour nal, 24: 521–528.

Romanov, V.N., Hur, T.B., Fazio, J.J., Howard, B.H., Irdi, G.A., 2013. Com par i son of high-pres sure CO2 sorp tion iso therms on Cen tral Ap pa la chian and San Juan Ba sin coals. In ter na tional Jour nal of Coal Ge ol ogy, 118: 89–94.

Rus sell, N.J., 1984. Gelification of Vic to rian ter tiary soft brown coal wood. I. Re la tion ship be tween chem i cal com po si tion and mi cro - scopic ap pear ance and vari a tion in the de gree of gelification. In - ter na tional Jour nal of Coal Ge ol ogy, 4: 99–118.

Rus sell, N.J., Barron, P.F., 1984. Gelification of Vic to rian ter tiary soft brown coal wood. II. Changes in chem i cal struc ture as so ci - ated with vari a tion in the de gree of gelification. In ter na tional Jour nal of Coal Ge ol ogy, 4: 119–142.

Sadowska, A., Gi¿a, B., 1991. The flora and age of the brown coal from P¹tnów. Acta Palaeobotanica, 31: 215–225.

Span, R., Wag ner, W., 1996. A new equa tion of state for car bon di - ox ide cov er ing the fluid re gion from the tri ple-point tem per a ture to 1100 k at pres sures up to 800 MPa. Jour nal of Phys i cal and Chem i cal Ref er ence Data, 25: 1509–1596.

Stach, E., Murchi son, D., 1982. Stach’s Text book of coal Pe trol ogy.

Borntraeger, Berlin.

Švábová, M., Weishauptová, Z., Pøibyl, O., 2012. The ef fect of mois ture on the sorp tion pro cess of CO2 on coal. Fuel, 92:

187–196.

Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Tay lor, G.H., Flores, D., 2005. Clas si fi ca tion of huminite – ICCP Sys tem 1994. In ter na tional Jour nal of Coal Ge ol ogy, 62: 85–106.

Szwed-Lorenz, J., 1991. Pet ro logic eval u a tion of Pol ish soft brown coals as raw ma te rial for dif fer ent use. Prace Naukowe Instytutu Górnictwa Politechniki Wroc³awskiej, 63, Monogr., 29. Wroc³aw.

Tay lor, G.H., Teichmuller, M., Da vis, A., Diessel, C.F.K., Littke, R., Rob ert, P., 1998. Or ganic Pe trol ogy: A New Hand book In cor - po rat ing Some Re vised Parts of Stach’s Text book of Coal Pe - trol ogy. Gebrüder Borntraeger, Berlin.

UN-ECE, 1998. In ter na tional Clas si fi ca tion of In-Seam Coals Sym - bol Num ber: ENERGY/1998/19 [WWW Doc u ment].

Wag ner, M., 1982. Doppleritization of xylitic coal in the light of petrographic and chem i cal in ves ti ga tions. In ter na tional Jour nal of Coal Ge ol ogy, 2: 181–194.

Wag ner, M., 2007. Zmiennoœæ petrologiczno-sedymentologiczna i w³asnoœci technologiczne kredy jeziornej w osadach neogenu typu wapiennego zapadliska tektonicznego na przyk³adzie z³o¿a wêgla brunatnego „Szczerców” (in Pol ish). AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków.

Wag ner, M., ¯erda, T., John, A., 1983. Gelification in the light of petrographic and physico-chem i cal stud ies (in Pol ish with Eng - lish sum mary). Geo log i cal Quar terly, 27 (1): 87–104.

Wang, K., Fu, X., Qin, Y., Sesay, S.K., 2011. Ad sorp tion char ac ter - is tics of lig nite in China. Jour nal of Earth Sci ence, 22: 371–376.

Wang, S., Shao, L.-Y., Yan, Z.-M., Shi, M.-J., Zhang, Y.-H., 2019.

Char ac ter is tics of Early Cre ta ceous wildfires in peat-form ing en - vi ron ment, NE China. Jour nal of Palaeo ge ogra phy, 8: 17.

Zelenka, T., Taraba, B., 2014. Sorp tion of CO2 on low-rank coal:

Study of in flu ence of var i ous dry ing meth ods on microporous char ac ter is tics. In ter na tional Jour nal of Coal Ge ol ogy, 132: 1–5.

Zhang, R., Liu, S., 2017. Ex per i men tal and the o ret i cal char ac ter iza - tion of meth ane and CO2 sorp tion hys ter esis in coals based on Langmuir desorption. In ter na tional Jour nal of Coal Ge ol ogy, 171: 49–60.

Cytaty

Powiązane dokumenty

For the case of hinge joints, methods have been proposed that exploit kinematic constraints to automatically identify the local hinge joint axis coordinates from the raw data of

Several other laws followed: the law of June 1919 on the estab- lishment of a land office, of January 1920 on the allotment of land under arrest, of February 1920 on the development

To pierwsze związane jest z identyfikacją czynników deter- minujących kapitał ludzki i rozwojem metodyki badania tego zagadnienia, a drugie z całościową oceną wpływu

Również kwestia niepodnoszona w legacji królewskiej, a bardzo istotna z perspektywy województwa krakowskiego, dotycząca „wielkich krzywd, które się dzieją ze strony Węgier

Reflections which appear at the author of the Gleb’s Journey resulted from the fact that he was convinced about the loss of the world of values, the world of religion which for the

Do arkusza dołączona jest KARTA ODPOWIEDZI, na której w oznaczonych miejscach: − wpisz oznaczenie kwalifikacji,.. − zamaluj kratkę z oznaczeniem wersji arkusza, − wpisz

Jaką ilość surowca należy zadozować do młyna kulowego, jeżeli w bębnie znajduje się 800 kg mielników, a stosunek wagowy surowca, mielników i wody wynosi 1:1:1?. Ile pokładów

zespołu, podzespołu, serii, podserii, akt spraw (klas), jednostki.. PRADZIAD