• Nie Znaleziono Wyników

one-dimensionalextended Bose-Hubbard modelswith local three-body interactionsTomasz Sowinski

N/A
N/A
Protected

Academic year: 2021

Share "one-dimensionalextended Bose-Hubbard modelswith local three-body interactionsTomasz Sowinski"

Copied!
14
0
0

Pełen tekst

(1)

U

CEWQO 2013, Stockholm June 16, 2013

one-dimensional

extended Bose-Hubbard models

with local three-body interactions

Tomasz Sowinski

Institute of Physics of the Polish Academy of Sciences, Warsaw ICFO - The Institute of Photonic Sciences, Barcelona

(2)

U

• Hamiltonian of the one-dimensional chain

ˆ

n

i

= ˆ a

i

ˆ a

i

• ultra-cold atoms (bosons) in optical lattice

D. Jaksch et al.: Phys. Rev. Lett. 81, 3108 (1998)

J U

H = J ˆ

X L

i=1

ˆ

a i (ˆ a i 1 + ˆ a i+1 ) + U

2

X L

i=1

ˆ

n i (ˆ n i 1)

- the tunneling amplitude J is determined

by the shape of the lattice potential

- the interaction energy U is determined

by the shape of the lattice and details

of the interaction potential

standard Bose-Hubbard model

(3)

U

H = J ˆ

X L

i=1

ˆ

a i (ˆ a i 1 + ˆ a i+1 ) + U

2

X L

i=1

ˆ

n i (ˆ n i 1)

• grand canonical ensemble

µ N ˆ

J / U Jc

Jc

S. Ejima et al.: EPL 93, 3002 (2011)

N ˆ =

X

N

i=1

ˆ

n

i

phase diagram

(4)

U

J / U Jc

Jc

S. Ejima et al.: EPL 93, 3002 (2011)

H = J ˆ

X L

i=1

ˆ

a i (ˆ a i 1 + ˆ a i+1 ) + U

2

X L

i=1

ˆ

n i (ˆ n i 1) µ N ˆ

• grand canonical ensemble

how the properties of the studied model

will change when local three-body

interactions are taken into account

????

+ W

6

X L

i=1

ˆ

n i (ˆ n i 1) (ˆ n i 2)

phase diagram

(5)

U

J. Silva-Valencia, A. Souza: Phys. Rev. A 84, 065601 (2011)

in the presence of three-body interactions

the first insulating lobe remains almost unchanged

DMRG with L up to 512

first insulating lobe

(6)

U

T. Sowiński: Phys. Rev. A 85, 065601 (2012)

Exact Diagonalization with L up to 16

phase diagram

shape of the second insulating lobe in

contrast to the first one, depends crucially

on the three-body interactions

(7)

U

universality class

local three-body interactions do not change

the characteristic properties of the phase

transition (K-T universality class)

T. Sowiński: Phys. Rev. A 85, 065601 (2012)

(8)

U

attractive two-body forces

U < 0

H = J ˆ

X

L

i=1

ˆ

a

i

(ˆ a

i 1

+ ˆ a

i+1

) + U

2

X

L i=1

ˆ

n

i

(ˆ n

i

1) + W

6

X

L i=1

ˆ

n

i

(ˆ n

i

1) (ˆ n

i

2) µ ˆ N

(9)

U

H = J ˆ

X

L i=1

ˆ

a

i

(ˆ a

i 1

+ ˆ a

i+1

) + U

2

X

L i=1

ˆ

n

i

(ˆ n

i

1) + W

6

X

L i=1

ˆ

n

i

(ˆ n

i

1) (ˆ n

i

2) µ ˆ N

infinite three-body repulsion limit (W ➜ ∞)

attractive two-body forces

DENSITY

SF PSF

● Mott Insulator (MI)

hˆai 6= 0, hˆa

2

i 6= 0

hˆai = 0, hˆa

2

i 6= 0

hˆai = 0, hˆa

2

i = 0

● pair-superfluid (PSF)

● superfluid (SF)

S. Diehl et al., Phys. Rev. Lett. 104, 165301 (2010) Y. Lee, M. Yang, Phys. Rev. A 81, 061604(R) (2010)

Wha t will ha

ppe n if

W is la rge b ut finite

?

U <

0

(10)

U

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

6 108 12 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

SF - PSF phase transition

• indicators of quantum phase transition

F (J, ) = |h G(J) | G(J + ) i|

- ground state fidelity

(J) = @ 2 F (J, )

@ 2 =0

- fidelity susceptibility QPT 1

QPT 0

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

68 1012 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

#  sites

T. Sowiński et al.: ArXiv:1304.4835 (2013)

W ➜ ∞

(11)

U

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

68 1012 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

SF - PSF phase transition

T. Sowiński et al.: ArXiv:1304.4835 (2013)

• fidelity susceptibility near QPT

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

68 1012 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

#  sites

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

6 108 12 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

(t, L) ⇠ L /⌫ (L 1/⌫ t)

- finite-size scaling

If all critical parameters were known then by plotting against for different system sizes all curves should collapse to the universal function.

L

/⌫

L

1/

t

W ➜ ∞

t = J J

c

J

c

⇠ ⇠ |t|

⇠ |t|

(12)

U

violation of the universality

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0

γ = 2.11

W = ∞

6 108 12 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

6 108 12 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

68 1012 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

#  sites

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0 γ = 2.11

W = ∞

68 1012 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

0 20 40 60 80 100

0 0.1 0.2 0.3

χ

J/|U|

Jc = 0.19 ν = 1.0

γ = 2.11

W = ∞

6 108 12 0

0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

L 1/γ (J-J c )/J c

0 30 60 90 120

0 0.1 0.2 0.3

χ

Jc = 0.16ν = 1.0

γ = 2.23

W = 4|U|

0 0.2 0.4 0.6

-8 -6 -4 -2 0 2 4 6

L -γ /ν χ

W ➜ ∞

the critical exponent γ varies with W and is thus

dependent on the MICROSCOPIC details of the model

T. Sowiński et al.: ArXiv:1304.4835 (2013)

(13)

U

Conformal Field Theory

S(l) = c

6 log

sin

✓ ⇡l

L

+ s(L) + O

✓ l

L

• entanglement entropy for block of size l

hard constraint

model

DMRG with L up to 256

T. Sowiński et al.: ArXiv:1304.4835 (2013)

for systems with c > 1 the critical exponents

may continuously vary with respect

to the microscopic parameters of the model

(14)

U

conclusions

• repulsive two-body interactions (U>0)

• attractive two-body interactions (U<0)

H = J ˆ

X

L i=1

ˆ

a

i

(ˆ a

i 1

+ ˆ a

i+1

) + U

2

X

L i=1

ˆ

n

i

(ˆ n

i

1) + W

6

X

L i=1

ˆ

n

i

(ˆ n

i

1) (ˆ n

i

2)

- shape of the second insulating lobe in contrast to the first one, depends

crucially on the three-body interactions

- the universality class of MI-SF phase transition does not depend on the

strength of the three-body interactions (at least in 1D)

- critical behavior of the system undergoing a PSF-SF phase transition

depends on the value of the three-body repulsion

- critical exponent and the central charge governing the quantum phase

transitions are shown to have repulsion dependent features

T. Sowiński, R. W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein: ArXiv:1304.4835 (2013) T. Sowiński: Phys. Rev. A 85, 065601 (2012)

Cytaty

Powiązane dokumenty

In the quasidegenerate regime, the vanishing small energy gap does not protect the ground state against mixing with other states from the manifold: If the system’s temperature is of

The shapes of the first two insulating lobes are discussed and the values of the critical tunneling for which the insulating phase loses stability for repulsive and attractive

The starting point of the analysis is the many-body ground state of bosons confined in a static and deep optical lattice Q 0 ¼ ð32; 20; 8Þ filled with two bosons per site on

It is shown that in an anisotropic harmonic trap that rotates with the properly chosen rotation rate, the force of gravity leads to a resonant behavior.. Full analysis of the

Ciekawy i cenny jest krótki fragment dotyczący zastosowania do modelowania i rozwiązywania zadania wieloetapowego podejmowania decyzji znanej z gier uogólnionych

27 and different type of high-pressure measurements. To date, various of materials including solids, liquids and gases have been proposed for pressure transmitting media. In this

Additionally it is shown that: (i) the critical behavior of this dilute magnetic insulator is similar to critical behavior observed for disordered ferromagnets,

Another breakthrough was associated with further improvements of the MOCVD technique, leading to a successful deposition of a high quality InGaN layers, de- signed to form the