• Nie Znaleziono Wyników

Natronobiforma cellulositropha gen. nov., sp. nov., a novel haloalkaliphilic member of the family Natrialbaceae (class Halobacteria) from hypersaline alkaline lakes

N/A
N/A
Protected

Academic year: 2021

Share "Natronobiforma cellulositropha gen. nov., sp. nov., a novel haloalkaliphilic member of the family Natrialbaceae (class Halobacteria) from hypersaline alkaline lakes"

Copied!
9
0
0

Pełen tekst

(1)

Natronobiforma cellulositropha gen. nov., sp. nov., a novel haloalkaliphilic member of the

family Natrialbaceae (class Halobacteria) from hypersaline alkaline lakes

Sorokin, Dimitry Y.; Khijniak, Tatiana V.; Kostrikina, Nadezhda A.; Elcheninov, Alexander G.; Toshchakov,

Stepan V.; Bale, Nicole J.; Damsté, Jaap S.Sinninghe; Kublanov, Ilya V.

DOI

10.1016/j.syapm.2018.04.002

Publication date

2018

Document Version

Final published version

Published in

Systematic and Applied Microbiology

Citation (APA)

Sorokin, D. Y., Khijniak, T. V., Kostrikina, N. A., Elcheninov, A. G., Toshchakov, S. V., Bale, N. J., Damsté,

J. S. S., & Kublanov, I. V. (2018). Natronobiforma cellulositropha gen. nov., sp. nov., a novel haloalkaliphilic

member of the family Natrialbaceae (class Halobacteria) from hypersaline alkaline lakes. Systematic and

Applied Microbiology. https://doi.org/10.1016/j.syapm.2018.04.002

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

(2)

Contents lists available atScienceDirect

Systematic

and

Applied

Microbiology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . d e / s y a p m

Natronobiforma

cellulositropha

gen.

nov.,

sp.

nov.,

a

novel

haloalkaliphilic

member

of

the

family

Natrialbaceae

(class

Halobacteria)

from

hypersaline

alkaline

lakes

Dimitry

Y.

Sorokin

a,b,∗

,

Tatiana

V.

Khijniak

a

,

Nadezhda

A.

Kostrikina

a

,

Alexander

G.

Elcheninov

a

,

Stepan

V.

Toshchakov

c

,

Nicole

J.

Bale

d

,

Jaap

S.

Sinninghe

Damsté

d,e

,

Ilya

V.

Kublanov

a,c

aWinogradskyInstituteofMicrobiology,ResearchCentreofBiotechnology,RussianAcademyofSciences,Moscow,Russia bDepartmentofBiotechnology,TUDelft,TheNetherlands

cImmanuelKantBalticFederalUniversity,Kaliningrad,Russia

dDepartmentofMarineMicrobiologyandBiogeochemistry,NIOZNetherlandsInstituteforSeaResearch,andUtrechtUniversity,TheNetherlands eDepartmentofEarthSciencesGeochemistry,FacultyofGeosciences,UtrechtUniversity,Utrecht,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received11March2018

Receivedinrevisedform13April2018 Accepted18April2018 Keywords: Hypersaline Sodalakes Haloalkaliphilic Natronoarchaea Cellulotrophic

a

b

s

t

r

a

c

t

Sixstrainsofextremelyhalophilicandalkaliphiliceuryarchaeawereenrichedandisolatedinpureculture fromsurfacebrinesandsedimentsofhypersalinealkalinelakesinvariousgeographicallocationswith variousformsofinsolublecelluloseasgrowthsubstrate.Thecellsaremostlyflatmotilerodswithathin monolayercellwallwhilegrowingoncellobiose.Incontrast,thecellsgrowingwithcellulosearemostly nonmotilecoccicoveredwithathickexternalEPSlayer.Theisolates,designatedAArcel,areobligate aerobicheterotrophswithanarrowsubstratespectrum.Allstrainscanuseinsolublecelluloses,cellobiose, afewsolubleglucansandxylanastheircarbonandenergysource.Theyareextremehalophiles,growing withintherangefrom2.5to4.8MtotalNa+(optimumat4M)andobligatealkaliphiles,withthepHrange

forgrowthfrom7.5to9.9(optimumat8.5–9).ThecorearchaeallipidsofstrainAArcel5Tweredominated

byC20–C20dialkylglycerolether(DGE)(i.e.archaeol)andC20–C25DGEinnearlyequalproportion.The16S

rRNAgeneanalysisindicatedthatallsixisolatesbelongtoasinglegenomicspeciesmostlyrelatedtothe generaSaliphagus-Natribaculum-Halovarius.Takingtogetherasubstantialphenotypicdifferenceofthe newisolatesfromtheclosestrelativesandthephylogeneticdistance,itisconcludedthattheAArcelgroup representsanovelgenus-levelbranchwithinthefamilyNatrialbaceaeforwhichthenameNatronobiforma cellulositrophagen.nov.,sp.nov.isproposedwithAArcel5Tasthetypestrain(JCM31939T=UNIQEM

U972T).

©2018TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Hypersalinehabitats,suchasinland salt and sodalakes and salterns with salt concentrations close to saturation are usu-ally inhabited by a dense population of haloarchaea, which represent the extremely halophilic branch of the phylum Eur-yarchaeota.Accordingtothecurrentknowledge,haloarchaeaare mostlyaerobicheterotrophs,withafewexceptionsoffacultative anaerobescapableofutilizingsimplesolubleorganicmonomers

∗ Correspondingauthorat:WinogradskyInstituteofMicrobiology,Research Cen-treofBiotechnology,RussianAcademyofSciences,Moscow,Russia.

E-mailaddresses:soroc@inmi.ru,d.sorokin@tudelft.nl(D.Y.Sorokin).

[7,8,1,16,17,6].Afewhaloarchaealspeciesarecapableof

hydrolyz-ingpolymeric substances,suchas starch,proteinsand oliveoil

[3,5,14,19,2].However,thepotentialfunctioning ofhaloarchaea

in themineralization ofinsolubleorganicpolymershasnotyet beenconsideredandthisfunctioninhypersalinehabitatsisusually attributedtohalophilicbacteria[1,16].Inparticular,nexttonothing isknownabouttheabilityofhaloarchaeatoutilizenative insolu-blecelluloseasagrowthsubstrate.Glycosyl-hydrolase(GH)genes encoding putativecellulases havebeennotedinseveral haloar-chaealgenomes and thepresence offunctional endoglucanases weredemonstratedintwogeneraofneutrophilichaloarchaea,i.e. HalorhabdusandHaloarcula[10,11,26].However,itremainstobe investigatedwhetherthesearchaeaareactuallycapableofusing nativeformsofcelluloseasgrowthsubstrates.

https://doi.org/10.1016/j.syapm.2018.04.002

0723-2020/©2018TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

(3)

2 D.Y.Sorokinetal./SystematicandAppliedMicrobiologyxxx(2018)xxx–xxx

Table1

Cellulotrophicnatronoarchaeisolatedfromhypersalinealkalinelakes.

Strain Isolatedfrom: Chemicalparametersofbrines Celluloseformusedin

theenrichment

Lake Area Salt(gl−1) pH Alkalinity(M)

AArcel2 Bitter-1 KulundaSteppeAltai,

Russia

330 10.3 4.0 Amorphous

AArcel4 Sodacrystallizer 380 9.6 3.1 Avicel

AArcel5T Tanatar-1 400 11.0 4.9 Sigma20␮m

AArcel9 Mixedfrom3lakes 330–400 9.6–11.0 3.1–4.9 Filterpaper

AArcel6 Shar-Burdiin,Hotontyn n-eMongolia 220–360 9.6–9.9 0.9–1.2 Amorphous

AArcel8-1 Owenslake California 180 9.7 1.0 Amorphous

Sofar,asinglestudyfocusedonthefunctionalaspectofcellulose degradationbyhaloarchaeahasbeenpublished[22].Inthatwork, forthefirsttimewewereabletoenrichandisolateinpureculture anumberofhaloarchaealstrainsutilizingcelluloseasthegrowth substrate.Oneofthemostactivegroupsincludedsix natronar-chaealisolatesfromvariousalkalinehypersalinelakeswhich,to ourknowledge,representthefirstexampleofnatronoarchaeawith suchametabolictrait.Thispaperdescribesphenotypicand phylo-geneticpropertiesofthenovelgroupandproposestoassignitinto anovelgenusandspeciesNatronobiformacellulotropha.

Materialandmethods

Samples

Surfacesedimentsandnear-bottombrinesfromvarious hyper-salinealkalineinlandlakesfromCentralAsia,EgyptandUSAwith saltconcentrationof200–400gl−1,pHfrom9.3to11and solu-blecarbonatealkalinityfrom0.1to4Mwereusedtoenrichfor cellulotrophicnatronoarchaea[22].

Enrichment,isolationandcultivationconditions

Thealkaline(pH9.5)basemedium,containing4MtotalNa+(2M

Na+assodiumcarbonates+2MNaCl)alsoincluded1gl−1K2HPO4

and5g/lKClandwassupplementedaftersterilizationwith1mll−1 oftracemetalsolutionandvitaminmix[18],1mMMgCl2,2mM

(NH4)2SO4and20mgl−1ofyeastextract.Additionof200mgl−1of

streptomycinservedtoinhibitgrowthofbacteria.Variousforms ofinsolublecellulosewereusedastheonly carbonand energy sourceatafinalconcentrationof1gl−1 (Table1).Before inocu-lation,thesedimentswereresuspended1:10inthebasicmedium andafter5–10minprecipitationofthecoursefractions,a1ml por-tionfromthetopfractioncontainingmostlycolloidalsediments andmicrobialcellswasusedtoinoculate20mlculturesin100ml closedserum bottles placed ona rotary shaker at37◦C and at 120rpm.Thedevelopmentof cellswasmonitoredbythevisual extentofcellulosedegradation,appearanceofpinkcolorandby microscopy.Aftervisiblecellulosedegradationandbiomassgrowth becameevident(20–40days),thecultureswereseriallydilutedin thesamemediumbutwithamorphouscelluloseassubstrateand themaximalpositivedilutionswereplatedontoasolidmedium preparedbymixing3partsoftheliquidmedium(withadditional solidNaCladditiontocompensatefordilutionwithagar) and2 partsof5%extensivelywashedagarat55◦C.After2–6weeksof incubationinclosedplasticbagsat37◦Cthecolonieswith clear-ancezonesweretransferredtotheliquidmediawithamorphous celluloseandthepositivecultureswerefurtherpurifiedby sev-eralroundsofplating-liquidculturecultivationwithamorphous cellulose.This,eventually,resultedinisolationof6purecultures ofcellulotrophicnatronoarchaeawitha commondesignationas AArcel(Table1).Thepuritywascheckedmicroscopically(Zeiss

AxioplanImaging2microscope,Göttingen,Germany)andbythe 16SrRNAgenesequencing.

Phenotypiccharacterization

Forthetotalcellelectronmicroscopy,thecellswerecentrifuged andresuspendedin3MNaCl,fixedwithparaformaldehyde(final concentration3%,v/v)for2hatroomtemperature,thenwashed againwiththesameNaClsolutions.Thefixedcellswerepositively contrastedwith1%(w/v)uranylacetate.Forthinsectioning,thecell pelletswerefixedin1%(w/v)OsO4containing3.0MNaClfor1week

at4◦C,washedand resuspendedin3MNaCl,stainedovernight with1%(w/v)uranylacetate,dehydratedinethanol series,and embeddedinEponresin.Thinsectionswerepost-stainedwith1% (w/v)leadcitrate.

Thecoremembranelipidswereobtainedbyacidhydrolysis(5% HClinmethanolbyrefluxfor3h)ofthefreeze-driedcellsand sub-sequentanalysisbyHPLC-MSforGDGTsandarchaeolderivatives accordingto[24].IntactpolarlipidswereobtainedbyBlighDyer extractionoffreeze-driedcellsandsubsequentHPLC-MSanalysis asdescribedinRef.[20].

Genomesequencing

FragmentgenomiclibrariesofstrainsAarcel5TandAarcel2were

preparedby NEBNext® UltraTM kit (NewEngland Biolabs, USA)

accordingtothemanufacturer’sinstructionsandsequencedon Illu-minaMiseqTM Systemusing2*150bppaired-endreadcartridge.

PreliminaryassemblyandgenepredictionwasperformedbyCLC GenomicsWorkbench10.5(Qiagen,Germany)withrecommended parameters.Draftgenomeassemblieswereusedonlyforobtaining 16SrRNAandrpoBgenesequencesandwillbepublisheduponthe improvementofassembliesbysequencingoflonginsert(jumping) genomiclibraries.

Phylogeneticanalysis

16SrRNAandrpoB genesequenceswereextractedfromthe draft genome assemblies and deposited in the Genbank under theaccessionnumbers:(MG938052-MG938053for16SrRNAand MG940906andMG940907forrpoBgenesofstrainsAArcel5and AArcel2,respectively).

Toperform16SrRNAgenesequence-basedphylogenetic analy-sis,thesequencesofalltypespeciesoftheNatrialbaceaegenera were obtained from the Genbank and aligned together with completesequencesof strainsAArcel5T and AArcel2andnearly

completesequencesofstrainsAArcel9andAArcel8-1inMuscle, implementedinMega6package[23].Thephylogeneticanalysis wasperformedinMega6usingMaximumLikelihoodalgorithm andtheGeneralTimeReversible(GTR)model(G+I,4categories)

(4)

Fig.1. CellmorphologyofstrainAArcel5growingonamorphouscelluloseatpH9.5,4MtotalNa+and37C.(a)colonies;(b)phasecontrastand(c)electronmicroscopyof thinsectionsofcellsduringabsorptionphaseoncellulose;(d)electronmicroscopyofthinsectionsand(e)andwholefreesuspendedcellsfromthesecondgrowthphaseon cellulose.

AArcel5sequenceandwerenotanalyzedbutplacedonthetree togetherwiththetypestrain.

ToperformtherpoB’-basedphylogeneticanalysis,full-length nucleotidesequencesoftherpoB’ geneoftypespeciesfromthe NatrialbaceaewereobtainedfromGenBank or IMGand aligned usingtheG-INS-imethodinMAFFTserverv7[9].Phylogenetictree wasconstructedinMega6usingMaximumLikelihoodalgorithm withGTRmodel(G+I,4categories.Forphylogenyreconstruction basedonRpoBproteins,thenucleotidesequencesweretranslated, alignedinMAFFTserverv7usingtheG-INS-ialgorithm,andthetree wasconstructedusingMaximumLikelihoodalgorithmwiththeLG model.ToestimatetherpoBgenedistancesofallvalidlypublished Natrialbaceaerepresentatives,thepairwisedistancesmatrixbased onpercentageofsequenceidentitieswasconstructedusingMega 6.

Resultsanddiscussion

Phenotypicproperties

Onplateswithamorphouscellulose,allstrainsformedpin-point pinkcoloniesafter4–6weeksincubationwitha largeclearance aroundthem,indicativeofcellulosehydrolysis(Fig.1a).Growth inliquidculturewithallformsofcellulosesstartedwithamassive attachmentofcellstothesolidphasecellulosesurface,followedby gradualdissolutionofcelluloseandappearanceofcellsinthe liq-uidphase.Adramaticchangeincellmorphologywasobservedin thosetwophases.Thecellsaggregatedwiththecelluloseparticles werenon-motilecocci(Fig.1b)coveredwithathickelectrondense externallayer(Fig.1c),whilethefreesuspendedcellsinthesecond growthphaseweredominatedbymotilethinflatrodswithathin

(5)

4 D.Y.Sorokinetal./SystematicandAppliedMicrobiologyxxx(2018)xxx–xxx 0 10 20 30 40 50 60 70 80 90 100 7 7.5 8 8.5 9 9.5 10 10.5 final pH ) m u mi x a m f o %( et ar ht w or G 0 10 20 30 40 50 60 70 80 90 100 2 2.5 3 3.5 4 4.5 5 total Na+ (M) ) m u mi xa m f o %( et ar ht w or G

a

b

Fig.2.InfluenceofpHat4MtotalNa+(a)andNa+atpH9(b)ongrowthofstrainAArcel5withcellobioseat37C.Theresultsaremeanvaluesfromtwobiologicalreplicate experiments.

cellwall(Fig.1d,e).Thecellsinthecoloniesresembledthecoccoid cellsfromthefirstphaseinliquidcultures,whilethecellsgrownon cellobioseinliquidcultureweresimilartothosefromthesecond growthphaseoncellulose.

Thepolarmembranelipidswereanalyzedin thetype strain AArcel5T grown withcellobiose at37C. 4Mtotal Na+ and pH

9.3 harvested in the mid-exponential growth phase. The core membrane lipids were represented by two dominant compo-nents:archaeol(C20–C20dialkylglycerolether(DGE),58%ofthe

total) and extended archaeol (C20–C25 DGE, 40% of the total).

Tracesofthemonoglycerolether(MGE)lipids(1-C20MGE,2-C20

MGE,and2-C25MGE)werealsodetected.Theintactpolarlipids

were dominated (in order of abundance) by phosphatidylglyc-erophosphatemethylester(PGP-Me),phosphatidylglycerol(PG),a phosphatidylglycose(GL-PG),adiglycosyl(2GL),and phosphatidyl-glycerophosphate(PGP)(SupplementaryFig.S1).

TheAArcelstrainsareobligatelyaerobicsaccharolyticarchaea withalimitedrangeofsubstratessupportinggrowth.Theyarethe firstnatronoarchaeareportedasbeingspecializedintheutilization ofnativeinsolublecelluloses(buttheycannotuseanartificial sol-ubleanaloguecarboxymethylcelluloseCMC)[22].Allstrainscan growwithxylan(frombirchandbeech)andbarleybeta-glucan. AArcel strains2, 4, and 5 also utilized lichenan, glucomannan and ␤-1,4-mannan, but growth was much slower. Amorphous chitinalso seemstobe a substratefor these 3strains, but the growthwasunstable:thetransitionfromcellulosetochitinwas onlyrandomlysuccessful,failingonmanyoccasions.Apparently growthonthispolymerisnotoptimalforthesearchaea. Alpha-glucans,suchasstarchandstarch-likepolymers,werenotutilized. Amongthesugars,onlytwodimerswereused—cellobioseand maltose(lessactively).Sugarsnotutilizedincluded:glucose, fruc-tose,galactose,mannose,rhamnose,arabinose,raffinose,sucrose, trehalose,maltose,glucosamin,N-acetylglucosamine,glucouronic acid,halacturonicacid,lactose,ribose,xylose,melezitoseand meli-biose. Sugar alcohols which tested negative included glycerol, sorbitolandmannitol.NegativeorganicacidswereC2–C8saturated

fattyacids,lactate,pyruvate,succinate,malateandfumarate.The organicnitrogencompoundsnotutilizedwereglutamate, aspar-tatemeatandcaseinpeptonsandyeastextract.Ammoniumwas utilized as the N-source with cellobiose as carbon and energy substrate,while nitrateand ureawerenegative. Anaerobic fer-mentativegrowth witharginine,cellobiose or maltose wasnot observed,norwasanaerobicrespiration(with cellobioseasthe electrondonor)withnitrate,sulfur,fumarateorDMSOaselectron acceptors.

Thesearchaeabelongtothegroupofextremehalophiles, grow-ingoptimallyat4MtotalNa+(Fig.2a)andaremoderatealkaliphiles

withapHoptimumaround9(Fig.2b).Itisimportanttostressthat, whenworkingwithalkaliphiles,thepHprofilingshouldbe per-formedwithanobligatorycheckofthepHchangeduringgrowth

[21].Forthisparticulargroupofnatronoarchaeamineralizing sug-arsandproducingmetabolicacids,weobservedadropofthepH from11to9.5evenwhenusingahighlybufferedsodiumcarbonate system.Inourexperience,ifanatronarchaeonisgrowingatpH6 itwillnotgrowatpH10,whichleadstotheimpressionthatinthe case,forexample,ofNatribaculumbreve,thefinalpHcheckatthe highestpHrangewasnotperformed[12].ThetypestrainAArcel5T

grewwithinarelativelywidetemperaturerangefrom20to53◦C withanoptimumat40◦C.However,itshouldbementionedthat thegrowthathightemperature(above43◦C)wasonlypossibleat thelowestgrowthpH(8.5).Themostprobableexplanationisthat acombinationofhightemperatureandhighalkalinityresultsin instabilityofthehaloarchaealS-layer.

Phylogeneticanalysis

Theresultsof16SrRNAgenesequenceanalysisdemonstrated that the AArcelisolates formed a separate, single species-level groupwithinthefamilyNatrialbaceaewitharecentlydescribed neutrophilicSaliphagusinfecundisoliastheclosestrelative(Fig.3a). StrainAArcel2 wasmostremote from thetype strainAArcel5T

(99.1%ofsequenceidentity),butstillwithinthecurrently recog-nizedspeciesborder.CalculatedoftheAverageNucleotideIdentity (ANI)betweenthesetwogenome-sequencedstrainsgaveavalue closetothestatisticallyaveragespeciesborder(95%).Takinginto accountpracticallyidenticalphenotypes,itcanbeconcludedthat allsixAArcelcellulotrophicisolatesbelongtoasinglespecies.

Anothermarker,widelyusedforphylogeneticreconstructions ofHalobacteria,istheRNA-polymerasesubunitB gene[13].The phylogenetictrees basedoncomparativeanalysisof rpoB gene andRpoBproteinsequencesofthetypespeciesfromNatrialbaceae revealedthatAArcel5T andAArcel2formedabranchpositioned

separatelyfromthecloselyrelatedgenera(Fig.3b,c).TherpoBgene sequencesofAArcel5andAArcel2strainswere92.2%similartoeach otherandhad82.5–88.8%identitywiththemembersof Natrial-baceae(SupplementaryTableS1andFig.S2).Phylogeneticanalysis oftherpoB’-geneofallvalidlypublishedNatrialbaceaewasdoneto revealallinter-andintra-genusclustering(SupplementaryFig.S2). ItshowedthatonlyHalovivax,Halostagnicola,Natrialba, Natrono-coccus,SaliphagusandSalinarchaeumgeneraformedmonophyletic clusters. These genera are similar to AArcel5T-AArcel2 in the

intrageneric/intergenericdistances,calculatedbasingonthe per-centageofsequenceidentities(SupplementaryTableS1):Halovivax 89.9–97.8%/82.4–89.6%;Halostagnicola94.4%/81.2–89%;Natrialba

(6)

Fig.3.PhylogenyoftheAArcelstrains.(a)MaximumLikelihood16SrRNAgenesequence-basedphylogenetictreeshowingpositionoftheAArcelstrains(inbold)withinthe familyNatrialbaceae.Branchlengths(seescale)correspondtothenumberofsubstitutionspersitewithcorrections,associatedwiththemodel(GTR,G+I,4categories).All positionswithlessthan95%sitecoveragewereeliminated.Totally1359positionswereusedinthealignmentof32sequences(exceptforthepartialAArcel4andAArcel6 sequences,100%identicaltoAArcel5T).Numbersatnodesindicatebootstrapvaluesof1000repetitions.HalomarinaoriensisstrainJCM16495(AB663390.1)wasusedas anoutgroup.(b)MaximumLikelihoodrpoB’genesequence-basedtreeshowingpositionoftheAArcel2andAArcel5strains(inbold)withinfamilyNatrialbaceae.Totally 1827positionswereusedinthealignmentof18sequences.HalomarinaoriensisJCM16495(KJ870934.1)wasusedasanoutgroup.(c):MaximumLikelihoodRpoB’protein sequence-basedtreeshowingpositionAArcel2andAArcel5strains(inbold)withinthefamilyNatrialbaceae.Totally608positionswereusedinthealignmentof18sequences. HalomarinaoriensisJCM16495(KJ870934.1)wasusedasanoutgroup.SequenceswithaccessionnumbersinitalicwereobtainedfromIMG,inroman–fromtheGenbank.

(7)

6 D.Y.Sorokinetal./SystematicandAppliedMicrobiologyxxx(2018)xxx–xxx

Table2

ComparativepropertyofcellulotrophicnatronoarchaeawiththenearestphylogeneticrelativesinNatrialbaceae:Saliphagusinfecundisoli[25],Natribaculumbreve[13]and Halovivaxasiaticus[4].PGP-Me–phosphatidylglycerophosphatemethylester;PG–phosphatidylglycerols;GL-PG–phosphatidylglycose;2GL–diglycosyl;PGS– phos-phatidylglycerolsulfate;PGP–phosphatidylglycerophosphate;GL–glycolipid;PL–phospholipid;glycolipids:TGD-1(galactosylmannosylglucosyldiether),S2-DGD (disulfatedmannosylglucosyldiether).Antibiotics:s,streptomycin;k,kanamycin;a,ampicillin;t,tetracyclin;v,vancomycin;g,gentamycin;r,rifampicin;.e,erythromycin, c,chrolarmphenicol.

Property “Natronobiforma

cellulositropha”(6strains)

Saliphagusinfecundisoli Natribaculumbreve Halovivaxasiaticus

Cellmorphology Thinflatmotilerodson

cellobiose;cocciwiththickcell

walloncellulose

Cocci Motilepleomorphic

rods

Pleomorphic

nonmotile,fromrods

todiscs

Pigmentation Pink Pink Red Pale-pink

Anaerobicgrowth -(Withcellobioseassubstrate) – Contradictorya

Growthsubstrates:

Polymers Insolublecellulose,xylane, chitin(3strains),␤-1,4glucans andmannan

Starch,dextrin Starchb,gelatin

hydrolysis

Proteolyticc

Sugars Cellobiose,maltose Glucose,mannose,

raffinose,sucrose, trehalose

Glucose Lactose,raffinose, xylose,trehalose

Aminoacids – Glutamate,aspartate,

ornithine,lysine

Organicacids – Pyruvate,succinate Pyruvate Acetate

Esteraseactivity – Tween-20 – Tween-80

Catalase/oxidase +/+ +/+ +/Weak Antibioticresistance s,k,a,t,v,g,e,p (50–100mgl−1)r,c (<50mgl−1) a,v,g,e,c,p(discs) s,k,a,t,v,g,e,c,p,r (discs) s,k,a,t,v,g,e,c,p (discs)

Salinityrange(opt.)MNa+ 2.5–4.8(4.0) 2–6(2.5–3.0) 0.9–5.1(2.6) 1.6–4.8(2.5)

Mgrequirement Low Low Low Low

pHrange(opt.) 7.5–9.9(8.5–9.0) 6.0–8.5(7.0–7.5) 6.0–10e(7.0–7.5) 6.5–8.5

Temperature(◦C) 18–53d(opt.43) 25–50(opt.37) 30–62(opt.37) 25–45(opt.37)

Corelipids C20–C20,C20–C25 nd nd C20–C20,C20–C25

Polarlipids PG,PGP-Me,GL-PG,2GL,PGP PG,PGP-Me,PGS,three GL PG,PGP-Me,TGD-1, S2-DGD PG,PGP-Me,twoPL, fourGL G+C,mol% 65.4–65.5 64.4 63.9 60.3

Habitat Hypersalinealkalinelakes (s–wSiberia,n–eMongolia, California)

Salinesoil(China) Salinesoil(China) Hypersalinelake(Inner Mongolia)

nd–nodata.

aItisstatedthatitgrowsanaerobicallywithnitrate,andnextthatitcannotreducenitratetonitriteornitritetoN 2. b Sincethisorganismdidnotutilizemaltose,itscapabilitytogrowwithstarchisquestionable.

c Growthonpolymerswasnotinvestigated. d AtpH8.5.

eThefinalpHisnotmeasured,thehighpHlimitisnotjustified.

Table3

Natronobiformacellulositropha:protologue.

Parameter Genus:Natronobiformagen.nov. Species:Natronobiformacellulositrophasp.nov.

Datecreated 2018-03-04 2018-03-04

Taxonnumber(TXNR) TA00433 TA00433

Author(AUTE) DimitryY.Sorokin

Speciesname(SPNA) Natronobiformacellulotropha

Genusname(GENA) Natronobiforma

Specificepithet(SPEP) “Cellulotropha”fromNatronobiformacellulotropha

Speciesstatus(SPST) sp.nov.

Etymology(GETY/SPTY) Natronobiforma(Na.tro.no.bi.for’maGr.

neutraln.natron,arbitrarilyderivedfromthe

Arabicn.natrunornatron,soda;L.adv.num.

bis,twice;L.fem.n.forma,form,shape;N.L.

fem.n.Natronobiforma,thedimorphic

natronoarchaeon

Cellulositropha(cel.lu.lo.si.tro’phaN.L.n.cellulosum,cellulose;

N.L.fem.n.fromGr.n.fem.trophê,nourishment,food;N.L.

fem.adj.cellulositropha,utilizerofcellulose)

Authors(AUT) DimitryY.Sorokin,TatianaV.Khijniak,NadezhdaA.Kostrikina,AlexanderG.Elcheninov,StepanV.

Toshchakov,NicoleJ.Bale,JaapS.SinningheDamstéd,IlyaV.Kublanov

Title(TITL) Natronobiformacellulotrophagen.nov.,sp.nov.,anovelhaloalkaliphilicmemberofthefamilyNatrialbaceae

(classHalobacteria)fromhypersalinealkalinelakes

Journal(JOUR) SystematicandAppliedMicrobiology

Correspondingauthor(COAU). DimitryY.Sorokin

E-mailofcorrespondingauthor(EMAU) d.sorokin@tudelft;soroc@inmi.ru

Designationofthetypestrain(TYPE) AArcel5

Straincollectionnumbers(COLN) JCM31939;UNIQEMU972

16SrRNAgeneaccessionnumber(16SR) KT247980

Alternativehouse-keepinggenes:gene [accessionnumbers](HKGN)

rpoB[MG940906]

Genomestatus(GSTA) Draft

GCmol%(GGCM) 65.4–65.5(genomesofAArcel5TandAArcel2)

(8)

Table3(Continued)

Regionoforigin(REGI) Altairegion

Dateofisolation(DATI) 2013-08-15

Sourceofisolation(SOUR) Surfacesedimentsandbrinesofhypersaline

alkalinelakes

SurfacesedimentsfromhypersalinesodalakeTanatar-1

Samplingdates(DATS) 2013-07-07

Geographiclocation(GEOL) SouthSiberia,N–EMongolia,California S–WSiberia,KulundaSteppe

Latitude(LATI) 51◦39N

Longtitude(LONG) 79◦48E

Depth(DEPT) 0.1m

Temperatureofthesample(TEMS) 25◦C

pHofthesample(PHSA) 11.0

Salinityofthesample(SALS) 40%

Numberofstrainsinstudy(NSTR) 6

Sourceofisolationofnon-typestrains(SAMP) HypersalinealkalinelakesinRussia,MongoliaandCalifornia

Growthmedium,incubationconditions(CULT) Alkalinemedimcontaining4MNa+withpH

9–9.5andcelluloseassubstrate

4MtotalNa+,equalmixofsodiumcarbonateandNaClonthe

basisofNamolarity,pH9.5;incubation–37◦C;amorphous

celluloseorcellobioseasCandenergysource

Conditionsofpreservation(PRES) Deepfreezingin15%glycerol(v/v)

Gramstain(GRAM) Negative

Cellshape(CSHA) Pleomorphic,fromflatmotilerodstononmotilecoccoidcells

Cellsize(CSZI) 0.5–0.8␮mindiameter,lengthisvariable

Motility(MOTY) Motile

Motilitytype(MOTK) Flagellar

Typeofflagellation(TFLA) Variable,fromsinglesubpolartoseveralperetrichousflagella

Sporulation(SPOR) None

Colonymorphology(COLM) Pink,upto2mm

Temperaturerangeforgrowth(TEMR) 20–53◦C

Lowesttemperatureforgrowth(TEML) 20

Highesttemperatureforgrowth(TEMH) 53

Optimaltemperatureforgrowth(TEMO) 43

LowestpHforgrowth(PHLO) 7.5

HighestpHforgrowth(PHHI) 9.9

OptimumpHforgrowth(PHOP) 9.0

pHcategory(PHCA) Alkaliphile(optimum>8.5)

LowestNaClconcentrationforgrowth(SALL) 2.5

HighestNaClconcentrationforgrowth(SALH) 4.8

Optimumsaltconcentrationforgrowth(SALO) 4.0

Othersaltsimportantforgrowth Sodiumcarbonates

Salinitycategory(SALC) Extremehalophilic(optimum&gt;15%NaCl)

Relationtooxygene(OREL) Aerobe

O2conditionsforstraintesting(OCON) Aerobic

Carbonsourceused(class)(CSUC) Carbohydrates

Specificcompounds(CSUC) Cellulose,xylan,mannan,cellobiose,maltose

Nitrogensource(NSOU) Ammonium

Terminalelectronacceptor(ELAC) O2

Energymetabolism(EMET) Chemoorganotrophic

Phospholipids(PHOS) Coremembranelipidsarearchaeol(C20–C20

DGE)andC20–C25DGEinequalproportion

Phosphatidylglycerophosphatemethylester(PGP-Me),

phosphatidylglycerol(PG),phosphatidylglycerolsulfate(PGS)

andphosphatidylglycerophosphate(PGP)

Glycolipids(GLYC) Phosphatidylglycose(GL-PG),diglycosyl(2GL)

Habitat(HABT) Hypersalinealkalinelakes

Extraordinaryfeautres(EXTR) Growthwithnativeinsolublecellulose Fastgrowthwithinsolublenativecelluloses;morethan30GH

glucosyl-hydrolasesgenesinthegenome

88.6–98.6%/82–89%;Natronococcus91.4–93%/82.4–90.8%; Salipha-gusnd/81.5–87.1%andSalinarchaeum92.4%/80.2–85.1%.

Furthermore,phenotypiccomparisonshowsaclear physiolog-icaldifferentiationof theAArcelisolatesfromthe threeclosest relativesinNatrialbaceae(Table2).

Inconclusion,thesixAArcelstrainsisolatedfromhypersaline alkalinelakesrepresentafirstexampleofnatronoarchaea special-izedinutilizationofnativeinsolublecellulosesasgrowthsubstrate. Takingintoaccounttheiruniquephenotypicpropertiesandthe phylogeneticdistances(basedontwoconservativephylogenetic markers)fromthenearestgenerainNatrialbaceae,weproposeto classifythegroupasanovelgenusandspeciesNatronobiforma cel-lulotrophawithstrainAArcel5asthetypestrain.Thenovelgenus andspeciesprotologue(diagnosis)isprovidedinTable3.

Funding

ThisworkwassupportedbytheRussianScienceFoundation (grant 16-14-00121) and by the Russian Academy of Sciences

and Federal Agency of Scientific Organizations (project 0104-2018-0033).ThisprojectalsoreceivedfundingfromtheEuropean ResearchCouncil(ERC)undertheEuropeanUnion’sHorizon2020 researchandinnovationprogram(grantagreementNo.694569– MICROLIPIDS).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttps://doi.org/10.1016/j.syapm.2018.04.

002.

References

[1]Andrei,A.S.,Banciu,H.L.,Oren,A.(2012)Livingwithsalt:metabolicand phy-logeneticdiversityofarchaeainhabitingsalineecosystems.FEMSMicrobiol. Lett.330,1–9.

[2]Amoozegar,M.A.,Siroosi,M.,Atashgahi,S.,Smidt,H.,Ventosa,A.(2017) Sys-tematicsofhaloarchaeaandbiotechnologicalpotential oftheirhydrolytic enzymes.Microbiology163,623–645.

(9)

8 D.Y.Sorokinetal./SystematicandAppliedMicrobiologyxxx(2018)xxx–xxx [3]Bhatnagar,T.,Boutaiba,S.,Hacene,H.,Cayol,J.-L.,Fardeau,M.-L.,Ollivier,B.,

Baratti,J.C.(2005)LipolyticactivityfromHalobacteria:screeningandhydrolase production.FEMSMicrobiol.Lett.248,133–140.

[4]Castillo,A.M.,Gutiérrez,M.C.,Kamekura,M.,Ma,Y.,Cowan,D.A.,Jones,B.E., Grant,W.D.,Ventosa,A.(2006)Halovivaxasiaticusgen.nov.,sp.nov.,anovel extremelyhalophilicarchaeonisolatedfromInnerMongolia,China.Int.J.Syst. Evol.Microbiol.56,765–770.

[5]Enache,M.,Kamekura,M.(2010)Hydrolyticenzymesofhalophilic microor-ganismsandtheireconomicvalues.Rom.J.Biochem.47,47–59.

[6]Grant,B.D.,Jones,B.E.(2016)Bacteria,archaeaandvirusesofsodalakes.In: Schagerl,M.(Ed.),SodalakesofEastAfrica,Springer,Switzerland,pp.97–147.

[7]Halophilesandhypersalineenvironments.Currentresearchandfuturetrends. Ventosa,A.,Oren,A.,Ma,Y.(Eds.)(2011)Springer,Heidelberg,Dordrecht, Lon-don,NewYork,387pp.

[8]Halophiles,PartIII.In:ExtremophilesHandbook,Horikoshi,K.(Ed.)(2011)vol. 1,Springer,Tokyo,pp.255–402.

[9]Katoh,K.,Rozewicki,J.,Yamada,K.D.(2017)MAFFTonlineservice:multiple sequencealignment,interactivesequencechoiceandvisualization.Brief. Bioin-form,bbx108.

[10]Li,T.X.,Yu,H.-Y.(2013)Halostablecellulasewithorganicsolventtolerance fromHaloarculasp.LLSG7anditsapplicationinbioethanolfermentationusing agriculturalwastes.J.Ind.Microbiol.Biotechnol.13,1357–1365.

[11]Li,X.,Yu,H.-Y.(2013)Characterizationofahalostableendoglucanasewith organicsolvent-tolerantpropertyfromHaloarculasp.G10.Int.J.Biol. Macro-mol.62,101–106.

[12]Liu,Q.,Ren,M.,Zhang,L.-L.(2015)Natribaculumbrevegen.nov.,sp.nov.and Natribaculumlongumsp.nov.,halophilicarchaeaisolatedfromsalinesoil.Int. J.Syst.Evol.Microbiol.65,604–608.

[13]Minegishi,H.,Kamekura,M.,Itoh,T.,Echigo,A.,Usami,R.,Hashimoto,T.(2011) FurtherrefinementofthephylogenyoftheHalobacteriaceaebasedonthe full-lengthRNApolymerasesubunitB(rpoB)gene.Int.J.Syst.Evol.Microbiol.60,

2398–2408.

[14]Moshfegh,A.R.M.,Shahverdi,G.,Zarrini,M.A.(2013)FaramarziBiochemical characterizationofanextracellularpolyextremophilic␣-amylasefromthe halophilicarchaeonHalorubrumxinjiangense.Extremophiles17,677–687.

[15]Nei,M.,Kumar,S.2000MolecularEvolutionandPhylogenetics,Oxford Univer-sityPress,NewYork.

[16]Oren,A.(2015)Halophilicmicrobialcommunitiesandtheirenvironments. Curr.Opin.Biotechnol.33,119–124.

[17]Oren,A.(2013)Lifeathighsaltconcentrations.In:Rosenberg,E.,etal.(Eds.), TheProkaryotes.EcophysiologyandBiochemistry,4thed.,Springer,NewYork, pp.429–440.

[18]Pfennig,N.,Lippert,K.D.(1966)ÜberdasVitaminB12-Bedürfnisphototropher Schwefelbakterien.Arch.Mikrobiol.55,245–256.

[19]Selim,S.,Hagagy,N.,Azis,M.A.,Meleigy,T.S.,Pessione,E.(2014)Thermostable alkalinehalophilic-proteaseproductionbyNatronolimnobiusinnermongolicus WN18.Nat.Prod.Res.28,1476–1479.

[20]SinningheDamsté,J.S.,Rijpstra,W.I.C.,Hopmans,E.C.,Jung,M.Y.,Kim,J.G. (2012)Intactpolarandcoreglyceroldibiphytanylglyceroltetraetherlipids ofgroupI.1aandI.1bThaumarchaeotainsoil.Appl.Environ.Microbiol.78, 6866–6874.

[21]Sorokin,D.Y.(2005)Istherealimitforhigh-pHgrowth?Int.J.Syst.Evol. Micro-biol.55,1405–1406.

[22]Sorokin, D.Y., Toschakov, S.V., Kolganova, T.V., Kublanov, I.V. (2015) Halo(natrono)archaeisolatedfromhypersalinelakesutilizecelluloseandchitin asgrowthsubstrates.Front.Microbiol.6,article942.

[23]Tamura,K.,Stecher,G.,Peterson,D.,Filipski,A.,Kumar,S.(2013)MEGA6: molecular evolutionary geneticsanalysisversion 6.0. Mol.Biol. Evol.30, 2725–2729.

[24]Weijers,J.W.H.,Panoto,E.,vanBleijswijk,J.,Schouten,S.,Balk,M.,Stams,A.J.M., Rijpstra,W.I.C.,SinningheDamsté,J.S.(2009)Constraintsonthebiological source(s)oftheorphanbranchedtetraethermembranelipids.Geomicrobiol.J. 26,402–414.

[25]Yin,X.-Q.,Liu,B.-B.,Chu,X.,Salam,N.,Li,X.,Yang,Z.-W.,Zhang,Y.,Xiao,M.,Li, W.-J.(2018)Saliphagusinfecundisoligen.nov.,sp.nov.,anextremelyhalophilic archaeonisolatedfromasalinesoil.Int.J.Syst.Evol.Microbiol.67,4154–4160.

[26]Zhang,S.,Datta,J.,Eichler,N.,Ivanova,S.D.,Axen,C.A.,Kerfeld,E.(2011)Rubin Identificationofahaloalkaliphilicandthermostablecellulosewithimproved ionicliquidtolerance.GreenChem.13,2083–2090.

Cytaty

Powiązane dokumenty

Tomasza i etyki chronienia osób rozśw ietlił blask intelektów osób prezentujących w ersje etyki zaw odow ej.. To była zdum iew ająca sesja także dlatego, że poglądy

Język hermetyczny, nauko­ wy język teologii dosyć daleko odbiega od popularnego słownictwa, którym posługują się wierni na co dzień w kontaktach między sobą, a także w

High-resolution damage data for a rubble mound breakwater, resulting from 3D physical model tests at FEUP, and 2D tests at LNEC, was presented and analysed.. A sufficiently

In this study materials containing a micron-size conductive dispersion of 24 vol.% of niobium carbide in a sub-micron-size matrix of zirconia toughened alumina containing 17 vol.% of

Le pluriel conte- nu dans le sous-titre de l’ouvrage annonce déjà la perspective adoptée par Milne : il s’agit à la fois de l’espace comme objet de discours (évoqué à

Bardzo nieprzezom ie pow tarza autor za O rzelskim (recte Spasow iczem ), że „senatorow ie [zostali] pom nożeni o osobę i poczet kasztelana biechow skiego”

przez Ojców Kościoła położyło fundament pod jednakową ocenę moralną czynów jemu przeciwnych przez teologów i kanonistów średniowiecznych. Wypada wskazać kilka

kowa, Warszawa 1975) streścić można następująco: l)cz!owickicm można stać się poprzez artykulację swego stosunku do natury; 2) artykulacja ta jest możliwa dzięki scalaniu w