• Nie Znaleziono Wyników

Demountable construction: Analysis of the behaviour of a 1:5 scale floor bay. Part 2: Series D-cyclic loading appendice

N/A
N/A
Protected

Academic year: 2021

Share "Demountable construction: Analysis of the behaviour of a 1:5 scale floor bay. Part 2: Series D-cyclic loading appendice"

Copied!
82
0
0

Pełen tekst

(1)

1:5 scale floor bay: Part 2

Series D: cyclic loading

appendice

jr. J . Stroband/lng. J . J . Kolpa

t U Delft

Faculty of Civil Engineering Division of Mechanics and Structures

Section of Concrete Structures Stevin Laboratory Delft University of Technology

(2)

DEMOUNTABLE CONSTRUCTION

Analysis of the behaviour of a 1:5 scale floor bay; Part 2

Series D - cyclic loading appendice

ir. J. Stroband ing. J.J. Kolpa

Mailing acldress:

Delft University of Technology Concrete Structures Group

Stevinlaboratory II - -. Stevinweg 1

2fi28 CN Delft Th(? Neither l a n d s

^"1

Technische Universiteit Delft Bibliotheek Faculteit der Civiele Techniek

(Bezoekadres Stevinweg 1)

STL Postbus 5048

(3)
(4)

~ S [

'< c a l c u l a t e d

z calculated >i'

Fl)';. AJ RclaL J <:>nship b e t w e e n IxMiding iiioiiKïnt and t(;.'nsLle r(.)fC(is al. g r i d l i n t - 7; t e s t . D f).

(5)

/< calculated

I /< calculated

Fig. A2 Relationship between bending moment and tensile forces at grid line 7; test Ü 105.

(6)

calculated \< calculated - 8 z z l - m Z -UJ o

{

\ / /< calculated JÉF / jff / / # / 4 i t e s t C 401 / / . // f - — t e s t 0 205 TENSILE FORCE C-7 (kN) -calculated

F i g . A3 Rel a t i o n s l i i p b<Mwc(-ri b e n d i n g iiioiiient and t e n s i l e f o f c f ^ s a l g r i d l i n e 7 ; I:est D 2 0 5 .

(7)

J\< 4 0 0 c y c l e s

-test D 5

0 < calculated

» D 5 X

1 cycle

TENSILE FORCE AT GRID LINE 7 (kN) TENSILE FORCE AT GRID LINE 7 (kN)

rt

t-z o a z 3L

'1

0

s

^ 1 N ^ -••*• 1 cycle-test C T< ioOO cycles \ ^<: calculated ^ ^ \ ^ ^ 4 0 1 ^ ^ ^ ^ i ,

\.^^W^

» 0 105 »

TENSILE FORCE AT GRID LINE 7 (kN) TENSILE FORCE AT GRID LINE 7 (kN)

< tggt Q 205

1000 cycles

calculated

XttKKHKMItlt

» 0 a05 »

TENSILE FORCE AT GRID LINE 7 (kN) TENSILE FORCE AT GRID LINE 7 (kN)

(8)

-! (Ï - • I—' o. a rr H--• o - cr

- z

3 3 •Jl r-r - O ^ =3 ^c •-i wT O ft to a rs

TENSILE FORCE AT GRID LINE 7

1 2 1 1 (kN) • ^ i : « X xc * X » o W « X * ro * » o * X CJl *

TENSILE FORCE AT GRID LINE 7 (kN)

O

TENSILE FORCE AT GRID LINE 7 i t i A %

i

ii CO m J3 'S (kN) s -^1 n m e (A o 1 ! I 4 * H* * X O X * Ol »

TENSILE FORCE AT GRID LINE 7 (kN) TENSILE FORCE AT GRID LINE 7

1 2 1 4

(kN)

(9)

2 3 4 S TENSILE FORCE A-5 (kN)

test 0 5 «1 ^ * 1 ^ \ ^ 2 -UI 3: X I j I I • / J/ ^ Jf /< c a l c u l a t e d j/t /

¥ /

u ' !<•>• t e s t 0 5 # / If'

I

[ 1 2 3 4 S \ TENSILE FORCE C - 5 (KN) V K calculated

I

52 -UJ o X n 1 t e s t D 5 " J ; * * * ^ ' ^r^'^ c a l c u l a t e d

r

f 1 2 3 4 S TENSILE FORCE D - 5 (kN)

Fig. A(j Relationship between bending moment and tensile forces at grid line 5; test D 5.

(10)

TENSILE FORCE A-5 (kN) .< test D 105

/< calculated

Fig. A7 Relationship between bending moment and tensile forces at grid line 5; test 0 105.

(11)

5 :

ÜJ •

z 9

TENSILE FORCE A-5 (kN) t e s t D 205 calculated '< c a l c u l a t e d /< c a l c u l a t e d c a l c u l a t e d F i g . AO R e l a t i o n s h i p b e t w e e n b e n d i n g moment and t e n s i l e f o r c e s a t g r i d l i n e 5; t e s t D 2 0 5 .

(12)

XXXXXit» X 0 5 X xxxxxxx

test D 5

TENSILE FORCE AT GRID LINE 5 (kN) TENSILE FORCE AT GRID LINE 5 (kN)

test D 105 XKXXXXXXX X D 105 X xxxxxxxxx | B | Ol 5 1000 c y c l e s -1 c y c l e calculated <-•7-—test D 105

TENSILE FORCE AT GRID LINE 5 (kN) TENSILE FORCE AT GRID LINE 5 (kN)

xxxxxxxxx X 0 205 X xxxxxxxxx

1000 cycles

TENSILE FORCE AT GRID LINE 5 (kN) TENSILE FORCE AT GRID LINE 5 (kN)

(13)

(-r G-W r-0^ C c-i -o ^ ^ o 'J1 ^ 3 a r^ o 0*1 w ^ H* T l w (-!-? .X 'Ti 3 r— M r^-i—' >-•) w r^ n Q w « o « « c ; i «

TENSILE FORCE AT GRID LINE 5 (kN)

O , - — ^ — (

s

s z c ^ CD m 2J

°s

n -< o r . m 1 in S

i \

1

1

1] "ii! w m D o ^ ! q> o r m en i ^ f / / /

i

CD o a * ^ * » o :*; X UI X >

TENSILE FORCE AT GRID LINE 5 (kN) TENSILE FORCE AT GRID LINE 5 (kN)

2

i

m

(14)

55l lü

TENSILE FORCE A-11 (kN) -test O 5 «ï X z . ^ f- o Z O X n 1 " O test 0 5 ~yy^^ y^C^^^ ^^^"^ y^< calculated ' / 1 2 3 4 / TENSILE FORCE D-11 * 5 (kN)

Fig. All R e l a t i o n s h i p b e t w e e n b e n d i n g m o m e n t and tensile forces at grid line 11; test D 5.

(15)

test D 105

< calculated

< calculated

!i

calculated

Fig. A12 Relationship between bending moment and tensile forces at grid line 11; test D 105.

(16)

LENSILE FORCE A-11 (kN) -test D 205 ^ X ^ 1- o UJ X

^ J

J • ^ / u/ vMl/f M

<-f'

/ /

{

^/ - t e s t D 205 TENSILE FORCE B-11 (kN) N< calculated K calculated TENSILE FORCE D-11 (kN)

Fig. A13 Relationship between bending moment and tensile forces at grid line II; test D 205.

(17)

iiimmmn

M 0 5 >*

5

< LU

TENSILE FORCE AT GRID LINE 11 (kN) TENSILE FORCE AT GRID LINE 11 (kN)

xxxxxxxxx X D 105 X xxxxxxxxx

TENSILE FORCE AT GRID LINE 11 (kN) TENSILE FORCE AT GRID LINE 11 (kN)

-1 cycle -1000 cycles test D 205 xxxxxxxxx X D 205 X xxxxxxxxx a a. o z 3 1000 cycles 1 cycle J/ < 8 < test D 205

TFNGILE FORCE AT GRID LINE 11 (kN) TENSILE FORCE AT GRID LINF. 11 (kN) .

(18)

xxxxxxx X D 5 X xxxxxxx -anf- "TWT A NUMBER OF CYCLES UJ z M - 1

(E 10 1 -< UJ * ( J

s

l l . UJ .,1 _J *-< Ul z UJ d . ^^ ^^ / 200 NUMBER \ \ A — ^ B y C / D 400 900 OF CYCLES

2^

cc xxxxxxxxx X 0 105 X xxxxxxxxx — C - B TWW A NUMBER OF CYCLES aoo 1000 D NUMBER OF CYCLES xxxxxxxxx X 0 205 X xxxxxxxxx

s

UJ 1 o NUMBER OF CYCLES SOO 800 1000 D NUMBER OF CYCLES

Fig. A15 Relationship between tensile forces and niunber of cycles at grid line II; tests D 5, D 105 and D 205.

(19)

calculated / ;< calculated <f ^gg^ Q 5 TENSILE FORCE B-2 (kN) -calculated <-, test D 5 '< calculated 2 3 4 s TENSILE FORCE C-a (kN)

calculated

^< calculated test D 5

TENSILE FORCE D-2 (kN)

Fig. Air> R(>lat lonsh Ip between bending moment and tensile forces at grid I ine 2; l(.-sl i) 5.

(20)

- a z a. o

1

1 - T ? l l < t e s t D 105 ^ ^ ^ k . 1 2 3 4 5

^ v ^ ^ ^ TENSILE FORCE A-3 (kN) ^ ^ c a l c u l a t e d X ^ ^ x V / i< calculated '<' test D 105 TENSILE FORCE B-2 (kN) -calculated -calculated

1

\ <- test D 105

'•'

TENSILE FORCE C-2 (kN) \< calculated "< calculated

Fig. A17 Relationship between bending moment and tensile forces at grid line 2; test D 105.

(21)

^

TENSILE FORCE A-2 (kN) -test D 205 ^v< calculated /< calculated 7~~-^4 I^ test D 205 / TENklLE FORCE B-2 (kN) •,< ca leu lated z -UJ X o '< calculated

1.

•test 0 205 TENSILE FORCE C-2 (kN) \< c a l c u l a t e d : s c a l c u l a t e d >'

F i g . A18 R e l a t i o n s h i p between bending moment and t e n s i l e f o r c e s a t g r i d l i n e 2; t e s t D 205.

(22)

3 in S< -calculated xxxxxxx X 0 5 X xxxxxxx -200 cycles V<_ 400 cycles

TENSILE FORCE AT GRID LINE 2 (kN) TENSILE FORCE AT GRID LINE 2 (kN)

test D 105 calculated 1000 cycles 1 cycle xxxxxxxxx § X D 105 X u) B xxxxxxxxx 2

TENSILE FORCE AT GRID LINE 2 (kN)

1000 cycles

,'< calculated

test D 105

TENSILE FORCE AT GRID LINE 2 (kN)

\< 1000 cycles xxxxxxxxx X 0 205 X xxxxxxxxx < 1000 cycles 1 cycle

TENSILE FORCE AT GRID LINE 2 (kN) TENSILE FORCE AT GRID LINE 2 (KN)

(23)

xxxxxxx X D 5 X xxxxxxx C D 200 400 B 600 NUMBER OF CYCLES UJ z xxxxxxxxx X D 105 X xxxxxxxxx 600 aoo 1000 C NUMBER OF CYCLES aoo SOO l o o o D NUMBER OF CYCLES xxxxxxxxx X D 205 X xxxxxxxxx 1000 A NUMBER OF CYCLES 800 800 NUMBER OF CYCLES __j C 1000 0

Fig. A20 Relationship between tensile forces and niuiiber of cycles at grid line 2; tests D 5, D 105 and D 205,

(24)

test O 5 z I o u. UJ « X in X -test 0 5 -test C 601 SHEAR DEFORMATION AT 2-8A (xlOE-3 MM) test 0 5 -test D 5 -test C 601 10 20 30 SHEAR DEFORMATION AT 2-CB (xlOE-3 MM) a Z .^ U » cn o u. 1 < UJ <4 I 1 in 1 0 1

U

^ ^ ^ < t e s t C 601 10 20 30 SHEAR DEFORMATION AT 2 - C D ( x l O E - 3 MM) test 0 5

Fig. A21 Relationship between shear forces and shear deformation at grid line 2; test D 5.

(25)

/ •^ test C 601 SHEAR DEFORMATION AT 2-Aa (xlOE-3 MM) yi- test C 601 SHEAR DEFORMATION AT 2-BA (xlOE-3 MM) < test 0 105 -'< test C 601 SHEAR DEFORMATION AT 2-BC (xlOE-3 MM) test D 105 M Z UJ o u. < UJ~ U) 9 r_f. \

J

1 m m ' < — T — t e s t D 105 1

m

mWWl ^ t 1 ^ mw-^~—'^*^*^ ^ ^°*

1

10 20 30 SHEAR DEFORMATION AT 2-CD (xlOE-3 MM) cc U. a. < ^ UJ 9 'l< test

1

1

1

\ ...

I SHEAR 1 AT 2-DC D 105 ^ -^ test C 601 20 30 DEFORMATION (xlOE-3 MM)

Fig. A22 Relationship between shear forces and shear deformation at grid line 2; test D 105.

(26)

-test 0 2 0 5 / -test C 601 SHEAR D E F O R M A T I O N AT 2-A8 (xiOE-3 MM) ^ < test D 2 0 5 -test C 601 SHEAR D E F O R M A T I O N AT 2-BA (xlOE-3 MM) test D 2 0 5 test 0 2 0 5 test D 2 0 5

l.lll All 1)1 I (IIIMAI ION

AI ; ' - c i ) ( x t o i . ;i MM)

t e s t D 205

t e s t C 601

r.ni.Aii III I (IIIMAI KIN A l ;•-DC ( » t o i :) MM)

F i g . A23 R e l a t i o n s h i p between s h e a r forces and s h e a r deformation a t g r i d l i n e 2; t e s t D 205.

(27)

-test O 5 \ SHEAR DEFORMATION \ AT 2-AB (xlOE-3 MM) UJ o X t-a ^tX-\ -test C 601 —test D 5 20 30 SHEAR DEFORMATION ! AT 2-BA (xlOE-3 MM) •\ < test C 601 m 8 < test D 5

4C

\ < ^ test C 601 SHEAR DEFORMATION AT 2-BC (xlOE-3 MM) X X m UJ o I h-Q 3 U < Ct ji o < 9 S O 2 /, y^ y y X- test C '601 /

ƒ

{< test D 5 10 20 30 SHEAR DEFORMATION AT 2-CB (xlOE-3 MM) -a / y X.. test C 601 / K - / test 0 5 /' SHEAR DEFORMATION AT 2-CD (xiOE-3 MM) - » I Q U

I

-test C 601 -test D 5 SHEAR DEFORMATION AT 2-OC (xiOE-3 MM)

Fig. A2'l Relationship between shear deformation and crack width at grid line 2; test D 5.

(28)

o i - r 0) w r r n ^~' o CJT 0 3 w s- H--o cr Q r^ £ 0) ro 3 w 3" U 1 D. ro ^ ü 3 ,., 5 . A \ \ \ r o l 1 m CD > ^ C J » m t» - n o o m 33 1 z QJ > —i Z O — z >

/c

/ i '

1 1 1 A i IV Ul £ ! r r l O ru X I m 3> > CD X) o o m D I z u > iS

>

to -a 3 o o.

C3ACK WIDTH (xiOE-3 MM)

' 9 20 30 3 : R A C K WIDTH (xiOE-3 MM) >. \' ^ r o l n > CD 3 3 _ o K * m t^ "n o o i 3: u)> g z •-• z o — z V ^ ^ A rr [ƒ) n-• >^ 10 \ \ 20 >.

1 \

m r+ O O !-»• M \ \ \ CRACK WIDTH 10

'i

(xlOE-3 MM) M 10 f \ Ul rt in r u x 1 m CD > v > X) * ^ O w; m H- ~n o o ÜJ > —* X. t-^ 2 O — z

(29)

— s -test D 205 * SHEAR DEFORMATION ^ AT 2-AB (xlOE-3 MM) \ 'l -test C 601 -test D 205 SHEAR DEFORMATION AT 2-BA (xlOE-3 MM) V> -test C 601

^Mik

< test D 205 -test C 601 SHEAR DEFORMATION AT 2-BC (xlOE-3 MM) I s. <n« 1 UJ o i s X a »-4 Z o < cc ,U J • ^ ^ 2 ^ a /

u

iJk twi T^ / A— / h <

i

r 10 SHEAR AT 2-ca y y y — t e s t C 601 test • 205 20 30 DEFORMATION (xlOE-3 MM) {- test C 601 < test D 205 SHEAR DEFORMATION AT 2-CD (xlOE-3 MM) < test C 601 < test D 205 SHEAR DEFORMATION AT 2-OC (xlOE-3 MM)

Fig. A2G Relationship between shear deformation and crack width at grid line 2; test D 205.

(30)

« o 3K X UI X

SHEAR DEFORMATION AT GRID LINE 2 (xiOE-3 MM)

SHEAR DEFORMATION AT GRID LINE 2 (xlOE-3 MM)

S 10 19

SHEAR DEFORMATION AT GRID LINE 2 (xlOE-3 MM)

9 10 15

(31)

10 400 600 8 0 0 SHEAR DEFORMATION AT 11-AB (xiOE-3 MM) AT 400 BOO 800 SHEAR DEFORMATION 11-BA (xiOE-3 MM) 200 400 600 BOO SHEAR DEFORMATION AT 11-BC (xiOE-3 MM) 400 800 60O SHEAR DEFORMATION AT 11-C8 (xiOE-3 MM) 2 0 0 * " Z ^ UJ o U. < UJ M I in * i / y ^ 400 SOO 800 J / / SHEAR DEFORMATION < AT 11-CD (xiOE-3 MM) 400 BOO 800 SHEAR DEFORMATION 11-OC (xiOE-3 MM)

Fig. A2B Relationship between shear forces and shear deformation at grid line 11.; test D 5.

(32)

'-0 53 ro t-- o 3 W rr 3 " Q ^-^• rt a ro - si o ro C l ro 3 2 4 1 1 m i > > < W 33 •• -n » o o g ITID a 1 o O ro 3 c c 3 o. SHEAR FORCE (kN) 2 4 1 »- in I m o m > ö > 33 SHEAR FORCE (kN)

(33)

er o U-cr < UJ <« I ai

il

z — UJ U t o u. < l/l -aoo ffi~^ f ? '2' — UJ o u. IT < UJ« X 01 T F l g . A3Ü SHEA R FORC 2 4

I

_

I SHEAR DEFORMATION W SHEAR DEFORMATION

AT 11-A8 (xlOE-3 MM) J I AT l l - B A ( x i o e - 3 MM) ? 1 2 1 ^ 1 1 , . ^ 1 / / 1 /i^i/ // ^ *** 1 ,^^ly// \ / 200 400 800 800 '^"^ lIT JSK / SHEAR DEFORMATION 11/^ AT U - B C {xlOE-3 MM) ^ « ^ ^ ^ ^ 200 400 800 800 -200 f T f ^ 3 F / SHEAR DEFORMATION / \\m, AT U-CO (xiOE-3 MM) \ w w f R e l a t i o n s h i p b e t w e e n s h e a r f o r c e s a n d s l i e E l i n e 1 1 ; t e s t D 2 0 5 . / SHEAR DEFORMATION 1 AT l i - C B ( x l o e - 3 MM) 1 'j^ 200 400 800 BOO 1 y SHEAR DEFORMATION 1 AT 11-DC (xiOE-3 MM) 1 i r d e f o r m a t i o n a t g r i d 1

(34)

AT 300 400 500 SHEAR DEFORMATION 1 1 - A B ( x l O E - 3 MM) AT 300 400 500 SHEAR DEFORMATION 1 1 - B A ( x l O E - 3 MM) I- X " • X I — ; t - X ' C3 X 300 400 900 SHEAR DEFORMATION AT U - B C ( x l O E - 3 MM) I 30O 400 900 SHEAR DEFORMATION AT U - C B ( x l O E - 3 MM) 300 400 900 SHEAR DEFORMATION 11-CD ( x l O E - 3 MM) 300 400 500 SHEAR DEFORMATION U - D C ( x l O E - 3 MM)

Fig. A31 Relationship between shear deformation and crack width at grid line II; test D 5.

(35)

S3 ro o 3 o Cl 1 > I m > > CD 33 X m -^ T l m 73 CJÜ > -1 X -< X o " z i i i i i

r

.

ro ^+> o - i 3 > CO 4^ O 3 Ü 3 C a era, CRACK WIDTH : x : 0 E - 3 MM) :0C 200 300. CRACK WIDTH ( x i O E - 3 MM) iOO 200 300

't

M. U3 ^ I 1 m CD > > 33 ^ O » m .^ -n o o m 3 3 1 X UJ > -H r 1-1 X o — z i g i CRACK WIDTH ( x i O E - 3 MM)

(36)

^ UJ o u O e AT 300 400 500 SHEAR DEFORMATION U - A B ( x l O E - 3 MM) )0 300 400 SOO SHEAR DEFORMATION AT U - B A ( x l O E - 3 MMl x _ i t- X ' a X ^ UJ o y 2 8 i - x a X ^ U J o " 2 S AT 300 400 SHEAR DEFORMATION U - B C ( x l O E - 3 MM) 200 300 400 SHEAR DEFORMATION AT U - C B ( x i O E - 3 MM) I - I I - X " a X AT 300 400 900 SHEAR DEFORMATION U - C O ( x l O E - 3 MM) 300 400 900 SHEAR DEFORMATION U - O C (xiOE-3 MM)

Fig. A33 Relationship between shear deformation and crack width at grid line 11; test D 205.

(37)

I -I Q xxxxxxx X D 5 X xxxxxxx cr UJ < z UJ 1-1 X _J .BA •AB 800 600 1000 NUMBER OF CYCLES 800 800 1000 NUMBER OF CYCLES z o en 1-1 I t - U J < o X 1 cr X o — x x x x x x x x x X D 105 X xxxxxxxxx < X X z am < o X •" cr X o — cr UJ < z UJ 1-1 X _i .BA "AB 600 aoo 1000 NUMBER OF CYCLES NUMBER OF CYCLES h- ^^ < X X o m 1 - UJ < a X •" a » o — u. UJ i H a « cr UJ X _1 ifl o cr o 1 ? Ï S » S ^^S;^...^ ^*K^ ^ ^ " ^ i ^ --^^ ^ ..."^''C^^^^^ ?00 400 600 BOO 1000 NUMBER OF CYCLES •- UJ s < o S cc X CD DC CB BC BA AS x x x x x x x x x X D 2 0 5 X x x x x x x x x x a « cc UJ < z UJ 1-1 I -1 n oc 13

Fig. A34 Relationship bfïtween shear deformation and number of cycles at grid line 11; tests D 5, D 105 and D 205.

(38)

U -> 12/BC 11 -> 10/BC 11 -> 10/BA U -> 12/BA NUMBER OF CYCLES U -> 12/BC U -> 10/BC 11 -> 10/BA U -> 12/BA

Fig. A35 . Relationship between shear deformation and number of cycles at g"r-i(l line B near gr-id line 11; test D 205.

(39)

o m s 1-1 1 ^- UJ < o X --i r I < s UJ V4 S I UIUJ z § ' AB BA ac 400 c a CD DC 800 aoo 1000 NUMBER OF CYCLES Z 2 O en S 1 - 1 I x x x x x x D 5 X x x x x x x a X a — u. UJ CU Q A cr 1 < UJ *-i I U l U l z -CD 400 AB 800 800 1000 BA NUMBER OF CYCLES BC ca oc Em% 1 - 1 I l - U J < o UJOJ a AB BA BC X X X X X X J M t X X D 1 0 5 X x x x x x x x x x 1 Z ~ S am " 1-1 1 h- UJ < o X Tl cc X o O - S u. UJ CU D A OC 1 „ < S UJ T4 -X Ü3 ÜJ Z 800 600 lOOO C B NUMBER OF CYCLES CD DC • CD aoo 600 1000 * B NUMBER OF CYCLES BA BC CB DC 1 o X •"• et X , o— i AH HA uc 800 aoo 1000 C B NUMBER OF CYCLES CD DC xxxxxxxxx X D 205 X xxxxxxxxx < o X T, cr. X . • CD • • • AB 800 800 1000 NUMBER OF CYCLES B* BC CB DC ' i g . A : ! ( ) R e 1 :I I i o i i s l i i P i ) f l w ( M T i . ' d x ' a i ' d e fofiii;» 1 i o n a n d ni.iiiil)(n- u f l y c l i - s i n

the l o n g i t u d i n a l j o i n t s between g r i d l i n e s 1 and 2; t e s t s D 5, 1) 105 and D 205.

(40)

-400 -300 200 300 400 SHEAR DEFORMATION AT B A - U / l O ( x i O E - 3 MM) U J -2^ <s -400 -300 -200 100 200 300 400 SHEAR DEFORMATION AT B C - U / I O ( x l O E - 3 MM) ?00 300 400 SHEAR DEFORMATION AT B A - U / 1 2 ( X l O E - 3 MM) 2s Q S

gs

-400 -300 -200 IOO 2 0 0 300 400 SHEAR DEFORMATION AT B C - U / 1 2 ( x i O E - 3 MM)

Fig. A37 Relations!) If) between shear deformation and crack width at grid line R near grid line 11; test D 205.

(41)

O 3 ro =^ ro Cl —

z

ro 01 n ^ n » 33 M- > O O r t i T ; Cl3 £ M X a X -1 — X 8 g S 3 n 3 o a s > - 1 ^ o m ^ n X 33 M- > o n m T; 11) X X a 2 -H — X S 1 1 s ? § > 5 m — n * D o n ö m ? ; •=• cj Ï : X D i i i ^ U) O •Ul ^ ^ ^ * * ^ ^ ^ * = ^ : : r ^ ~ ' -^^*^^^ï=;t-» 4 i o L '

lr~----V ^"

^ ' ' ^ ^ T ^ rr rt-O Ul TENSILE 2 - - - _ FORCE C-7 (kN) 3 4 S A " ' - ' , ^ 1 1 O 01 n c Ql rt m TENSILE FORCE B-7 (kN)

(42)

r^ UJ o cr o UJ _ i C/1 IJJ ™ (— "

-J

^ i ^ ^ ^ p ^

1

/ AT 1 I / i I § ' M 1 m 1 j f ' 3 1 If 1 Jf 1 if l/lj

1

100 7-AS //

f

—1-oef n 1 n R t c 5 L U 1 U 3 200 300 CRACK WIDTH ( x i O E - 3 MM) 100 r^ i ' UJ cr o u.« UJ - I cn UJ "• 1 / AT 1 1 1 1 1 '^ 1 1 1 I 1

i

t-

F<~ 100 7-BA . ^ ^ « ^ ^ 1 / ^ < i 1 ^ ^ n ———caicu i a t c f a c ¥ n ^ OR — t e s t u l U u 3 0 0 3 0 0 CRACK WIDTH (J*10E-3 MM) z r^ t , to UJ u cc o lJ_ « U l _ J UJ "* -0 i 1 ƒ

r

AT ; ( / / / ; 1^ ' < — 1 t 1 1 1 1

i

l-..

100 7-ac ^ _ , ^ ^ ^ ^ 1 / H l « 1 ^ ^ ^ C a i c u i a t e — t e s t D 105 2 0 0 3 0 0 CRACK WIDTH ( x i O E - 3 MM) -calculated t e s t D 105 100 200 300 CRACK WIDTH AT 7 - C B ( x l O E - 3 MM) calculated t e s t D 105 100 2 0 0 3 0 0 CRACK WIDTH AT 7 - C D ( x i O E - 3 MM) IOO 200 300 CRACK WIDTH AT 7 - D C ( x l O E - 3 MM)

Fig. A39 Relationship between tensile forces and crack width at grid line 7; test D 105.

(43)

o ^ o » 33 o n 8 1 1-1 I • - X S f-t-ro r+ O Ul O O ' ( f ro 03 X 33 1 * > M o n s 10 a: 1-1 X D rr ro (A rt-D ro O Ul ro

TENSILE FORCE 0-7 (kN) TENSILE FORCE C-7 (kN)

2 3 4 1

TENSILE FORCE B-7 (kN)

(44)

1 cycle \<-^ calculated 200 cycles ,< 400 cycles < test 0 5 80 ISO 240

CRACK WIDTH AT GRID LINE 7 (xlOE-3 MM)

xxxxxxx X D 5 X xxxxxxx

-240 -160

CRACK WIDTH AT GRID LINE 7 (xlOE-3 MM)

-240 -160 SO 180 240

CRACK WIDTH AT GRID LINE 7 (xiOE-3 MM)

xxxxxxxxx X D 105 X xxxxxxxxx

CRACK WIDTH AT GRID LINE 7 (xlOE-3 MM) 1 cycle <. 1000 cycles Iculated test D 205 xxxxxxxxx X D 205 X xxxxxxxxx -240 -160

CRACK WIDTH AT GRID LINE 7 (xiOE-3 MM)

80 180 240

CRACK WIDTH AT GRID LINE 7 (xlOE-3 MM)

(45)

h- I < ÜJ O X •" t- X o O — g *~t X r^ •^ UJ u z < i-i g II _i 2 ,CD — ' C B _ ^ B C — ' B A xxxxxxx X D 5 X xxxxxxx 800 aoo 1000 NUMBER OF CYCLES • AB ^ UJ u z < 1-1 3 ff _1 P . AB 600 aoo 1000 NUMBER OF CYCLES a — 1-1 z cr X 10 a • - I < UJ : ^ t i j o z < IH o a - i 2 • ' ?00 400 aoo 800 1000 NUMBER OF CYCLES o » i-< z CE Z Cl rt OC CD CB BC BA x x x x x x x x x X D 105 X x x x x x x x x x X « 1- » Q — 1-1 X ^ u: UJ o z < I H AB 1 AB BA = ' B C . C S -ren 800 800 1000 NUMBER OF CYCLES •OC ^ UJ u z a _i •DC . C D •ca . B C -BA 800 aoo 1000 NUMBER OF CYCLES • AS X X X X X X X X X X o 205 X xxxxxxxxx • AS BA •BC . C B •CD 800 800 1000 NUMBER OF CYCLES •OC

Fig. KA2. Rc>lat j onship between crack width and number of cycles at grid line 7; tests D 5, D 105 and D 205.

(46)

K - • 'S: _ U l > o 03 « 33 on i m /•; 1 ll) i : 1-1 X D X - 1 g — I 5 1 o n c 01 SC: ^^^aes^fc-. r + IA O U I i i CS * 23 o n g CJJ Z : ^lï

r^^^

1 1 o Ot ro Q. ^***^ A " " ^ * ! ro r i -O ^ ^ ^ ^ • ^ ^ c X rü « X o X * Ul « TENSILE FORCE D-5 (kN) > - 1 Ul 1 o n ^ o X 33 .* > o n m X 1 U Ï : 1-1 X o X - 1 — I -H ? ï< \ ^ S ^ ^ I — > v \ \ \ \ • * S ; ; 5 j / \ ^ ^ A ^ ^ r r W rt "^--^ L ^ ^\>^ ^fe^-• = 5 » ! _ ^ • " • - ^ ^ ^ ^'^^^^ .^ o D> * n 0) r^-g

' f

> V

T E N S I L E FORCE D - 5 (kN) ^ 1 2 3 4

V-,

l ^ > ^ - 1 U l i 8 X 3D O n g 1 ÜJ a: t-H 2 O i i i T E N S I L E JK 1 |\^-^_ ^ NS^ u ^ ^ ^ - ~ \ 1 ^ ^ c*-ro Ul r*-O FORCE 2 --^__ . ~" ^^, D-3 - _ 5 (KN) 4 A ~" n «- QJ c D)

(47)

1-1-calculated xxxxxxx X D 5 X xxxxxxx < calculated < test D 5 200' 300 400 CRACK WIDTH AT 5-DC (xlOE-3 MM) 200 300 400 CRACK WIDTH AT 5-Aa (xlOE-3 MM) test D 105 -calculated xxxxxxxxx X D 1 0 5 X xxxxxxxxx z UJ a. o u. d < Ul ni X 1/3 «f

" 1

T T / / / /

é^^^^^^/

J « l f 200 300 400 ^y^ CRACK WIDTH AT ^ 5-OC (HlOE-3 MM) 200 300 400 CRACK WIDTH AT 5-AB (xlOE-3 MM) test D 205 N< calculated xxxxxxxxx X D 205 X xxxxxxxxx i< calculated t e s t D 205 200 300 400 CRACK WIDTH AT 5-OC (xlOE-3 MM)

F i g . A44 Relat ionsliip) between cracit width and shefir f o r c e s a t p;rld l i n e 5; t e s t s D 5, D 105 and D 205.

(48)

1-1 Z (I Z < UJ o X -1 • DC x x x x x x x X D 5 X x x x x x x x •AB 800 8 0 0 lOOO NUMBER OF CYCLES a - , 1-1 z tr z ^ U J u z < M g ir _j 2 • AB 600 aoo 1000 . O C N U M B E R O F C Y C L E S • H Z 13 8 m " 1- 1 < UJ o X " t- X a Z i n 200 400 800 M O 1000 NUMBER OF CYCLES DC xxxxxxxxx X D 105 X xxxxxxxxx AB X en S UJ o in UJ z :3i < 200 400 800 aoo 1000 NUMBER OF CYCLES AS Q ^ »-i X rr T C9 en 1- 1 < i u o X -rt t— X Q ™ " i in !^ UJ O 2 (T . J i f, 8 •DC xxxxxxxxx X o 205 X xxxxxxxxx l i - i sj : - I 2 400 6 0 0 6 0 0 lOOO 8'

NUMiir.n or CYCLES NUMDLn OF CYCLf.S

Fig. A45 Relationship between crack width and number of cycles at grid line 5; tests D 5, D 105 and D 205.

(49)

r t •^ rt < UJ t r t J -UJ —J t-t y l -. z " UJ t—

J

3 - * ^ / W < AT I t lil

jl

'' 100 1 1 - A B t e s t D 5 200 300 C R A C K W I D T H ( x l O E - 3 MM) calculated 200 300 CRACK WIDTH AT 11-BA (xlOE-3 MM) too z V " CD Ul O OC O m I I , Ul -J in z •* UJ 1 — T ƒ 1 1 1 t i< c a l c u l a t e i / 1 1 1 t 1 1 too 200 300 C R A C K W I D T H AT 1 1 - a C ( x i O E - 3 MM) too z «^ T-U UJ u o: n w tl. UI - 1 Ul 2 " UJ 1— —-. , ƒ ƒ ƒ ƒ /< / / / / ' / ; Jl IJl 'Ul 'wit iflil^~ -100 AT 1 1 - C 8 . . _ f ^ ^ 1 r i « f l 1 ^ ^ t^^ — C a l C U l a L e a t e s t 0 5 200 300 C R A C K W I D T H ( x i O E - 3 MM) calculated test D 5 100 2 0 0 3 0 0 CRACK WIDTH AT 11-CD (xlOE-3 MM) 100 Z M V " Q UJ UJ - j en z UJ 1 -/

h

1 m 'lil AT t 1 !<--1

ij

1

ll

'1^ 100 1 1 - D C — c a l c u l a t e - t e s t 0 5 200 300 C R A C K W I D T H ( x l O E - 3 MM)

Fig. A4G Relationship between crack width and tensile forces at grid line 11; test D 5.

(50)

o - T 8 n _ n O O * m 7^ 1 UJ a: >-H i^g — X ^*^^^ ^ " r r re tA r + O U I •~^_^ A " " - - _, O Q) n c 0) n-ro CL UJ :c S P I O Cl o O m ^ o 5*: 33 r 1- > i o n ' I U I : 1-1 X o i 2 -I ! — I TENSILE FORCE C - U (kN) 1 > A 7 i CD > „ n - > g o n ° m 7z 1 1—1 i 5 § TENSILE ^ ^ ^ ro IA ,_^ O FORCE 2 ^_ B - 1 1 3 ~/\ -O O) o c 01 r t ro (kN) 4 --,^

(51)

•1i w o ro o C l 3 w — • •0 cr '1' £ fC 3 0 - i u o X -_^ • < . H-CL t-l-tr a a a r i -Q 3 W ^-f3 O 1 -1 7 8 n o „ n ï > S o n * m /«: 1 CJ £ n É^g T 1 r t l/l r + Q O U l f~~~~--Q) O C QJ r* n X X) 1 M.> i o n m7^ I u £ 1-1 xa 1 X H • — I s 1 > -H 7 8 o n ^ n ï g g o n ° m >; 1 L j a : 158 — I i T E N S I L E AN * ^ ^ ^ ^ "-"^^^^fe 1 rt r t -O o FORCE D - 1 1 (KN) 2 1 4 -^^ S ^ Ë ^ . '~^^~. ^ ^ ^ ^ ^ ^ C r ^ - ^ 1 •-• c 01 n-ro - ~ n X XI 1 - > 1 o n m 7; I UJ £ •-1

i 5 i

1 calculat e -tes t Q 20 5 -,,^ ^O * n M- > o n m T; UJ £ 1—1 z o 3: - 1 g ri o T E N S I L E 1 1 ^ ^ ^

^ ^ ^ < ; ; "

f - f ro rf a n j U l FORCE 2 ^^ c " • -^^ - 1 1 3 A"^ — O ro n c r r ro (kN) 4 ~~-. T^^^—I—f • o n " m T; I UJ £ 5 5 § T E N S I L E FORCE B - 1 1 (kN) i 2 3 4

(52)

Ol Z 1 - 4 _, - ' ' A " " O 0) o c 01 r-t-ro o. - 2 < rr ro (A rt-a U l ^ i * * M 1 O > n O CD 13 > .-, n » 7^ 0 £ g m i - i 1 D U - 1 I 3 : s > è — - 1 o ^i^^'^ï' 4 1 e •*. 1 - 4 ^ ' ^ ^ - 2 ^ H k h * t o n n x i > _ n X X o £ m 1-1 I D CJ H X 3 : •X > ' - ' - H 8 § 8 i g ^ 8 SHEAR FORCE (kN) z

•^N^

^^.É. ^ ^ s ^* n ut rt-O U l 4 1 O tu •—' n C Q) f + ro o. ___ - 4 ^^ s i ^ ,—';y - ' A . / _ Q) O a --•^ - " • ^ ^ 8 (-* C D D O 30 O 40 0 WIDT H A T lOE-3 MM ) SHEAR FORCE (kN) _ _ _ 2 ^^.^ • -^^ • = - - ' 4 s=iï^rr:_ ' ' A n-ro U l c

(53)

200 300 400 CRACK WIDTH AT 11-AB (xlOE-3 MM) t e s t D 105 c a l c u l a t e d < t e s t D 105 200 300 400 CRACK WIDTH AT 11-BA (xiOE-3 MM) calculated -calculated UJ ••'J I in -test D 105 100 7 T

i

1 \ V too 200 300 400 CRACK WIDTH AT 11-aC (xlOE-3 MM) - c a l c u l a t e d ; calculated t e s t D 105 200 300 400 CRACK WIDTH AT 11-CB (xlOE-3 MM) < calculated .'< calculated '< t e s t D 105 200 300 400 CRACK WIDTH AT 11-CD (xlOE-3 MM) calculated , ,'< calculated t e s t D 105 200 300 400 CRACK WIDTH AT 11-DC (xlOE-3 MM)

A50 R e l a t i o n s h i p botwei-n ci'ack widtli and s h e a r f o r c e s a t grii'i l i n e 11; t e s t D 105.

(54)

ft B - 4 -a ^ ^ »-* I - * o o o 13 > - ^ n * y\ o X rn i-< 1 a LJ H X 3: 2 > •"" —1 8 8 g g fc 8 SHEAR FORCE (kN) \ » «^^^ ^ ^ ^ 4 B "--,, ^ ^ > - ~ 1 ^ ^ 1 O rt- ü) ro 1 ^ Ul o ^^ C o dl rr ru ro o Q CJl Cl CO

(55)

ao ISO 240

CRACK WIDTH AT GRID LINE 11 (xlOE-3 MM) 200 cycles 400 cycles xxxxxxx X D 5 » xxxxxxx 80 160 240

CRACK WIDTH AT GRID LINE 11 (xlOE-3 MM) 1 cycle ,< calculated < test D 105 xxxxxxxxx X D 105 X xxxxxxxxx 1000 cycles

CRACK WIDTH AT GRID LINE 11 (xiOE-3 MM)

80 too 240

CRACK WIDTH AT GRID LINE 11 (xlOE-3 MM) 1000 cycles -240 -180 X X X X X X X X X X D 205 X xxxxxxxxx X X 2 O Q. ID 5 3 /

m

A g I

af

1

///

'i'

- ^

i

r~

f/

i

A

1 1 1 1

f

r / /

f

calculated 7

CRACK WIDTH AT GRID LINE 11 (xlOE-3 MM)

80 180 240

CRACK WIDTH AT GRID LINE 11 (XlOE-3 MM)

(56)

a — r-i X a. X 13 X >-i t - * a — o UJ < z. a i - i u -J 400 aoo aoo l o o o ' A S NUMBER OF CYCLES x x x x x x x X D 5 X x x x x x x x Q „ 1-1 s ; a. x m S < U I . o X 1 *~ * .* a - g 1-1 (M 3 • " ^ o LU < 2 o C C " 2 U _J c

^5

300 / C D / BC ^ ^ C B • ^ BA 400 "~—-DC

aoo aoo lOOO NUMBER OF CYCLES OC X. UJ m • U UJ et. t-t • 8 . ^ . ^—_ 200 400 aoo SOO 1000 NUMBER OF CYCLES xxxxxxxxx X D 105 X xxxxxxxxx OC CD CB BC AB cc s 13 o en S CC 1-1 5 U _ l •AB 8 0 0 8 0 0 NUMBER OF CYCLES c a iDC 1-1 Z LS 1 m ' t- I < UJ o I - 1 I - X I Q - i 1-1 3 : - 4 U ÜJ < Z I a i - i • .DC xxxxxxxxx X D 205 X xxxxxxxxx NUMBER OF CYCLES

Fig. A53 Relationship between crack width and nuinber of cycles at grid line 11; tests D 5, D 105 and D 205.

(57)

l - ^ ra w r r O C l 0 3 W : J H -"D cr ra <-^ ? ra ra 3 r l -ra 3 H A 8 D _ n » u - > ï o n s 1 U £ ^ C3 . , 5 3 i rt-ro i f l o tn o tu o 01 rt ro d "^3 O M n ra o o 3" a 1 TENSILE FORCE D-2 (kN) o Ul ca o n _ n o n s ÜJ £ X o ï ï i ro U) rt O U I C rt-ro a i 8 CD - . n X 33 M- > W o n g m /^ 1—) 2 D ^5ë

1

T~---1 T~---1 • ^ 2 0) rt-• Q. > UI <7) 1 > ^ n o a * 3 • - > JU o o g u s: X a i 5 § ^-v> \ ' l rt ro rt-n (Jl TENSILE 1 FORCE C-2 2 3 — _ Tv"" - - ^ ^ O O c Ql ro a (kN) 4 i f F T ; TENSILE FORCE B-2 (kN)

(58)

3 ra t o rt-ra w r+ 1—1 a L'. O 3 W ^ .—• X" ro n i CD _ n IC 33 M. > ro O n g m x ° l4) £ X a 5 ï g rt-ro m rr o o U l ^A-—-,^ O Q) O c Ql rr ro a o ra 3 1 3 O br a s > —1 ro ó i n — o X JD » - * • > „ Ui « 2 o 3: -H w - x 8 TENSILE 1 • " - ~ - ^ , _ rr ro rr O O U l FORCE D-2 2 3 " A " ~- - ~ ^ O 01 »—• n c 1—' u rt-ro o. (kN) 4 " -* ro 1 o CD o n « o :*; 3J o o i m T; U £ H ' 2 O ^Si \ ri-ro m rt o k* o Ul " --*_ " A " " - - ^ 1 - ^ n D) o c Qt rr ro o. > W _ l 8 tu _ o * I 1^ > B O n g fTl X 1 ÜJ £ 1—1 3: o ï i g rr ro in rt-o o U) ^^~'~"--. O rt ro o. > C l - 3 8 > - 1 l U n i CS _ n * D 1* > lü o n s m x * UJ £ X Q ^ Ï i ' r C ^ -\ -\ rr ro IA rt ^ CJl TENSILE 1 ^ ^ *^ ~" — .^ FORCE C-2 2 3 A " ^ ^ ^ n 0) o c ro rt ro a (KN) 4 8 -i i 8 > .-,n X n • * > !S O n g m x ^ ÜJ £ X • TENSILE FORCE 3 - 2 1 2 3 1 1 ~~ 1 1 I 1 rr ro t/l rr O O Ul n Q l o c ro rt-ro a tkN) 4

(59)

rr ra 'j) rt O ro o C l 'Ji 3 --^• " \ j c-ra rr z. 0 ra ^ n » X I 0 n 8 m X ÜJ £ 1-1 3 : D , Z - 1 S — 1 0 rr rt O ro 0 0 U t-* c Q) r* a 3 1 ^ > —* r"J n ~.r> X n 0 n 8 U ) £ X 0 2 - 1 « - X 8 " •- -T E N S I L E 1

"~-^~v

rt-ro (fl rt 0 0 U l FORCE D - 2 2 3 A * " ^ — ^ ^ 0 Ql C Q) a (kN) 4 _ n 0 n g m X ÜJ £ H l X o i Ï 8 ro Ul 0 ru 3 „ 0 X U S n K r T i 7 = : <» ÜJ z 2 o Z - i LI - X g 0 rt O ro U l n c ro o. > C l CO > - 1 r\j n 0 CD ^ n X 33 o o i m 7; ° u Ï : l—l X D s i § K • " - ^ \ 1 1 r rt ro i n rt n 0 U l T E N S I L E 1 -^ ^-^ FORCE C - 2 (kN) 2 3 4 ^ A " " — - _ C *-" Q. 1 - 1 UJ 1 X D .-^ > 0 n m x ÜJ £ X D X - 1 — X 8 8 TENSILE 1 " • • - - . r . A • 1 ~ ~ ^ -1 ro rr 0 0 tJl FORCE a - 2 2 3 .^ A ^ - ^ ^ n 0 c ro rt a (kN) 4

(60)

1-1 I -ra I\D r r ra m a ,-^. Z} L i . 0 3 W 3 - r--Ul ra ra 3

SHEAR FORCE SHEAR FOHCE (kN)

i i A O o c t-t-3" CI 'r-"i 1 o SHEAR FORCE ?5=*t 0 3 0 > X) > ^ n * •TZ 0 s : r r i t - * 1 0 SHEAR FORCE (kN)

(61)

U . OC ' < X en a i r k to 30 90 7Q \ \ CRACK WIDTH AT \ 2-AB (HlOE-3 MM) \ \ \ L \ \ < c a l c u l a t e d r \ \ \ \ \ o ü_ 1 rr I '^ < UJ M I in 1 ;i

1

D 1 ~ ' • V \ V V 1 \

.1 ,

30 50 70 CRACK WIDTH AT 2-BA (xlOE-3 MM) c a l c u l a t e d K calculated ; II l < t e s t D 105 - t o V 10 30 so 70 CRACK WIDTH AT 2-BC (HlOE-3 MM) \< calculated l<-, test D 105 CRACK WIDTH AT 2-CB (XIOE-S MM) calculated K calculated < test D 105 CRACK WIDTH AT 2-CD (xiOE-3 MM) h< calculated II CRACK WIDTH AT 2-OC (xiOE-3 MM)

F i g . A5H l^elat ionshj p betwc-en c r a c k w i d t h and shear f o r c e s a t )>rid l i n e 2; t e s t D 105.

(62)

-test D 205 10 30 CRACK WIDTH AT 2-AB (xiOE-3 MM) -calculated calculated calculated calculated CRACK WIDTH AT 2-CB (X10Ë-3 MM) calculated CRACK WIDTH AT 2-CD (xlOE-3 MM) y A' f<r t e s t C 401 ir I » . / / J~J||//^ calculated 30 so CRACK WIDTH AT 2-OC (xiOE-3 MM) test 0 205

Fig. A59 Relationship between crack width and shear Corces at grid line 2; test D 205.

(63)

— c a l c u l a t e d [< 400 cycles test D 5 200 cycles !> 1 cycle so ISO 240

CRACK WIDTH AT GRID LINE a (XlOE-3 MM) xxxxxxx X 0 5 X xxxxxxx 1 cycle-tr < S c ' • -calculated -200 cycles -400 cycles -test D 5 I 80 too 240

CRACK WIDTH AT GRID LINE 2 (xlOE-S MM)

I'i*

a. 10 tn a j ; UJ S C 2 j i 1 c y c l e > -calculated -1000 c y c l e s t e s t D 105 so ISO 240 CRACK WIDTH AT GRID

LINE 2 (HlOE-3 MM) xxxxxxxxx X D 105 X xxxxxxxxx CL m B S 0 9 • 1 cycle > -calculated 1000 c y c l e s < (-est D 105 ^ so 180 240

CRACK WIDTH AT GRID LINE 2 (xlOE-3 MM)

Vi

U) 1 -z

sast

C5 1 c y c l e --calculated -1000 c y c l e s -test D 205 I 80 180 240

CRACK WIDTH AT GRID LINE 2 (xlOE-3 MM) xxxxxxxxx X D 205 X xxxxxxxxx ^ A o i z cc i

^aJ

UJ X c2 1 cycle >

üJ

,< calculated < 1000 cycles < test 0 205 00 180 240 CRACK WIDTH AT GRID

LINE 2 (xlOE-3 MM)

(64)

1—' !—•-3 't ro rr •ü i;; rr M a C l •" SD 0 i—' ü r r H -O W t r K -T - l .-ri --4-< K^ O CJl a a o ro o in . o -i 3 O • i ' . i c rr tr a 3 o. 3 =i cr 0 !-< 0 -^ 0 v; LINE 2 (xlOE-3 MM) 5 10 IS 20 LINE 2 (xiOE-3 MM) •3 > CD n CD O >a) o m nC3 * ro * X o X X u\ X

CRACK WIDTH AT GRID LINE 2 txlOE-3 MM)

» IS »

CRACK WIDTH AT GRID LINE 2 (xiOE-3 MM) 5 to IS » LINE 2 (xlOE-3 MM) xS ^ 8 XXX X X X a X X X X U\ X X X XXX

CRACK WIDTH AT GRID LINE 2 («lOE-3 MM) O n C D D C D > CD o o n > 03 CDrzio n CD 3> n n t D D > GO 03 m 23 ^ i m o i/i8

(65)

total load (kN)

Fig. A62 Relationship between the total horii'.onta] load and lateral deflection of the floor liay in D7; test D 5.

(66)

_e c o 01 shear deformation e E c o u _aj OJ •u tn O 0) shear deformation 1 shear deformation

Fig. AG3 Deflection and increasing of deflection of the floor bay by 0=12 1<N; test D 5.

(67)

total load (kN)

Fig. AG4 Relationship between the total hori7:ontal load and lateral deflection of the floor boy in D7; test D 105.

(68)

eformation

'1-'

'E c - 4 o = - 3 01 x> o - 2 OJ UI o OJ - 1 U sh_egr d<-formQtic n 8 9 10 11 12 13 IA ^^i_sh?ar_^

71 = number of cycles test D 105

I

Fig. AG5 D e f l e c t i o n and I n c r e a s i n g of d e f l e c t i o n of t h e f l o o r bay by Q-12 kN: t e s t D 105.

(69)

total load (kN)

-16

Fig. A6G Relationship between the total horijcontal load and lateral deflection of the floor bay in 07; test D 205.

(70)

Fig. AG7 Deflection and increasing of deflection of the floor bay'by 0=12 kN; test D 205.

(71)

. - - ^ ^ ! ^ . — : = ^ ^' ^ . ilOOOj-i^ 5 |iooöp

-s:^

5 e s _ ^ ——

-n

)

-K3

- — — . j 7 t *-—•*» _ 3 5 \-CQlCUlC • » . . ^ 5 1 • ,^_7"*^^ 0 1

V^"

test D105

1

1 1 2 ^ 1 3 - ~ , ^ K ^

de forma l: Lon in the transverse joints by 0=12 kN and 0=-12 kN; tests D 5. D 105 and ü 205.

(72)

®

©-®

endwol

S

(B) (C) 1.6 1.2 0.8 0.4 O -0.4 -0.8 -1.2 1.6

®

deformation axis 1 (mm! .2 0.8 0.4 O -0.4 -0.8 -1.2 deformation axis 1 (mm)

®

®

©

endwal

®

®

1.6 1.2 0.8 0.4 0 -0.4 -0.8 -1.2 deformation axis 1 (mm)

Fig. AG9 Deformation of th(» end of the floor bay at gr-id line 1 Liy a tol.-il lorid of 0=12 kN and 0= 12 kN; tests 0 5, n 105 and I) 205.

(73)
(74)

SR - 1 Leeuwis, M. "Kruip en krimponderzoek op ongewapend beton. Collec-taneum onderzoeken 1958-1970" (2 delen). Out of print.

(5-71-3)

SR - 2 Froon, M. "Hoogwaardig beton" (1972). Out of print. (5-72-1)

SR - 3 Walraven, J.C. "De meewerkende breedte van voorgespannen T-balken" (1973). Out of print.

(5-73-1)

SR - 4 Nelissen, L.J.M. "Het gedrag van ongewapende en gewapende beton-blokken onder geconcentreerde belasting" (1973). Out of print. (5-73-7)

SR - 5 Nelissen, L.J.M. "Stress-strain relationship of light weight con-crete and some practical consequences" (1973). Out of print.

(5-73-8>

SR - 6 Bruggeling, A.S.G. "De constructieve beïnvloeding van de tijdsaf-hankelijke doorbuiging van betonbalken" (1974).

(5-74-2)

S R - 7 Stroband, J., Tack, P.J. "Kolomvoetverbinding met geïnjecteerde stekeinden (1974).

(5-74-3)

SR - 8 Christiaanse, A.R., Vrande, L.W.J.W. van der, Rooden, R.J.W.M, van "Het gedrag van stalen voetplaatverbindingen" (2 delen) (1974). Out of print.

(5-74-4)

SR - 9 Uijl, J.A. den, Bedn§r, J. "Onderzoek naar het verankeringsgedrag van gebundelde staven" (1974).

(5-74-5)

S R - 10 Nelissen, L.J.M. "Twee-assig onderzoek van grindbeton" (1970). Out of print.

S R - 11 Meuzelaar, L.C., Smit, D.R., Brakel, J., Zwart, J.J. "Ponts a haubans en béton précoatraint" (1974).

(5-74-6)

S R - 12 Bruggeling, A.S.G., Boer, L.J. den "Eigenschaften von stahlfaser-bewehrtem Kiesbeton" (1974).

(11-71-10)

S R - 13 Boer, L.J. den "Fibre reinforced concrete" (1973). Out of print. Conference on properties and applications of fibre reinforced con-crete and other reinforced building materials. Out of print.

SR - 14 Uijl, J.A. den "Met bamboe gewapend beton onder herhaalde belas-ting" (1976). Out of print.

(5-76-1)

SR - 15 Dijk, H.A. van, Nelissen L.J.M., Stekelenburg, P.J. van "Het gedrag van kolom-balkverbindingen in gewapend beton" (1976).

(5-76-2)

SR - 16 Brunekreef, S.H. "Gedeeltelijk voorgespannen beton; Op buiging be-last" (1977).

(5-76-8)

S R - 17 Betononderzoek 1971-1975 (met samenvatting in het Engels) (1976). Out of print.

SR - 18 Bruggeling, A.S.G. "Time-dependent deflection on partially pres-tressed concrete beams" (1977).

(75)

20 Corrosie van wapening in beton; de kwestie "Monoliet" (1977). Out of print.

(5-77-2)

21 Corrosie van wapening in beton; Proefresultaten (1977). (5-78-2)

22 Bednir, J., Reinhardt, H.W. "Onderzoek naar de krimp en kruip van lichtbeton" (1977).

(5-77-6)

23 Uijl, J.A. den "Krachtsoverdracht tussen beton en voorspanstrengen" (1978). Out of print.

(5-78-6)

24 Reinhardt, H.W. "Contribution of the fibres to the load bearing capacity of a bar and fibre reinforceed concrete beams" (1978). (5-78-9)

25 Stekelenburg, P.J. van, Walraven, J.C., Mathews, M.S. "Development of a semicylindrical shaped roof in ferrocement" (1978). Out of print.

(5-78-11)

26 Walraven, J.C. "Mechanisms of shear transfer in cracks in concrete. A survey of literature" (1978). Out of print.

27 Reinhardt, H.W. "On the heat of hydration of cement" (1979). Out of print.

(5-79-1)

28 Pat, M.G.M., Fontijn, H., Reinhardt, H.W. Stroeven, P. "Erosie van beton" (1979). Out of print.

(5-79-30)

29 Walraven, J.C., Vos, E., Reinhardt, H.W. "Experiments on shear transfer in cracks in concrete. Part 1: Description of results" (1979).

(5-79-3)

30 Walraven, J.C. "Experiments on shear transfer in cracks in con-crete. Part 2: Analysis of results" (1979).

(5-79-10)

31 Gremmen, C. "Beton met grof grind als toeslagmateriaal". (5-79-5)

32 Körmeling, H.A., Reinhardt, H.W., Shah, S.P. "Static and dynamic testing of concrete beams reinforced with fibres and continuous bars" (1979).

(5-78-10)

33 Huyhge, G.F., Walraven, J.C., Stroband, J. "Onderzoek naar voorge-spannen kanaalplaten" (1980).

(5-80-2)

34 Körmeling, H.A., Zielinski, A.J., Reinhardt, H.W. "Experiments on concrete under single and repeated uniaxial impact tensile loading" (1980).

(5-80-3)

35 Vos, E., Reinhardt, H.W. "Bond resistance of deformed bars, plain bars and strands under impact loading" (1980).

(5-80-6)

36 Betononderzoek 1976-1980 (1980).

37 Reinhardt, H.W. "Schaalwetten bij proeven met betonconstructies" (1980).

(76)

analysis" (dissertatie) (1980). Out of print.

39 Walraven, J.C. "The influence of depth on the shear strength of lightweight structural members without shear reinforcement" (1980). (5-78-4)

40 Bruggeling, A.S.G., Oostlander, L.J. "Concentrated load on a thick-walled cylinder" (1980). Out of print.

(5-81-1)

41 Pat, M.G.M. "Kruipspreiding. Deel 1: Proefresultaten" (1980). (5-80-1)

42 Pat, M.G.M., Reinhardt, H.W. "Variability of creep of concrete -analysis of the results" (1980).

(5-80-8)

43 Zielinski, A.J. "Experiments on mortar under single and repeated uniaxial impact tensile loading" (1981).

(5-81-3)

44 C o m e l i s s e n , H.A.W. , Timmers, G. " F a t i g u e of p l a i n c o n c r e t e in u n i -a x i -a l t e n s i o n -and i n -a l t e r n -a t i n g t e n s i o n - c o m p r e s s i o n - experiment and r e s u l t s " ( 1 9 8 1 ) .

( 5 - 8 1 - 7 )

45 Stroband, J., Kolpa, J.J. "The behaviour of reinforced concrete column-to-beam joints. Part 2: Corner joints subjected to positive moments.

(5-81-5)

46 Stroband, J., Kolpa, J.J. "The behaviour of reinforced concrete column-to-beam joints. Part 1: Corner joints subjected to a negative moment".

(5-83-9)

47 Betononderzoek 1980-1982.

48 Zielinski, A.J. Behaviour of concrete at high rates of tensile loading. A theoretical and experimental approach.

(5-83-5)

49 Uijl, J.A. den "Tensile stresses in the transmission zones of hol-low-core slabs prestressed with pretensioned strands" (1983).

(5-83-10)

50 Comelissen, H.A.W. "Constant-amplitude tests on plain concrete in uniaxial tension and tension-compression" (1984).

(5-84-1)

51 Zorn, N.F. "Stress wave propagation on reinforced concrete piles during driving" (1983).

(5-83-21)

52 Zorn, N.F. "Cracking and induced steel stresses of reinforced and prestressed piles during driving" (1984).

(5-84-6)

53 Körmeling, H.A. "Experimental results of plain and steel fibre reinforced concrete under uniaxial impact tensile loading" (1984). (5-84-8)

54 Zielinski, A.J. "Fracture of concrete and mortar under uniaxial impact tensile loading" (dissertatie) (1982). Out of print.

55 Vos, E. "Influence of loading rate and radial pressure on bond in reinforced concrete" (dissertatie) (1983).

56 Körmeling, H.A. "Impact tensile behaviour of steel fibre concrete at very low temperatures" (1984).

(77)

58 Zielinski, A.J. "Concrete under biaxial loading: static compression - impact tension" (1985).

(5-85-1)

59 Pruijssers, A.F. "Description of the stiffness relation for mixed-mode fracture problems in concrete using the rough-crack mixed-model of Walraven" (1985).

(5-85-2)

60 Frénay, J.W., Ham, N.A. van "Gebruik van symbolen. Toepassingen voor betonconstructies" (1985).

(5-85-8)

61 Frénay, J.W. "Shear transfer across a single crack in reinforced

concrete under sustained loading".

Part I: Experiments (1985). (5-85-5)

62 Frénay, J.W. "Shear transfer across a single crack in reinforced concrete under sustained loading".

Part II: Appendices (1985). (5-85-6)

63 Frénay, J.W. "Shear transfer across a single crack in reinforced concrete under sustained loading".

Part III: Analysis of Experiments (1985). ^ (5-85-7)

64 Frénay, J.W. "Shear transfer across a single crack in plain con-crete under sustained loading".

Experiments and analysis (1985). (5-85-13)

65 Pruijssers, A.F., Liqui Lung, G. "Shear transfer across a crack in concrete subjected to repeated loading" (1985).

(5-85-12)

66 Stroband, J., Kolpa, J.J. "Demountable construction".

Analysis of the behaviour of a 1:5 scale floor bay; Part 1, Serie C - monotonically increasing and repeating load (1985).

(5-85-14)

67 Ir. A.F. Pruijssers "Shear resistance of beans based on the effective shear depth" (1986).

(5-86-1)

68 H.A. Körmeling "Strain rate and temperature behaviour of steel fibre concrete in tension" (dissertatie) (1986).

69 H.A.W. Comelissen "State-of-the-art report on Fatigue of plain concrete" (1986).

(5-86-03/revised)

70 Frénay, J.W. "Behaviour of a single crack in reinforced and plain concrete subjected to sustained shear loading. Empirical formulae for the crack displacements" (1986).

(5-86-11)

71 Frénay, J.W., Liqui Lung, G. , Pruijssers, A.F. "Shear transfer across a single crack in reinforced concrete. Additional detailed tests" (1986).

(5-86-5)

72 Veen, C. van der "Properties of concrete at very low temperatures. A survey of the literature" (1987).

(78)

the behaviour of a 1:5 scale floor bay; Part 2, Serie D; cyclic loading; experiments (1987).

(25-87-21)

SR - 74 Stroband, J., Kolpa, J.J. "Demountable construction". Analysis of the behaviour of a 1:5 scale floor bay; Part 2, Serie D; cyclic loading; appendice (1987).

(79)
(80)

.ri*»*

Civiele Techniek

(81)

C l

MB.

Vervaldatum Expiry Date

Verlengen

Tot en met de vervaldatum kunt u informatie-media (mits deze niet gereserveerd zijn) als volgt verlengen:

• online in de Bibliotheekcatalogus (kies 'User Accounf)

• bij de Informatiebalie • per e-mail of telefoon

Voor nadere informatie kunt u de helpfunctie in de Bibliotheekcatalogus raadplegen. To Renew

Up to and including the expiry date you can renew information media (provided these have not been reserved):

• online through the Library Catalogue (choose "User Accounf)

• at the Information desk • by e-mail or telephone

Please look under the help button in the Library Catalogue for additional information.

T +31 (0)15 27 85678 E info@library.tudelft.nl I www.library.tudelft.nl

T U Delft

Bibliothe

(82)

I TU Delft Library

Cytaty

Powiązane dokumenty

Stwierdzenie bezdyskusyjnych przemian cywilizacyjnych i związanego z nimi coraz łatwiejszego dostępu do zróżnicowanych źródeł informacji nie po- winno jednak, w

Warto było jednak na początku prac zaznaczyć, że oczekiwania badaczy mogą być inne, a powtarzanie się tematów nie jest wadą badań, ale ciekawą wskazówką analityczną, przy

Zjawisko wykorzystania tego samego schematu melodycznego odnotowujemy również w utworach Święty Andrzeju oraz Do świętego Andrzeja Boboli (Patrona Warszawy).. Tu z kolei mamy

When the decreasing reaches to the point when the position of short column will be placed on the inner side of the inner column, a centre column must be added to the section to

Widmo dźwięku fortepianu jest mieszane: część szumowa, pochodząca częściowo z działania mechanizmu młotkowego, dla dźwięków wysokich urywa się przewaŜnie w rejonie

In consequence of the bending moments there develops at every cross—section a strain distribution which depends, on the one hand, on the nature of the materials of which tliat

backward stochastic differential equations, Fourier cosine expansion method, Eu- ropean options, market imperfections, jump-diffusion process, utility indifference pricing.. AMS

In later paragraphs of this section, i t will be shown that the Stream function wave theory provides a better fit than other theories to the boundary