• Nie Znaleziono Wyników

The Apectodinium spp. acme as an evidence for the Paleocene-Eocene thermal maximum from the Polish Outer Carpathians

N/A
N/A
Protected

Academic year: 2022

Share "The Apectodinium spp. acme as an evidence for the Paleocene-Eocene thermal maximum from the Polish Outer Carpathians"

Copied!
11
0
0

Pełen tekst

(1)

The Apectodinium spp. acme as an ev i dence for the Paleocene-Eocene ther mal max i mum from the Pol ish Outer Carpathians

Danuta CYBULSKA1, * and Jacek RUBINKIEWICZ2

1 University of War saw, Fac ulty of Ge ol ogy, Żwirki i Wigury 93, 02-089 Warszawa, Po land

2 Polish Geo log i cal In sti tute – Na tional Re search In sti tute, Rakowiecka 4, 00-975 Warszawa, Po land

Cybulska, D., Rubinkiewicz, J., 2020. The Apectodinium spp. acme as an ev i dence for the Paleocene-Eocene ther mal max i - mum from the Pol ish Outer Carpathians. Geo log i cal Quar terly, 64 (2): 241–251, doi: 10.7306/gq.1521

As so ci ate Ed i tor: Stanisław Wołkowicz

Nu mer ous Apectodinium taxa, with A. augustum, and the pres ence of Florentinia reichartii were found in the Bystre slice (Pol ish Outer Carpathians). Such abun dance of Apectodinium is de scribed for the first time in the Outer Carpathians. The oc - cur rence of thermophilic Apectodinium taxa, with co-oc cur rence of Florentinia reichartii, are in ter preted to be strongly re lated to the Paleocene-Eocene ther mal max i mum (PETM). The PETM is char ac ter ized by a no ta ble global warm ing and changes in ma rine and ter res trial biota, such as a global dis per sion of thermophilic dinoflagellates. We are also re port ing a new, un re - corded sec tion of the Hi ero glyphic beds from the Jabłonka Stream.

Key words: Apectodinium, PETM, dinoflagellate cysts, Pol ish Outer Carpathians, Hi ero glyphic Beds.

INTRODUCTION

The Paleocene-Eocene ther mal max i mum was a global hyperthermal event which took place ~56 mil lion years ago (e.g., Westerhold et al., 2009; Zachos et al., 2010; Carmichael et al., 2017).

In the geo log i cal re cord, the PETM is char ac ter ized by a neg a tive car bon iso tope (d13C) ex cur sion (CIE) that in di cates the re lease of 13C-de pleted car bon into the ocean-at mo sphere sys tem (Ken nett and Stott, 1991; Thomas et al., 2002; Pagani et al., 2006; Schouten et al., 2007).

This event was as so ci ated with the rise of deep-sea tem - per a ture by ~5–6°C and the warm ing of sea sur face tem per a - tures (SST) by 5 to 8°C at low and high lat i tudes, re spec tively (e.g., Ken nett and Stott, 1991; Thomas and Shackle ton, 1996;

Zachos et al., 2003; Tripati and Elderfield, 2005). The PETM is as so ci ated with sig nif i cant changes in ma rine and ter res trial realms. Warm ing of the oceans caused the mi gra tion of thermo philic taxa (e.g., dinoflagellates Apecto dinium and planktic foraminifera Acarinina) to the north ern lat i tudes, the world wide turn over of cal car e ous nannoplankton, and the ex - tinc tion of ben thic foraminifera due to an oxia (Ken nett and Stott,

1991; Thomas and Shackle ton, 1996; Galeotti et al., 2004;

Arreguín-Rodríguez et al., 2013).

One of the most sig nif i cant changes as so ci ated with the PETM within ma rine plank ton was the dis per sion of the motile stage of trop i cal dinoflagellates of the Apectodinium ge nus (Bujak and Brinkhuis, 1998; Crouch et al., 2001, 2003a; Egger et al., 2003). Apectodinium evolved at low lat i tudes dur ing the Danian-Selandian tran si tion (Brinkhuis et al., 1994; Bujak and Brinkhuis, 1998). Apectodinium spp. dinoflagellates are in ter - preted as heterotrophic and thermophilic or gan isms linked to rel a tive high SST and high nu tri ent avail abil ity (Powell et al., 1996; Bujak and Brinkhuis, 1998; Crouch et al., 2001, 2003b;

Crouch and Brinkhuis, 2005; Shcherbinina et al., 2016), which oc cu pied wa ters with tem per a tures ex ceed ing 20°C (Frieling, 2016). High sea sur face tem per a tures and nu tri ent avail abil ity re lated to the on set of PETM al lowed Apectodinium to spread to wards high lat i tudes (Bujak and Brinkhuis, 1998; Crouch et al., 2003b). There fore, the high abun dance of Apectodinium taxa in the fos sil re cord is in ter preted as an ev i dence for the PETM. Es pe cially im por tant is A. augustum, which is re lated to CIE (e.g., Bujak and Brinkhuis, 1998; Crouch et al., 2001, 2003b; Steurbaut et al., 2003; Sluijs et al., 2007).

The PETM-re lated acme of Apectodinium taxa is known from many lo ca tions around the globe, e.g.: in the North Sea (Bujak and Brinkhuis, 1998; Sluijs et al., 2008), Green land (NÝhr-Hansen, 2003), Bel gium (Steurbart et al., 2003), Aus tria (Heilmann-Clausen and Egger, 2000; Crouch et al., 2001), the Cau ca sus (Shcherbinina et al., 2016), Kazakhstan (Iakovleva et al., 2001), Uzbekistan (Crouch et al., 2003b), North Amer ica (e.g., Sluijs et al., 2008; Sluijs and Brinkhuis, 2009), New Zea -

* Corresponding author, e-mail: d.cybulska@student.uw.edu.pl Received: July 30, 2019; accepted: September 19, 2019; first published online: March 12, 2020

(2)

land (Crouch et al., 2001, 2003a; Crouch and Brinkhuis, 2005;

Sluijs et al., 2008), Antarctica (Bijl et al., 2013b) and Af rica (Crouch et al., 2003b; Awad and Oboh-Ikuenobe, 2016; Oboh- Ikuenobe et al., 2017).

In the Pol ish Outer Carpathians, Apectodinium taxa have been ob served only sparsely (Gedl, 1995, 2005, 2013; Barski and Bojanowski, 2010; Jurewicz and Segit, 2018) and are of ten in ter preted as re worked (Gedl, 1995, 2005; Barski and Bojano - wski, 2010). In nearby ar eas, in situ Apectodinium spp. were re - ported from the Rhenodanubian Flysch Zone (Mohamed and Wagreich, 2013).

This pa per pres ents field-based stud ies and palynological anal y sis fo cused on the Apectodinium taxa, sup ported by sta - ble car bon iso tope (d13C) anal y sis.

GEOLOGICAL SETTING

The study area is lo cated in the east ern part of the Pol ish Outer Carpathians in the Bystre slice that is a tec tonic el e ment of the Silesian Nappe in the Bieszczady Moun tains, south of Baligród (Ślączka, 1959; Cieszkowski et al., 1985; Mastella, 1995; Jankowski and Ślączka, 2014; Fig. 1). In this area, the Silesian Nappe is sub di vided into two tec tonic sub units: the Cen tral Synclinorium (the Cen tral Carpathian De pres sion) (Tołwiński, 1933; Świdziński, 1953; Oszczypko et al., 2008) and the Fore Dukla thrust-sheets (Świdziński, 1958; Oszczypko et al., 2008). The Bystre slice is a part of the Fore-Dukla thrust- sheets (Cieszkowski et al., 1985; Mastella, 1995) and it is strongly tec toni cally de formed. The lay ers have un der gone tec - tonic re duc tion. They are cut by thrusts, and sec ond ary slices are pres ent (Mastella, 1995). There fore, the strati graphic sec - tions are gen er ally dis con tin u ous. The most de tailed tec tonic map of the Bystre slice along with the Fore-Dukla thrust-sheet was pre pared by Mastella (1995).

Turbiditic sed i ments of the Bystre slice are dated to the Lower Cre ta ceous to Eocene (Ślączka, 1959; Jankowski and Ślączka, 2014). Dur ing the Cre ta ceous to Early Eocene, the study area was a north ern part of the Tethys Ocean, re ferred to as the Silesian Ba sin. The sed i men tary sys tem was con trolled by tec tonic pro cesses and was dom i nated by tur bid ity cur rents (Golonka et al., 2000, 2006; Oszczypko, 2004).

MATERIALS

The Bystre slice is com posed of seven lithostratigraphic units: the Cieszyn, Grodziszcze, Lgota, Godula, Istebna, and the Hi ero glyphic Beds with the Ciężkowice Sand stones at the bot tom (Ślączka, 1959; Jankowski and Ślączka, 2014). The sec tion in ves ti gated in our study is de scribed by Ślączka (1959) as the Lower Istebna Shales, as signed to the Paleocene.

In the pres ent study we in ves ti gated a 21 m long out crop sec tion lo cated south of the vil lage of Bystre (49°17’46.13”N, 22°16’11.56”E) along the Jabłonka Stream. Field in ves ti ga tion re veals an un re corded sec tion of the Eocene Hi ero glyphic Beds. It is rep re sented here by the typ i cal green marly shale with few in ter ca la tions of var ie gated (red) shales and a thin to me dium bed ded, fine-grained sand stones with sil ica ce men ta - tion (Fig. 2A, B). Sand stones are green and grey-green in col - our. At the base of the sand stones, or ganic hieroglyphs are pres ent, which is typ i cal for the Hi ero glyphic Beds (Fig. 2C).

Ad di tion ally, green ish sand stones and con glom er ates oc cur

at the bot tom of Hi ero glyphic Beds, which are prob a bly a part of the Ciężkowice Sand stones (Beds). At the top of the sec - tion, a brec cia zone is pres ent (Fig. 2D). Above the sec tion (up stream), there is a typ i cal pro file of the Istebna Beds. The sec tion in di cates the ex is tence of an un re corded thrust of the Istebna Beds rest ing on the Eocene Hi ero glyphic Beds, and thus the tec tonic rep e ti tion (Fig. 3).

A sim i lar but thicker (~100 m) sec tion of the Hi ero glyphic Beds with Ciężkowice Sand stones at the bot tom, is re vealed in the same stream a few hun dred metres up stream.

Sam ples for microplaeontological anal y sis were taken from shale in ter vals. We col lected 20 sed i ment sam ples, la belled from 1 to 18.87, and the num ber for each sam ple cor re sponds to the po si tion in the sec tion (Fig. 4). In this study, we are fo - cused on or ganic-walled dinoflagellate cysts, mostly on the Apectodinium group.

METHODS

Sam ples have been sub jected to the stan dard palyno - logical prep a ra tion tech nique pro posed by Poulsen et al.

(1990). Twenty grams of sed i ment were treated with 38% hy - dro chlo ric (HCl) and 40% hy dro flu oric (HF) ac ids to dis solve car bon ates and sil ica, re spec tively. The re sid uum was sieved through a 15 µm ny lon mesh. A heavy liq uid sep a ra tion (ZnCl2

den sity = 2 g/cm3) was ap plied. Palynological slides were pre - pared us ing glyc erin jelly as a mount ing me dium. Due to the in - suf fi cient ma te rial, two palynological slides from each sam ple were ex am ined. Wher ever pos si ble, 300 dinoflagellate cysts taxa were counted. Sam ples with a high amount of Apecto - dinium taxa were also ex am ined with flu o res cent mi cros copy to es ti mate the ra tio of re work ing caus ing ab nor mal con cen - tra tion. The palynological anal y ses were con ducted at the Fac ulty of Ge ol ogy, Uni ver sity of War saw, where all slides are stored.

To ex am ine the con tent of d13C in the stud ied ma te rial, which could be cor re lated with PETM, sam ples for bulk or ganic car bon iso topes have been ana lysed.

Bulk or ganic car bon iso topes (d13Corg) were mea sured on 11 sam ples which were taken from in ter vals of in creased Apectodinium taxa abun dance. For this pur pose, we col lected

~0.3 g of res i due which was de min er al ized, neu tral ized, and fi - nally dried. Car bon iso topes are re ported rel a tive to Vi enna Peedee Bel em nite (VPDB). The an a lyt i cal er ror is ±0.4‰. The anal y sis was made at the In sti tute of Geo log i cal Sci ences, Pol - ish Acad emy of Sci ences, us ing an iso tope ra tio mass spec - trom e ter (IRMS) Thermo Delta V Ad van tage cou pled in a con - tin u ous flow sys tem with a Thermo Flash EA 1112HT el e men tal analyser.

RESULTS

DINOFLAGELLATE CYSTS

Palynological slides from all depths yield both dinoflagellate cysts and rich ter res trial phytoclasts. Only four sam ples are bar - ren of dinoflagellate cyst (sam ples 1; 12; 15,6 and 18,87). In six sam ples (4,5; 7,5; 9; 12,75; 14; 16), dinocysts were rare, be low 60 spec i mens per sam ple, and we did not in clude those sam - ples in our fi nal con sid er ation. Only 10 sam ples yield abun dant

(3)

and highly di ver si fied dinoflagellate cyst as sem blages (Ap pen - dix 1*).

The rich ness of dinoflagellate cyst as sem blages dif fers be - tween the sam ples. In to tal, 69 gen era and 65 spe cies have been rec og nized (Ap pen di ces 1 and 2), in clud ing re worked taxa. The ma te rial is dom i nated by Apectodinium, Glaphyro - cysta, Adnatosphaeridium, Cleistosphaeridium, Spiniferites and Areoligera (Figs. 5–7).

The dinoflagellate as sem blages abound in the ge nus Apectodinium that pre dom i nates in eight sam ples, ac count ing for ~25–~37% of the to tal dinoflagellate cyst as sem blage (Figs.

5 and 6). In sam ples 5,4 and 6,5 Apectodinium are com mon but do not ex ceed 15%. In sam ples 3,5 and 7, Apectodinium spec i - mens are scarce and do not ex ceed 6%.

Apectodinium ap pears in two abun dance in ter vals of 5.4–7.0 m and 9.5–11.1 m. In the for mer, Apectodinium at tains al most 28% of to tal dinocysts, whereas in the lat ter, it is even more abun dant (25–37% of the to tal dinocyst as sem blage) (Fig. 5).

All sam ples con tain ing Apectodinium sp. are dom i nated by A. homomorphum – 29% of the dinoflagellate cyst as sem blage.

A. augustum dinoflagellate cysts are pres ent, but they are rel a -

tively rare, up to 3.5% of the dinoflagellate cyst as sem blage (Fig. 6A–D). Apectodinium augustum was re cently trans ferred to a new ge nus, Axiodinium (Wil liams et al., 2015), how ever, we fol low the sug ges tion of Bijl et al. (2016) and re tain the for mer name of the taxon.

Be tween 7.0 and 9.5 m, we ob serve the dis ap pear ance of Apectodinium with nu mer ous inceptions of Adnatosphaeridium (17 and 41%) and Glaphyrocysta (~33, 32 and 31%)(Fig. 7B, G, H, M). Areoligera sp. is char ac ter ized by a sim i lar dis tri bu tion pat tern. Spiniferites sp. and Cleistosphaeridium sp. are abun - dant and their dis tri bu tion is sim i lar to the Apectodinium (Fig. 5).

We find a thin in ter val of com mon Florentinia reichartii (~9%) (Figs. 5 and 6C, D) co-oc cur ring with the first peak of Apectodinium spp. in sam ple 5,9. A sin gle spec i men of F.

reichartii is also noted in sam ples 7 and 9,5.

Sam ples ex am ined in flu o res cent mi cros copy show dif fer - ences in col our only in the case of re cy cled Cre ta ceous dinoflagellate cysts (Fig. 7R, S). All spec i mens of Apectodinium re vealed sim i lar autofluorescence. This al lows us to treat all Apectodinium taxa and other Paleogene dinoflagellate taxa in situ (Figs. 6 and 7B–H, J–P).

Fig. 1A – lo ca tion of the study area on the map of the Pol ish Outer Carpathians (mod i fied from Żytko et al., 1989);

B – lithostratigraphical map of the Bystre slice (mod i fied from Mastella, 1995)

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1521

(4)

Fig. 2. Pho to graphs from the sec tion stud ied

A, B – shales and sand stones of the Hi ero glyphic beds; C – or ganic hieroglyphs at the base of sand stone;

D – tec tonic brec cia at the top of the sec tion (phot. Maciej Łoziński)

Fig. 3. Sim pli fied map and the cross-sec tion of the study area Dig i tal Ter rain Model source: www.geoportal.gov.pl

(5)

STABLE CARBON ISOTOPES

We fo cused on in ter vals where the oc cur rence of Apectodinium sp. is paly no logi cal ly proved, from sam ple 3,5 to 7,0 and from 9,5 to 11,1. In the stud ied in ter val, the car bon iso - tope d13Corg val ues range from –23 to –27.7‰ (Fig. 5). We ob - serve iso tope val ues with a sig na ture of –27.2 ‰ at sam ple 3,5 and an in crease in val ues in the up per part of the in ter val. In sam ple 6,5, the d13Corg reaches a value of –23.7 and –24.4‰ in

sam ple 7,0. We no ticed the re ap pear ance of Apectodinium sp.

in sam ple 9,5 where the d13Corg is –23.3‰. From this level iso - tope, the val ues evince a ten dency to de cline, with a dis tinctly neg a tive trend to wards sam ple 10.3 with a min i mal sig na ture of –27.7‰ (Fig. 5). The next three sam ples (10,5; 10,7; 11,1) in di - cate a grad ual in crease. The top most sam ple 11,1 reach the d13Corg value of –23.0‰. In the sam ples be low 3,5 and above 11,1 the bulk or ganic iso tope anal y sis is non-sub stan tive due to or ganic con tent dom i nated by ter res trial tis sues and sig nif i cant ab sence of ma rine microplankton.

AGE

Biostratigraphic anal y sis based on dinoflagellate cysts re - veals Early Eocene-low est Ypresian age, nannoplankton zones NP9 and NP10 of Mar tini (1971).

The pres ence of Apectodinium spp. in di cates Late Paleo - cene to Early Eocene age (Costa and Downie, 1976; Powell, 1992). Wil liams and Bujak (1985) doc u mented that A.

homomorphum ranges from the Up per Paleocene to the Mid dle Eocene. The pres ence of Apectodinium homomorphum and A.

quinque latum (Fig. 6H) in di cates the A. hyperacanthum Zone of Costa and Downie (1976), sug gest ing a Late Paleo cene to Early Eocene age. The pres ence of A. augustum, which is re - corded only from the CIE (Bujak and Brinkhuis, 1998; Steurbaut et al., 2003; Sluijs et al., 2007), sug gests the Late Paleocene to Early Eocene, Zone NP9 of Mar tini (1971; Powell, 1992; Wil - liams et al., 2004). Phelodinium magnificum (Fig. 7O) in di cates the Early Eocene, Zone NP10 of Mar tini (1971; Powell, 1996).

Florentinia reichartii is a very im por tant spe cies. Its strati graphic oc cur rence is very nar row, span ning the lat est Paleocene and ear li est Eocene (Sluijs and Brinkhuis, 2009). The ranges of Homotryblium tenuispinosum and Adnato sphaeridium vittatum are prob lem atic. Ac cord ing to Powell (1992) the first ap pear - ance of H. tenuispinosum is in the mid- Ypresian NP11 of Mar tini (1971), but ac cord ing to Wil liams et al. (2004) the first oc cur - rence of this spe cies in the north ern Hemi sphere (mid-lat i tudes) is in the Thanetian, be fore Apecto dinium augustum. Sim i larly Adnatosphaeridium vittatum (as Adnatosphaeridium multi - spino sum) on global charts is lim ited to the Eocene, and ac - cord ing to Powell (1992) and Stover et al. (1996) it ap peared for the first time in the mid-Ypresian. How ever, Eaton (1976) gives its first oc cur rence in the lat est Paleo cene. More over, Adnato - sphaeridium multispinosum was rec og nized in the Late Paleo - cene of Ni ge ria (Jan du Chęne and Adediran, 1984) and Tu ni - sia (Kocsis et al., 2014). Sánchez -Pellicer et al. (2017) re port the first ap pear ance of this spe cies in the Selandian in the Gulf of Guinea.

DISCUSSION

DINOFLAGELLATE CYSTS

Apectodinium taxa are pres ent in a ma jor ity of sam ples con - tain ing dinoflagellate cysts; in a few of them they are dom i nant, rang ing from ~25 to ~37% of the dinoflagellate cyst as sem - blage. This high num ber of Apectodinium taxa from the Pol ish Outer Carpathians has been noted for the first time.

In the Bystre slice the max i mum oc cur rence reaches ~37%, whereas, for ex am ple, it ex ceeds 60% at the Anthering sec tion in Aus tria (Heilmann-Clausen and Egger, 2000; Crouch et al., Fig. 4. Sim pli fied lithological pro file of the out crop sec tion

along the Jabłonka Stream

Num bers to the right cor re spond to the sam ple num bers; num bers in ital ics cor re spond to ad di tional iso to pic sam ples

(6)

2001), 70% at the Kheu sec tion, Cau ca sus (Shcherbinina et al., 2016), >90% at the Tienen For ma tion, Bel gium (Steur baut et al., 2003), and ~60% at the Tawanui sec tion, New Zea land (Crouch et al., 2001, 2003a). How ever, at the Aktumsuk sec - tion, Uzbekistan, Crouch et al. (2003b) re ported the oc cur rence of Apectodinium up to ~35% of the as sem blage. It should be men tioned that both the Bystre and Aktumsuk sec tions were within the north ern Tethys realm in the Late Paleo cene/Lower Eocene (Bolle et al., 2000; Oszczypko, 2004; Golonka, 2006).

In the stud ied ma te rial, Apectodinium augu stum is ac tu ally un - com mon, reach ing 3.5% of the as sem blage. Pre vi ous stud ies show that A. augustum is some times not even re corded in the PETM sec tions (Crouch et al., 2003b; Frieling et al., 2018b).

One of the in ter est ing fea tures of our study is the two peaks of Apectodinium abun dance with val ues ~28 and ~37%. Sim i lar fea tures of abun dance peaks are re corded in other lo ca tions with the PETM, e.g. at the Tienen For ma tion (Steurbaut et al., 2003) and the Elles sec tion (three peaks) (Crouch et al., 2003b). They are re ferred to other Late Paleocene and Early Eocene Apectodinium oc cur rences in the North ern Hemi - sphere (Powell et al., 1996; Bujak and Brinkhuis, 1998; Crouch et al., 2003b; Steurbaut et al., 2003).

Dinoflagellate cysts from Bystre in di cate an Early Eocene age. It could be co eval with other Early Eocene sec tions, e.g.

Jebel Boudabous (Bujak and Brinkhuis, 1998) and Aktumsuk (Crouch et al., 2003b).

In the part of the sec tion where Apectodinium dis ap pears or is scarce, a sig nif i cant in crease of the Areoligera com plex (Areoligera sp., Adnatosphaeridium sp., Glaphyrocysta sp.) is noted. Motile Apectodinium dinoflagellates prob a bly fed on or - ganic de tri tus and other plank ton (Bujak and Brinkhuis, 1998).

They are typ i cal of neritic and coastal (la goonal, estuarine or

brack ish) set tings with low sa lini ties (Stover et al., 1996). In con - trast, the Areoligera com plex is in ter preted as autotrophic dino - flagellates, linked mostly with in ner neritic set tings (Brinkhuis, 1994; Powell et al., 1996) and also found in high-en ergy mar - ginal ma rine en vi ron ments (Stover et al., 1996; Shcher binina et al., 2016). Within sec ond ary dinoflagellate as sem blages, Spini - ferites and Cleistosphaeridium spp. are com mon. Spiniferites sp. ap pears in both ocean and neritic set tings (Brinkhuis, 1994);

Cleistosphaeridium sp. is linked to nor mal ma rine, shal low wa - ter (Köthe, 1990).

The dis ap pear ance of heterotrophic Apectodinium and the sig nif i cant in crease of the autotrophic Areoligera com plex prob - a bly in di cate changes in nu tri ent de liv ery. There must have been a fac tor con trol ling the sup ply of nu tri ents, for in stance, sea level changes. The Silesian Ba sin, like other Carpathian bas ins, was con trolled by tec tonic pro cesses (Oszczypko, 2004; Golonka, 2006) and this could have had a sig nif i cant im - pact on sea level changes and thus the nu tri ent sup ply. Con se - quently, Apectodinium is as so ci ated with a coastal en vi ron - ment, so an in crease in sea level could have an im pact on their dis tri bu tion.

Along with the acme of Apectodinium spp. the oc cur rence of Florentinia reichartii has been noted herein for the first time in the Outer Carpathians. This spe cies is de scribed from the New Jer sey Shelf (Sluijs and Brinkhuis, 2009), East Tas man Pla teau (Sluijs et al., 2011), South Pa cific Ocean (Bijl et al., 2013a) and the Otway Ba sin, Aus tra lia – where it was treated as a marker spe cies for the PETM (Frieling et al., 2018a). F. reichartii also was thermophilic, but the tem per a ture range for this spe cies was >30°C (Frieling, 2016). The pres ence of F. reichartii may in di cate warm ing of sea sur face wa ters more than is as sumed with the oc cur rence of Apectodinium.

Fig. 5. Part of the study sec tion show ing the d13Corg iso tope re cords and the per cent age dis tri bu tion of main groups of dinoflagellate cysts

(7)

CARBON ISOTOPE

Sta ble car bon iso tope anal y sis is a stan dard method for de ter min ing the source of or ganic mat ter in mod ern and an - cient en vi ron ments, es pe cially to trace pro por tions of phytoplankton and ter res trial or ganic mat ter. The source of sus pended or bur ied or ganic mat ter is de ter mined from bulk iso to pic data; there fore, eval u a tion of the pro por tion of the pure ma rine and pure ter res trial el e ments is an im por tant ques tion (Cal der and Parker, 1968; Newman et al., 1973).

There are also other fac tors in flu enc ing the or ganic mat ter dis - tri bu tion pat tern, in clud ing: e.g. re gional and lo cal ter res trial and ma rine flo ras vari a tions, sea sonal and spa tial vari abil ity, degradative pro cess ing, and var i ous ex ter nal and in ter nal trans port path ways in/to sed i men tary bas ins (Stiller, 1977).

Re cy cling of par tic u late, es pe cially ter res trial or ganic mat ter, which is re sis tant to me chan i cal and chem i cal dam age, is a com mon geo log i cal pro cess within flysch-type de pos its. More - over, om ni pres ent in clastic en vi ron ments, sub ma rine ero sion is also ca pa ble of re work ing an cient ma rine par ti cles in clud ing dinoflagellate cysts, acritarcha, and foraminifera test lin ings

po ten tially in flu enc ing the iso to pic sig nal. There fore, all kinds of anom a lies should not be un der es ti mated.

In our ma te rial, we have no ticed sev eral ev i dences of re - work ing of Cre ta ceous and Ju ras sic dinoflagellate (Fig. 7A, I, R, S); there fore, re cy cling of other older or ganic par ti cles must be con sid ered. Ac cord ing to Tyson (1993) the re cy cled ter res trial ma te rial of Me so zoic age tends to shift iso to pic sig na tures to be heavier.

Our d13Corg val ues served only as ref er ence points to pre vi - ous PETM val ues oc cur ring around this global phe nom e non.

The anal y sis shows d13Corg val ues be tween –23 and –27.7‰

and seems to be sim i lar to other d13Corg anal y sis from the PETM in Eu rope (Steurbaut et al., 2003; Thiry et al., 2006; Collinson et al., 2009). How ever, due to the high ra tio of re cy cling we are aware that the method can yield only poor or am big u ous re sults in our case. This is the main rea son we be lieve rather in a palaeontological sig nal re flected by in creased num ber of Apectodinium gen era. To en sure that our palaeontological re - sults are re li able we ex cluded the re work ing pro cess of Apecto - dinium spec i mens by means of autofluorescence ex cited by ul - tra vi o let light. Af ter mi cro scopic ex am i na tion, all spec i mens of Apectodinium oc cur ring in the sam ples around the PETM re - Fig. 6. Light mi cro scope im ages for the Apectodinium group

A–D – Apectodinium augustum (sam ple 10,20); E – Apectodinium longispinosum (sam ple 5,9); F, G – Apectodinium parvum (sam ples 10,20; 5,9); H – Apectodinium quinquelatum (sam ple 10,20); I, J – Apectodinium hyperacanthum (sam ples 7; 3,5); K, L – Apectodinium

homomorphum (sam ples 10,20; 11.1); scale bar = 25 µm

(8)

Fig. 7. Light mi cro scope im ages for the se lected dinoflagellate cysts

A – Areoligera neptuni (sam ple 6,5); B – Adnatosphaeridium vittatum (sam ple 8,5); C, D – Florentinia reichatrii (sam ple 5,9); E – Hystrichokolpoma rigaudiae (sam ple 6,5); F – Deflandrea oebisfeldensis (sam ple 5,9); G, H – Glaphyrocysta divaricata (sam ples 8.5; 7); I – Isabelidinium sp. (sam ple 5,9); J – Homotryblium abbreviatum (sam ple 11,1); K – Cerodinium diebelii (sam ple 5,9); L – Fibrocysta bipolaris (sam ple 5,4); M – Glaphyrocysta microfenestrata (sam ple 5,9); N – Muratodinium sp. (sam ple 8); O – Phelodinium magnificum (sam ple 5,9); P – Wilsonidium sp. (sam ple 7); R, S – Apectodinium sp. and re worked Subtilisphaera sp.

in trans mit ted light and UV (sam ple 5,9); A–P: scale bar = 25 µm; R and S: scale bar = 50 µm

(9)

cord, re vealed a sim i lar autofluorescence level. On the one hand, it proves in situ char ac ter of this re cord, and on the other, re duces prob a bil ity of ar ti fi cial con cen tra tion of these taxa.

CONCLUSIONS

The study re veals a high num ber of Apectodinium dino - flagellate cysts in the ma te rial from the Outer Carpathians.

Apectodinium augustum is par tic u larly im por tant. Be ing a marker taxon, it in di cates the PETM re cord in this area. The pres ence of Florentinia reichartii has also been re corded. Like - wise, the Apectodinium spe cies is thermophilic and re lated to the PETM. Changes in the con tent of Apectodinium and their sub sti tu tion by the Areoligera com plex may in di cate sea level changes and/or de liv ery of nu tri ents.

Our study re veals also an un re corded sec tion of the Eocene Hi ero glyphic beds and the ex is tence of the Istebna Beds thrust over the Hi ero glyphic Beds, which in di cates tec tonic rep e ti tion.

Ac knowl edge ments. We are grate ful to Dr M. Barski for the great help and dis cus sion. Dr M. Bojanowski and Dr W. Kozłowski are thanked for valu able re marks in in ter pre ta tion of iso to pic anal y sis. We would like to thank Dr M. Łoziński for help in field work, and E. Demianiuk and T. Plasota for crit i cal read ing of a pre vi ous ver sion of this manu script. P. Steele is thanked for Eng lish lin guis tic im prove ments. We would like to thank Prof. A. Konon and the sec ond, anon y mous re viewer for com ments which sig nif i cantly im proved this pa per. This study was sup ported by an in ter nal grant of the Fac ulty of Ge ol ogy, Uni ver sity of War saw.

REFERENCES

Arreguín-Rodríguez, G.J., Alegret, L., Ortiz, S., 2013. Glomospira acme dur ing the Paleocene-Eocene ther mal max i mum: re - sponse to CaCO3 dis so lu tion or to eco log i cal forces? Jour nal of Foraminiferal Re search, 43: 40–54.

Awad, W.K., Oboh-Ikuenobe, F.E., 2016. Early Paleogene dinoflagellate cysts from ODP Hole 959D, Côte d’Ivoire-Ghana trans form mar gin, west Af rica: new spe cies, biostratigraphy and paleoenvironmental im pli ca tions. Jour nal of Af ri can Earth Sci - ences, 123: 123–144.

Barski, M., Bojanowski, M., 2010. Or ganic-walled dinoflagellate cysts as a tool to rec og nize car bon ate con cre tions: an ex am ple from Oligocene flysch de pos its of the West ern Carpathians.

Geologica Carpathica, 61: 121–128.

Bijl, P.K., Sluijs, A., Brinkhuis, H., 2013a. A mag neto- and chemostratigraphically cal i brated dinoflagellate cyst zonation of the early Palaeogene South Pa cific Ocean. Earth-Sci ence Re - views, 124: 1–31.

Bijl, P.K., Bendle, A.P.J., Bohaty, S.M., Pross, J., Schouten, S., Tauxe, L., Stickley, C.E., McKay, R.M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., Ex pe di tion 318 sci en - tists, 2013b. Eocene cool ing linked to early flow across the Tasmanian Gate way. Pro ceed ings of the Na tional Acad emy of Sci ences of the United States of Amer ica, 110: 9645–9650.

Bijl, P.K., Brinkhuis, H., Egger, L.M., Eldrett, J.S, Frieling, J., Grothe, A., Houbene, A.J.P., Pross, J., Śliwińska, K.K., Sluijs, A., 2016. Com ment on "Wetzeliella and its al lies – the

‘hole’ story: a tax o nomic re vi sion of the Paleogene dino - flagellate subfamily Wetzelielloideae” by Wil liams et al. (2015).

Palynology, 41: 423–429.

Bolle, M.-P., Pardo, A., Hinrichs, K.-U., Adatte, T., Von Salis, K., Burns, S., Keller, G., Muzylöv, N., 2000. The Paleo cene–Eo - cene tran si tion in the mar ginal north east ern Tethys (Kazakhstan and Uzbekistan). In ter na tional Jour nal of Earth Sci ences, 89:

390–414.

Brinkhuis, H., 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type-area (North east It aly): bio - stratigraphy and paleoenvironmental in ter pre ta tion. Palaeo ge - ogra phy. Palaeoclimatology, Palaeo ec ol ogy, 107: 121–163.

Brinkhuis, H., Romein, A.J.T., Smit, J., Zachariasse, J-W., 1994.

Danian-Selandian dinoflagellate cysts from lower lat i tudes with spe cial ref er ence to the El Kef sec tion, NW Tu ni sia. GFF, 116:

46–48.

Bujak, J.P., Brinkhuis, H., 1998. Global warm ing and dinocyst changes across the Paleocene–Eocene ep och bound ary. In:

Late Paleocene–Early Eocene (eds. M.-P. Aubry and W.A.

Berggren): 277–295. Co lum bia Uni ver sity Press, New York.

Burtan, J., 1936. Stratigraphie der Schlesisien Beskiden. Strati - graphie der schlesischen Beskiden. Bul le tin In ter na tional de L‘Academie Po lo naise des Sci ences et des Let tres de Cracovie:

1–41.

Cal der, J.A., Parker, P.L., 1968. Sta ble car bon iso tope ra tios as in - di ces of pet ro chem i cal pol lu tion of aquatic sys tems. En vi ron - men tal Sci ence and Tech nol ogy, 2: 535–593.

Carmichael, M.,J., Inglis, G.N., Badger, M.P.S., Naafs, B.D.A., Behrooz, L., Remmelzwaal, S., Monteiro, F.M., Rohrssen, M., Farnsworth, A., Buss, H.L., Dick son A.J., Valdes, P.J., Lunt, D.J., Pancost, R.D., 2017. Hy dro log i cal and as so ci ated bio - geochemical con se quences of rapid global warm ing dur ing the Paleocene-Eocene Ther mal Max i mum. Global and Plan e tary Change, 157: 114–138.

Cieszkowski, M., Ślączka, A., Wdowiarz, A., 1985. New data on struc ture of the Flysch Carpathians. Przegląd Geologiczny, 33:

313–332.

Collinson, M.E., Steart, D.C., Har ring ton, G.J., Hooker, J.J., Scott, A.C., Allen, L.O., Glasspool, I.J., Gib bons, S.J., 2009.

Palynological ev i dence of veg e ta tion dy nam ics in re sponse to palaeoenvironmental change across the on set of the Paleocene -Eocene Ther mal Max i mum at Cobham, South ern Eng land.

Grana, 48: 38–66.

Costa, L.I., Downie, C., 1976. The dis tri bu tion of the dinoflagellate Wetzeliella in the Palaeogene of north-west ern Eu rope. Palae - on tol ogy, 19: 591–614.

Crouch, E.M., Brinkhuis, H., 2005. En vi ron men tal change across the Paleocene–Eocene tran si tion from east ern New Zea land: a ma rine palynological ap proach. Ma rine Micropaleontology, 56:

138–160.

Crouch, E.M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H.E.G., Rog ers, K.M., Egger, H., Schmitz, B., 2001. Global dinoflagellate event as so ci ated with the late Paleocene ther mal max i mum. Ge ol ogy, 29: 315–318.

Crouch, E.M., Dick ens, G.R., Brinkhuis, H., Aubry, M.-P., Hollis, C.J., Rog ers, K.M., Visscher, H., 2003a. The Apectodinium acme and ter res trial dis charge dur ing the Paleocene–Eocene ther mal max i mum: new palynological, geo chem i cal and cal car - e ous nannoplankton ob ser va tions at Tawanui, New Zea land.

Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 194:

387–403.

Crouch, E.M., Brinkhuis, H., Visscher, H., Adatte, T., Bolle, M.-P., 2003b. Late Paleocene–early Eocene dinoflagellate cyst re - cords from the Tethys: Fur ther ob ser va tions on the global dis tri - bu tion of Apectodinium. GSA Spe cial Pa per, 369: 113–131.

(10)

Eaton, G.L., 1976. Dinoflagellate cysts from the Bracklesham Beds (Eocene) of the Isle of Wight, south ern Eng land. Bul le tin of the Brit ish Mu seum (Nat u ral His tory). Ge ol ogy, 26: 227–332.

Egger, H., Fenner, J., Heilmann-Clausen, C., Rögl, F., Sachsen - hofer, R.F., Schmitz, B., 2003. Paleoproductivity of the north - west ern Tethyan mar gin (Anthering Sec tion, Aus tria) across the Paleocene-Eocene tran si tion. GSA Spe cial Pa per, 369:

133–146.

Frieling, J., 2016. Cli mate, Car bon Cy cling and Ma rine Ecol ogy dur ing the Paleocene Eocene Ther mal Max i mum. Ph.D. the sis, Utrecht Uni ver sity, Utrecht, Neth er lands.

Frieling, J., Huurdeman, E.P., Rem, C.C.M., Donders, T.H., Pross, J., Bohaty, S.M., Holdgate, G.R., Gallagher, S.J., Mc - Gowran, B., Bijl, P.K., 2018a. Iden ti fi ca tion of the Paleo - cene–Eocene bound ary in coastal strata in the Otway Ba sin, Vic to ria, Aus tra lia. Jour nal of Micropalaeontology, 37: 317–339.

Frieling, J., Reichart, G-J., Middelburg, J.J., Röhl, U., Wester - hold, T., Bohaty, S.M., Sluijs A., 2018b. Trop i cal At lan tic cli - mate and eco sys tem re gime shifts dur ing the Paleo cene–Eo - cene Ther mal Max i mum. Cli mate of the Past, 14: 39–55.

Galeotti, S., Kaminski, M.A., Coccioni, R., Speijer, R.P., 2004.

High-res o lu tion deep-wa ter Ag glu ti nated Foraminiferal re cord across the Paleocene/Eocene tran si tion in the Contessa Road Sec tion (cen tral It aly). Grzybowski Foun da tion Spe cial Pub li ca - tion, 8: 83–103.

Gedl, P., 1995. Mid dle Eocene dinoflagellate cysts from the Ro - goźnik sec tion, Flych Carpathians, Po land. Acta Palaeo - botanica, 35: 195–231.

Gedl, P., 2005. Late Eocene-early Oligocene or ganic-walled dino - flagellate cysts from Folusz, Magura Nappe, Pol ish Carpa - thians. Acta Palaeobotanica, 45: 27–83.

Gedl, P., 2013. Eocene dinoflagellate cysts from the Popiele beds at Koniusza (Skole Nappe, Flysch Carpathians, Po land): tax on - omy, biostratigraphy, and palaeoenvironmental re con struc tion of a mar ginal ma rine ba sin. Studia Geologica Polonica, 136:

5–197.

Golonka, J., Oszczypko, N., Ślączka, A., 2000. Late Car bon if er - ous-Neo gene geodynamic evo lu tion and paleogeography of the Circum-Carpathian re gion and ad ja cent ar eas. Annales Societatis Geologorum Poloniae, 70: 107–136.

Golonka, J., Gahagan, L., Krobicki, M., Marko, F., Oszczypko, N., Ślączka, A., 2006. Plate tec tonic evo lu tion and paleo - geography of the circum Carpathian re gion. AAPG Mem oir, 84:

11–46.

Heilmann-Clausen, C., Egger, H., 2000. The Anthering out crop (Aus tria), a key-sec tion for cor re la tion be tween Tethys and North west ern Eu rope near the Paleocene/Eocene bound ary.

GFF, 122: 69.

Iakovleva, A.I., Brinkhuis, H., Cavagnetto, C., 2001. Late Palaeo - cene-Early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; cor re la tions across an cient sea ways. Palaeo ge - ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 172: 243–268.

Jan du Chęne, R., Adediran, S.A., 1984. Late Paleocene to Early Eocene dinoflagellates from Ni ge ria. Ca hiers de Micro - paléontologie, Cen tre Na tional de la Re cher che Scientifique, 3:

5–38.

Jankowski, L., Ślączka, A., 2014. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000 (in Pol ish): 1–38.

Arkusz Jabłonki (1065). Państwowy Instytut Geologiczny- Państwowy Instytut Badawczy.

Jurewicz, E., Segit, T., 2018. The tec ton ics and stra tig ra phy of the tran si tional zone be tween the Pieniny Klippen Belt and Magura Nappe (Szczawnica area, Po land). Ge ol ogy, Geo phys ics and En vi ron ment, 44: 127–144.

Ken nett, J.P., Stott, L.D., 1991. Abrupt deep-sea warm ing, palaeoceanographic changes and ben thic ex tinc tions at the end of the Palaeo cene. Na ture, 353: 225–229.

Kocsis, L., Ounis, A., Baumgartner, C., Pirkenseer, C., Har ding, I.C., Adatte, T., Chaabani, F., Neili, S.M., 2014. Paleo - cene–Eocene palaeoenvironmental con di tions of the main phosphorite de pos its (Chouabine For ma tion) in the Gafsa Ba - sin, Tu ni sia. Jour nal of Af ri can Earth Sci ences, 100: 586–597.

Kováč, M., Andreyeva-Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, L., Studencka, B., 2007. Badenian evo lu tion of the Cen tral Paratethys Sea: paleogeography, cli mate and eustatic sea-level changes. Geologica Carpathica, 58: 579–606.

Köthe, A., 1990. Paleogene dinoflagellates from north west Ger - many- biostratigraphy and palaeoenvironments. Geologisches Jahrbuch A, 118: 3–111.

Mar tini, E., 1971. Stan dard Ter tiary and Qua ter nary cal car e ous nannoplankton zonation. Pro ceed ings of the 2nd Plank tonic Con fer ence, Roma: 739–785.

Mastella, L., 1995. Tektonika jednostki przeddukielskiej (Bie - szczady) – pro gram KBN nr 600 999101 (in Pol ish). Archiwum Wydziału Geologii Uniwersytetu Warszawskiego.

Mohamed, O., Wagreich, M., 2013. Or ganic-walled dinoflagellate cyst biostratigraphy of the Well Höflein 6 in the Cre ta - ceous-Paleogene Rhenodanubian Flysch Zone (Vi enna Ba sin, Aus tria). Geologica Carpathica, 64: 209–230.

Newman, J.W., Parker, P.L., Behrens, E.W., 1973. Or ganic car bon iso tope ra tios in Qua ter nary cores from the Gulf of Mex ico.

Geochimica et Cosmochimica Acta, 37: 225–238.

NÝhr-Hansen H., 2003. Dinoflagellate cyst stra tig ra phy of the Palaeogene strata from the Hellefisk-1, Ikermiut-1, Kan - gâmiut-1, Nukik-1, Nukik-2 and Qulleq-1 wells, off shore West Green land. Ma rine and Pe tro leum Ge ol ogy, 20: 987–1016.

Oboh-Ikuenobe, F.E., Antolinez-Delgado, H., Awad, W.K., 2017.

Dinoflagellate cysts as sem blages, biostratigraphy and paleo - environment of a Paleocene-Early Eocene sed i men tary suc ces - sion in the north ern Niger Delta Ba sin: com par i son with low, mid and high lat i tude re gions. Palaeo ge ogra phy, Palaeo climatology, Palaeo ec ol ogy, 481: 29–43.

Oszczypko, N., 2004. The struc tural po si tion and tectono sedi - mentary evo lu tion of the Pol ish Outer Carpathians. Przegląd Geologiczny, 52: 780–791.

Oszczypko, N., Ślączka, A., Żytko, K., 2008. Tec tonic sub di vi sion of Po land: Pol ish Outer Carpathians and their foredeep (in Pol ish with Eng lish summary). Przegląd Geologiczny, 56:

927–935.

Pagani, M., Pedentchouk, N.,. Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., Dick ens, G.R., IODP Ex pe di tion 302 Ex pe di tion Sci en tists, 2006. Arc tic hy drol ogy dur ing global warm ing at the Palaeo cene– Eocene ther mal max - i mum. Na ture, 442: 671–675.

Poulsen, N.E., Gudmundsson, L., Hansen, J.M., Husfeldt, Y., 1990. Palynological prep a ra tion tech niques, a new mac er a tion tank-method and other mod i fi ca tions. Geo log i cal Sur vey of Den mark, Se ries C, 10: 1–22.

Powell, A.J., 1992. Dinoflagellate of the Ter tiary Sys tem. In: A Strati graphic In dex of Dinoflagellate Cysts (ed. A.J. Powell):

156–251. Brit ish Micropalaeontological So ci ety Pub li ca tion Se - ries, Chap man and Hall, Lon don.

Powell, A.J., Brinkhuis, H., Bujak, J.P., 1996. Up per Paleo - cene–lower Eocene dinoflagellate cyst se quence biostrati - graphy of south east Eng land. Geo log i cal So ci ety Spe cial Pub li - ca tions, 101: 145–183.

Sánchez-Pellicer, R., Masure, E., Villier, L., 2017. A new biostratigraphic cor re la tion for Late Cre ta ceous–Paleocene strata of the Gulf of Guinea: ev i dence from dinoflagellate cysts.

Comptes Rendus Geoscience, 349: 32–41.

Schouten, S., Woltering, M., Rijpstra, W.I.C., Sluijs, A., Brinkhuis, H., Sinninghe Damsté, J.S., 2007. The Paleocene–

Eocene car bon iso tope ex cur sion in higher plant or ganic mat ter:

dif fer en tial frac tion ation of an gio sperms and co ni fers in the Arc - tic. Earth and Plan e tary Sci ence Let ters, 258: 581–592.

Shcherbinina, E., Gavrilov, Y., Iakovleva, A., Pokrovsky, B., Golovanova, O., Aleksandrova, G., 2016. En vi ron men tal dy - nam ics dur ing the Paleocene-Eocene ther mal max i mum (PETM) in the north east ern Peri-Tethys re vealed by high-res o lu - tion micropalaeontological and geo chem i cal stud ies of a Cau ca - sian key sec tion. Palaeo ge ogra phy, Palaeoclimatology, Palaeo - ec ol ogy, 456: 60–81.

(11)

Sluijs, A., Brinkhuis, H., 2009. A dy namic cli mate and eco sys tem state dur ing the Paleocene-Eocene Ther mal Max i mum: in fer - ences from dinoflagellate cyst as sem blages on the New Jer sey Shelf. Biogeosciences, 6: 1755–1781.

Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S.M., John, C.M., Zachos, J.C., Reichart, G.-J., Sinninghe Damsté, J.S., Crouch, E.M., Dick ens, G.R., 2007. En vi ron men tal pre cur sors to light car bon in put at the Paleocene/Eocene bound ary. Na ture, 450: 1218–1221.

Sluijs, A., Brinkhuis, H., Crouch, E.M., John, C.M., Handley, L., Munsterman, D., Bohaty, S.M., Zachos, J.C., Reichart, G.-J., Schouten, S., Pancost, R.D., Sinninghe Damsté, J.S., Wel - ters, N.L.D., Lotter, A.F., Dick ens, G.R., 2008. Eustatic vari a - tions dur ing the Paleocene-Eocene green house world.

Paleoceanography, 23: 1–18.

Sluijs, A., Bijl, P.K., Schouten, S., Röhl, U., Reichart, G.-J, Brinkhuis, H., 2011. South ern ocean warm ing, sea level and hy dro log i cal change dur ing the Paleocene-Eocene ther mal max i mum. Cli mate of the Past, 7: 47–61.

Steurbaut, E., Magioncalda, R., Dupuis, C., Van Simaeys, S., Roche, E., Roche, M., 2003. Palynology, paleoenvironments, and or ganic car bon iso tope evo lu tion in la goonal Paleocene - -Eocene bound ary set tings in North Bel gium. GSA Spe cial Pa - per, 369: 291–317.

Stiller, M., 1977. Or i gin of sed i men ta tion com po nents in Lake Kinneret traced by their iso to pic com po si tion. In: In ter ac tion Be - tween Sed i ments and Fresh wa ter (ed. H.L. Golterman): 57–64.

Junk, The Hague.

Stover, L,E., Brinkhuis, H., Damassa, S.P., de Verteuil, L., Helby, R.J., Monteil, E., Par tridge, A.D., Powell, A.J., Rid ing, J.B., Smelror, M., Wil liams, G.L., 1996. Chap ter 19. Me so zoic-Ter - tiary dinoflagellates, acritarchs and prasinophytes. Amer i can As so ci a tion of Strati graphic Paly nolo gists Foun da tion, 2:

641–750.

Ślączka, A., 1959. Stra tig ra phy of the Bystra scale (Mid dle Carpa - thians) (in Pol ish with Eng lish sum mary). Biuletyn Instytutu Geologicznego, 131: 203–251.

Świdziński, H., 1953. Karpaty fliszowe między Dunajcem a Sanem (in Pol ish). In: Regionalna Geologia Polski, 1 Karpaty, 2 Tektonika (ed. M. Książkiewicz): 362–422. Polskie Towarzystwo Geologiczne, Kraków.

Świdziński, H., 1958. Mapa Geologiczna Karpat Polskich 1:200,000. Część wschodnia. Prace Instytutu Geologicznego, Warszawa.

Thiry, M., Aubry, M.-P., Dupuis, C., Sinha, A., Stott, L.D., Berggren, W.A., 2006. The Sparnacian de pos its of the Paris Ba sin: d13C iso tope stra tig ra phy. Stra tig ra phy, 3: 119–138.

Thomas, E., Shackle ton, N.J., 1996. The Paleocene-Eocene Ben - thic Foraminiferal Ex tinc tion and Sta ble Iso tope Anom a lies. The Geo log i cal So ci ety Spe cial Pub li ca tions, 101: 401–444.

Thomas, D.J., Zachos, J.C., Bralower, T.J., Thomas, E., Bohaty, S., 2002. Warm ing the fuel for the fire: ev i dence for the ther mal dis so ci a tion of meth ane hy drate dur ing the Paleocene-Eocene ther mal max i mum. Ge ol ogy, 30: 1067–1070.

Tołwiński, K., 1933. Centralna depresja karpacka (in Pol ish).

Geologia i Statystyka Naftowa Polski, 7: 362–366.

Tripati, A., Elderfield, H., 2005. Deep-sea tem per a ture and cir cu la - tion changes at the Paleocene-Eocene Ther mal Max i mum. Sci - ence, 308: 1894–1898.

Tyson, R.V., 1993. Palynofacies anal y sis. In: Ap plied Micro - palaeontology (ed. D.J. Jenkins): 153–191. Kluwer, Dordrecht.

Westerhold, T., Röhl, U., McCarren, H.K., Zachos, J.C., 2009. Lat - est on the ab so lute age of the Paleocene-Eocene Ther mal Max i - mum (PETM): new in sights from ex act strati graphic po si tion of key ash lay ers +19 and –17. Earth Plan e tary Sci ence Let ters, 287: 412–419.

Wil liams, G.L., Bujak, J.P., 1985. Me so zoic and Ce no zoic Dino - flgellates. In: Plank ton Stra tig ra phy (eds. H.M. Bolli, J.B.

Saunders and K. Petch-Niel sen): 847–964. Cam bridge Uni ver - sity Press.

Wil liams, G.L., Brinkhuis, H., Pearce, M.A., Fensome, R.A., Weegink, J.W., 2004. South ern Ocean and global dinoflagellate cyst events com pared: in dex events for the Late Cre ta - ceous–Neo gene. In: Pro ceed ings of the Ocean Drill ing Pro gram (eds. N.F. Exon, J.P. Ken nett and M.J. Malone). Sci en tific Re - sults Vol ume, 189: 1–98.

Wil liams, G.L., Damassa, S.P., Fensome, R.A., Guerstein, G.R., 2015. Wetzeliella and its al lies – the “hole” story: a tax o nomic re - vi sion of the Paleogene dinoflagellate subfamily Wetzeliello - ideae. Palynology, 39: 289–344.

Wil liams, G.L., Fensome, R.A., MacRae, R.A., 2017. DINOFLAJ3.

Amer i can As so ci a tion of Strati graphic Paly nolo gists, Data Se - ries no. 2.

Zachos, J.C., Wara, M.J., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J., Premoli-Silva, I., 2003. A tran - sient rise in trop i cal sea sur face tem per a ture dur ing the Paleo - cene-Eocene Ther mal Max i mum. Sci ence, 302: 1551–1554.

Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., Westerhold, T., 2010. Tempo and scale of late Paleocene and early Eocene car - bon iso tope cy cles: Im pli ca tions for the or i gin of hyperthermals.

Earth and Plan e tary Sci ence Let ters, 299: 242–249.

Żytko, K., Zając, R., Gucik, S., Ryłko, W., Oszczypko, N., Garlicka, I., Nemčok, J., Eliáš, M., Menčik, E., Stránik, Z., 1989. Map of the Tec tonic El e ments of the West ern Outer Carpathians and their Fore land. In: Geo log i cal At las of the West ern Outer Carpathians and their Fore land (eds. D. Popra - wa and J. Nemčok). Pol ish Geo log i cal In sti tute Warszawa, Geo - log i cal Sur vey of Slo vak Re pub lic Bratislava, Czech Geo log i cal Sur vey Praha.

Cytaty

Powiązane dokumenty

The Hi ero glyphic Beds are gen er ally dom i nated by turbidite shale-sand stone de pos its, al though there are ma jor lat eral dif - fer ences in their de vel op ment,

The Up per Cre ta ceous turbidite sand stones of the Godula Beds at Miêdzybrodzie Bialskie, Outer West ern Carpathians, Po - land, yielded a spec i men here in ter preted as

Abstract: The M arkov chains procedure was applied to the study on the sequences o f lithofacies and depositional intervals in the G odula Beds (T uronian-L ow er Senonian) o f

(Silesian Unit; Dźwiniacz G órny Syncline) indicate that deposits above the Zagórz Lim estone chronohorizon represent a continuous section o f early Egerian age. munda

Zmieniająca się w czasie produkcja nannoplanktonu wapiennego i otwornic planktonicznych interpretowana jest jako główna przyczyna występujących w dolnej części

Foraminiferal assemblage from Hantkenina maoris at Bujaków (diagram) Fig.. Test planispiral, involute, cham bers of the last w horl are stellate in arrangem ent,

In all the 'cases reported from the Polish Flysch Carpathians (fig. 1), th e olisthostromes th at originated towairds th e close of the Oligocene appear w ithin

Vertical grading of grain sizes is usually simple, with moderate to poor separation of size grades, while other internal structures are either poorly developed