• Nie Znaleziono Wyników

Neutrino light curve

N/A
N/A
Protected

Academic year: 2021

Share "Neutrino light curve"

Copied!
22
0
0

Pełen tekst

(1)

Pre-supernova neutrino signal

10 years of progress in modelling

Andrzej Odrzywo lek

M. Smoluchowski Institute of Physics, Jagiellonian U. in Krak´ow, Poland

Saturday 28 October 2017

NNN17, Warwick U., 26-28 Oct 2017

(2)

Early thouhts

60’s: ν detector on Pluto required to detect flux from stars, due to solar neutrino background (Chiu,H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721)

80’s: Bahcal, Neutrino astrophysics: only 1 of 567 pages devoted to distant stars;

renormalized CNO νespectrum used to estimate detection (J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars)

90’s: A.O. noticed ν flux of 1012L for Si burning stage; Presupernova at distance of d =√

1012= 106AU ' 5 parsecs could outshine the Sun in neutrinos. Unfortunately, no such a star exists!

2000: M. Misiaszek point out: half of the above flux is ¯νe. Use inverse β decay p + ¯νe→ n + e+! How to capture neutrons (Cl,3He, Cd . . . ) ?

2003: pair-annihilation e+ e+→ νx+ ¯νxidentified as main ¯νe source; energy spectrum estimated via MonteCarlo simulation hEνi ∼ 4 kT ' 2 MeV; big detector required to get Galaxy coverage (OMK, Astroparticle Physics 21, 303 (2004)) A&A community: ,,absolutely undetectable” (S. E. Woosley, priv. comm.) but experimental physicists excited: could we really forecast supernova?

Beacom&Vagins: use Gd to capture neutrons; essentially background-free detection channel (John F. Beacom and Mark R. Vagins Phys. Rev. Lett. 93, 171101 (2004))

NNN17, Warwick U., 26-28 Oct 2017

(3)

Recent progress

1 better understanding of pair-annihilation neutrino spectra (MonteCarlo → moments/fit → 3D integration → tabulation/interpolation → 2D integration) (

Misiaszek, Odrzywolek, Kutschera, PRD, 74, 043006 (2006), Kato et. al. ApJ (2017) 848 48; arXiv:1704.05480)

2 neutrino light curves and spectra for s15 stellar modelIn: J. R.Wilkes, editor, NNN06, Volume 944 of AIoP Conf. Series, 109–118, (2007).

3 neutrino emission dependence on ZAMS mass (12, 15, 25 M )A. Odrzywolek, A. Heger, Neutrino Signatures of Dying Massive Stars, Acta Physica Polonica B, Vol. 41, No. 7, July 2010, page 1611.

4 νeemission&detection channel (Workshop Towards Neutrino Technologies, Trieste, Italy, 2009).

5 other production channels (photo, plasma, deexcitation)Kelly M. Patton et. al. ApJ (2017) 840:2, G. W. Misch, Y. Sun, G. M. Fuller, arXiv:1708:08792

6 effects of neutrino oscillationsThe KamLAND Collaboration, ApJ 818:91 (2016), Kato et. al. ApJ (2017) 808:2, Yoshida et. al., Phys. Rev. D 93 123012 (2016)

7 hydrodynamics of O and Si burningMeakin & Arnett, ApJ, 667, 448 (2007), S. M. Couch, E. Chatzopoulos, W. David Arnett, and F. X. Timmes, ApJ Letters, 808 Number 1, p. L21

8 Betelgeuse early warning, reactor backgroundKamLAND Collaboration, ApJ 818:91 (2016) 9 modern stellar evolution codesYoshida et. al., Patton et. al., Kato et. al. (2016-2017) 10 ONeMg vs Si-burning pre-supernovaeKato et. al. (2016-2017)

11 consistent post-processing of stellar models with β±processesPatton et. al. (2016-2017)

NNN17, Warwick U., 26-28 Oct 2017

(4)

Neutrino light curve

NNN17, Warwick U., 26-28 Oct 2017

(5)

NNN17, Warwick U., 26-28 Oct 2017

(6)

Neutrino oscillations

MSW effect in H envelope leads to flavor exhange:

Fνosce = p Fνe+ (1 − p) Fνµ

Fνoscµ = (1 − p) Fνe+ p Fνµ

F¯νosce = ¯p Fν¯e+ (1 − ¯p) Fν¯µ

F¯νoscµ = (1 − ¯p) Fν¯e+ ¯p Fν¯µ

Depending on mass hierarchy of neutrinos coeeficients are:

p = (

sin2θ13' 0.02

sin2θ12cos2θ13' 0.30 p =¯ (

cos2θ12cos2θ13' 0.68 Normal sin2θ13' 0.02 Inverted

NNN17, Warwick U., 26-28 Oct 2017

(7)

Neutrino oscillations

MSW effect in H envelope leads to flavor exhange:

Fνosce = p Fνe+ (1 − p) Fνµ

Fνoscµ = (1 − p) Fνe+ p Fνµ

F¯νosce = ¯p Fν¯e+ (1 − ¯p) Fν¯µ

F¯νoscµ = (1 − ¯p) Fν¯e+ ¯p Fν¯µ

Depending on mass hierarchy of neutrinos coeeficients are:

p = (

sin2θ13' 0.02

sin2θ12cos2θ13' 0.30 p =¯ (

cos2θ12cos2θ13' 0.68 Normal sin2θ13' 0.02 Inverted

NNN17, Warwick U., 26-28 Oct 2017

(8)

MESA & new approach to weak rates

neutrino emission computed DIRECTLY [19] from nuclear data (mass, energy levels, matrix elements)

100% compatibility of nuclear kinetics and spectral neutrino emission now possible pathway to neutrino spectra computed directly within stellar evolution code now open (vast area of research: N pocket, hot/explosive-CNO, 3α, shell-burning neutrinos)

35 years of ,,FFN tables” era begins to end

uncertainty factor of ∼2 or worse from interpolation procedure ALONE removed way open to include e.g. ν-accelerated H burning

NNN17, Warwick U., 26-28 Oct 2017

(9)

Conclusions

3σ early warning of at least 2 hours possible in KamLAND (depending of hierarchy and reactor status) based on ¯νe detection via inv. β decay

SK-Gd, or any large LS detectors with low threshold/background could do better νedetection channel for inv. hierarchy might be method of choice, but stellar modelling of νespectra is difficult

TODO: re-evaluate event rates using consistent modelling and up-to-date physics

NNN17, Warwick U., 26-28 Oct 2017

(10)

Selected references

[1] Chiu,H.-Y. Cosmic neutrinos and their detection (1964) NASA-TM-X-51721 [2] J. Bahcall, Neutrino Astrophysics, §6.5 Fluxes from other stars

[3] OMK, Astroparticle Physics 21, 303 (2004)

[4] Misiaszek, Odrzywolek, Kutschera, PRD, 74, 043006 (2006)

[5] OMK, Future neutrino observations of nearby pre-supernova stars before core-collapse, In: J. R.Wilkes, editor, NNN06, Volume 944 of AIoP Conf. Series, 109–118, (2007).

[6] John F. Beacom and Mark R. Vagins Phys. Rev. Lett. 93, 171101 (2004)

[7] Kunugise&Iwamoto, Publications of the Astronomical Society of Japan, Vol.59, No.6, L57 (2007) [8] Odrzywolek&Plewa, A&A, 529, id.A156

[9] I. Seitenzahl et. al., Phys. Rev. D, Volume 92, Issue 12, id.124013 [10] Wright et. al., Phys. Rev. D, Volume 94, Issue 2, id.025026

[11] A. Odrzywolek, A. Heger, Neutrino Signatures of Dying Massive Stars, Acta Physica Polonica B, Vol. 41, No.

7, July 2010, page 1611.

[12] Yoshida et. al., Phys. Rev. D 93 123012 (2016) [13] The KamLAND Collaboration, ApJ 818:91 (2016) [14] Chinami Kato et. al. ApJ (2017) 808:2 [15] Kelly M. Patton et. al. ApJ (2017) 840:2

[16] Chinami Kato et. al. ApJ (2017) 848 48; arXiv:1704.05480 [17] Kelly M. Patton et. al. (2017); arXiv:1709.01877 [18] G. W. Misch, Y. Sun, G. M. Fuller, arXiv:1708:08792 [19] Paxton et al. 2011,2013,2015 http://mesa.sourceforge.net/

[20] Meakin & Arnett, ApJ, 667, 448 (2007)

[21] S. M. Couch, E. Chatzopoulos, W. David Arnett, and F. X. Timmes, ApJ Letters, 808 Number 1, p. L21 NNN17, Warwick U., 26-28 Oct 2017

(11)

Extra slides

Neutrino spectra animation

NNN17, Warwick U., 26-28 Oct 2017

(12)

SN Ia vs Pre-SN

Type Ia supernova explosion might be viewed as an extreme case of nuclear burning in stars.

Key similarities

C/O → Si/Fe burning available fuel mass ∼ 1.5 M

identical ν production processes similar neutrino energies

Essential differences

burning time: seconds vs days, hours energy lost to neutrinos 1% vs ∼100%

event rate, minimal possible distance to Earth Overall, detection challenge comparable [7, 8, 9, 10].

NNN17, Warwick U., 26-28 Oct 2017

(13)

Betelgeuse vs Galaxy

β Ori: Galactic longitude 200

NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

NNN17, Warwick U., 26-28 Oct 2017

(14)

Neutron/β

decay controversy for ¯ ν

e

flux

Contrary results (e.g [16] vs [17]) on importance of ¯νeproduction process were obtained:

n + e+→ p + ¯νe

Is pair-annihilation or β/postitron capture dominant ¯νeproduction process in pre-supernova stars?

Observations:

nuclear reaction network based results → pair dominates small NSE → pair/β similar

massive NSE → β dominated

Possible explanation: neutron abundance as a function of NSE network size (work in progress).

NNN17, Warwick U., 26-28 Oct 2017

(15)

¯

ν

e

-HR diagram (α-network)

NNN17, Warwick U., 26-28 Oct 2017

(16)

¯

ν

e

-HR diagram (α-network)

NNN17, Warwick U., 26-28 Oct 2017

(17)

¯

ν

e

-HR diagram (α-network)

NNN17, Warwick U., 26-28 Oct 2017

(18)

¯

ν

e

-HR diagram (α-network)

NNN17, Warwick U., 26-28 Oct 2017

(19)

Photon & neutrino HR diagram

NNN17, Warwick U., 26-28 Oct 2017

(20)

NNN17, Warwick U., 26-28 Oct 2017

(21)

NNN17, Warwick U., 26-28 Oct 2017

(22)

NNN17, Warwick U., 26-28 Oct 2017

Cytaty

Powiązane dokumenty