• Nie Znaleziono Wyników

Multiresonant converter to be applied in power supply systems of telematics equipment

N/A
N/A
Protected

Academic year: 2022

Share "Multiresonant converter to be applied in power supply systems of telematics equipment"

Copied!
8
0
0

Pełen tekst

(1)

5th IN T E R N A T IO N A L C O N F E R E N C E

T R A N SP O R T S Y S T E M S T E L E M A T IC S T S T ’05

Z E SZ Y T Y N A U K O W E P O L IT E C H N IK I Ś LĄ SK IEJ 2005

T R A N S P O R T z.59, nr kol. 1691

multiresonant converter, :ero-voltage-switching (ZVS) E lżbieta SZY C H T A 1

M U L T IR E S O N A N T C O N V E R T E R TO BE A P PL IE D IN P O W E R SU PPL Y SY S T E M S O F T E L E M A T IC S E Q U IPM E N T

T h e article p resents properties o f Z V S bu ck m u ltiresonant co n v erter in p ow er supply system s o f teleco m m u n icatio n s equipm ent. C onfig u ratio n o f system elem ents enables application o f th e technique o f sw itc h in g sem ico n d u cto r elem ents at zero v oltage (ZV S). Z ero-voltage sw itch in g allow s for high frequencies o f the system operation w hile m aintaining a high energy efficiency and op eratin g reliability.

R esults o f sim ulation testin g o f the converter, based on S im plorer softw are, are presented.

M U L T IR E Z O N A N S O W Y P R Z E K S Z T A Ł T N IK D O Z A S T O S O W A N IA W S Y S T E M A C H Z A S IL A N IA U R Z Ą D Z E Ń T E L E M A T Y K I

A rty k u ł przed staw ia w łasności p rzek sz ta łtn ik a m u ltirezonansow ego Z V S o bniżającego napięcie D C do z a sto so w an ia w system ach zasilan ia u rządzeń telem atyki. K o n fig u rac ja elem entów układu um o żliw ia zasto so w an ie techniki przełączan ia elem en tó w półprzew o d n ik o w y ch przy zerow ym napięciu (ZV S), co pozw ala n a uzyskanie w ysokich częstotliw ości p racy układu p rzy zachow aniu w ysokiej sp raw n o ści energetycznej oraz n iezaw odności działania. P rz ed staw io n o w y n ik i b adań sym ulacyjnych p rzek sz ta łtn ik a w op arciu o program Sim plorer.

1. IN T R O D U C T IO N

D em and for high-frequency pow er processing has led to developm ent o f research into quasi-resonant converters, w here sem i-conductor pow er elem ents are sw itched at zero voltage (ZV S Q R C ) o r zero cu rrent (ZC S Q R C ) [1],

E nergy efficiency and operating reliability o f the converters depend to a large extent, on the conditions o f transistor and diode sw itching processes. P ow er losses occur during turn-on and turn-off, w hich are a result o f current in the sw itched circuit m ultiplied by voltage in the sw itched sem i-conductor elem ents. A t high frequencies, p arasitic inductances o f connections and tran sisto r and diode capacitances form resonant circuits w hich generate parasitic electrom agnetic oscillations. P arasitic im pact o f diode capacitance occurs in the state o f transistor conductance, w hile parasitic im pact o f transistor capacitance upon the circ u it’s operation obtains in th e condition o f diode conductance.

1 F acu lty o f T ransport, P o litech n ik a R adom ska, M a lczew sk ie g o 29, 26 -6 0 0 R adom , P oland e.szy ch ta@ p r.rad o m .p l

(2)

E lżbieta SZY C H , ZC S and ZV S quasi-resonant converters provide good sw itching conditions for either the transistor or the diode, but not for both the elem ents at the sam e tim e. U ndesirable oscillations, caused by parasitic capacitances o f sem i-conductor elem ents and parasitic inductance o f connections, as w ell as occurrence o f hard com m utation o f currents or voltages lim it the possibilities o f applying quasi-resonant converters to pow er processing at high- frequency sw itching [7],

R esearch into resonant system s w here sw itching o f all sem i-conductor elem ents occurs in advantageous conditions, i.e. at soft com m utation o f currents or voltages, has led to developm ent o f m ultiresonant converters [1,4]. The converters m ay be applicable in power supplies for transport telem atics equipm ent, w here supply o f constant voltage and precise value is required at high energy efficiency and operating reliability.

2. T O P O L O G Y OF ZV S BU C K M U L T IR E S O N A N T C O N V E R T E R

ZV S b uck m ultiresonant converter is show n in Fig. 1.

Fig. 1. Z V S b u ck m u ltiresonant converter

T he circuit is supplied w ith voltage E. T ransistor M O SF E T T o f output capacitance Cos is sw itched at the frequency f . A ntiparallel diode D s represents the body diode o f a MOSFET.

The rectifying diode D is characterised by a parasitic output capacitance Co d■ The converter’s resonant circuit com prises passive elem ents: resonant inductance L, resonant capacitance Cs in parallel w ith th e tran sisto r T, and the capacitance Cd in parallel w ith the diode D. Elements o f the resonant circuit operate w ith the circ u it’s parasitic reactances, that is, inductance L

’’absorbs” the leakage inductance o f the transform er and the capacitances Cs and Cd in parallel connections ’’absorb” parasitic capacitances Cos, Cod■ C onfiguration o f the elements allow s for application o f the zero voltage sw itching technique o f both the transistor and the rectifying diode. C apacitance C f and inductance L f are filter com ponents.

3. O P E R A T IO N O F T H E B U C K M U L T IR E S O N A N T C O N V E R T E R

D uring the sw itching cycle, the buck ZV S ( F ig .l) operates in four topological stages as show n in Fig. 2. The high filter inductance L f lets th e load be presented as a current source Io- T he control m ethod should ensure sw itching o f the transistor T at zero voltage.

(3)

M ultiresonant converter to be applied in pow er supply system s o f telem atics equipm ent 463 In the first operating stage (Fig.2a), the transistor T conducts, and the resonant current 4 is low er than the load current I0. The current source I0 forces the rectifying diode D to conduct the current difference Io - 4- V oltage o f the drain - source transistor ucs is zero and the d io d e’s voltage is u c d W hen the resonant current 4 reaches the value I0, the diode D is turned off, the process o f com m utation begins, and the circuit enters the second operating interval.

In the second operating stage (Fig.2b) rectifying diode D is off, and the resonant current 4 is conducted by: the transistor T, inductance L, capacitances Cd and Cod■ V oltage o f the drain - source transistor uCs is zero. The process o f charging capacitance CD and the parasitic capacitance Cod o f the diode D w ith resonant current 4 begins. The second operating range ends w hen the tran sisto r is turned o f f (at zero voltage uCs)-

In the third operating stage (Fig.2c) transistor T and diode D do not conduct.

C apacitance Cs and the parasitic capacitance Cos o f the transistor, capacitance Cd and the parasitic capacitance Codo f the diode overload with the resonant current 4 . I f the voltage uCd

o f capacitance Cd and capacitance Codreaches zero, and the voltage ucs o f capacitance Cs and capacitance Cos is still positive, the third operating stage finishes, and the diode D turns on. In the fourth operating stage (Fig.2d) capacitance Cs and the parasitic capacitance Cos o f the tran sisto r T discharge w ith the resonant current 4 w hen the rectifying diode D conducts.

The fourth stage ends w hen the transistor voltage ucs reaches zero. T ransistor T is ready to turn on in the next cycle o f converter operation.

If, in the end o f the third operating stage, the voltage uCs o f capacitance Cs and capacitance Cos reaches zero, and the voltage ucd o f capacitance C d and capacitance Cod is still positive, then, in the fourth operating stage (Fig.2e), capacitance Cd and parasitic capacitance Cod o f th e diode D discharge w ith the resonant current 4 w hile the antiparallel diode D s is conducting. The fourth stage ends w hen th e voltage uCd o f the diode D reaches zero. T ransistor T is ready to turn on in the next operating cycle o f the converter.

Fig.2. R esonant circuit a) in the first stage, b) in the second stage, c) in the third stage, d) in the fourth stage i f cap ac itan c e C o and capacitance Coddisch arg ed earlier; e) in th e fourth stage i f capacitance C s and capacitance C os discharged earlier

(4)

E lżbieta SZY C H T ^ T he m ethod o f control allow s the transistor to turn on at the m om ent w hen the resonant current fr reaches zero. W ithin th e range o f the tran sisto r’s conduction, the cu rrent it is:

C + C

—J1——21L . £ - s in

4 L (C D + C0D)

(

1

)

M axim um tim e tmax by w hich the transistor m ust be turned o ff is defined for the value o f current iL equal to the load current /<*, that is:

;r - arcsin(Z)

^max j (2)

4 L(Cd + C od)

where:

\C D + C (3)

w here: k - norm alized load current.

M ultiresonant ZV S converter is characterised by the follow ing param eters:

1 1 f C + C U

f — . f — 1 r _ r OD . . x _ ^_o__

2p \ ]l{Cs + Cos) D 2P Jl(c d+cJ N f s ’ N Cs + Cos ' E

w here: / - sw itching frequency, fs, f o - resonant frequencies, f n - norm alized sw itching frequency,

C,v - ratio o f capacitance,

M - conversion ratio (relative input voltage).

Param eters A /a n d k are necessary to design the co n v erter’s circuit [1], O n the basis o f a fam ily o f control characteristic curves M = f(fn) for CV = var, in consideration o f the changes o f m axim um transistor voltage in function o f norm alized sw itching frequency f N for C,v= var, the circuit’s operation area at zero-voltage sw itching is defined that ensures stable course o f characteristic curves in the full rage o f voltage and load and at m inim um possible value of ratio Cfj.

4. S IM U LA TIO N TESTS

M ultiresonant converter ZV S was subject to sim ulation testing w ith the aid o f Sim plorer. The sim ulation testing w as carried out for the m odel show n in Fig.3. The sim ulation m odel uses a transistor M O SFE T IR FP460 (output capacitance C os=870pF) and an ultrafast diode H F A 25T B 60 (output capacitance Co/r= lOOpF) o f International Rectifier.

(5)

M ultiresonant converter to be applied in pow er supply system s o f telem atics equipm ent 465 The resonant circuit includes elem ents o f the follow ing values: L = 7 pH , C.y = lOnF, Cd = var.

R esonant frequency f s = 577kH z. S upply voltage E = 200V , load current / = 10A. B ased on observation o f voltage and current w aveform s resulting from th e sim ulation, a range o f sw itching frequency w as selected w here ZV S sw itching for the target value o f load current is ensured. F or the presented circuit param eters, w here Cn = 2,3, the range is 625kH z < / <

909kH z.

Fig.4. C urrent an d v oltage w aveform s o f buck Z V S M R C , obtained as a result o f sim ulation, C \ = 2 , 3 , / = 625kH z

(6)

-200.0

•400.0

oaoou 82-OOu 64.00u B8.00U 68 00u

'

-2 5 .0 0

(¡O.OOu « 2 .0 0 U S4 0 0 U «e.O Ou 6 8 OOu

v r ' v "

5 0 .0 0 10 [A ]

2 5 .0 0

\ ....

l\

K ~ t ~ ~

K

0

\ \ \ lx

v

-2 6 .0 0

-5 0 .0 0

6 0 . 0 0 U 62 . OOu 6 4 .0 0 U 6 8 -OOu 6 8 .0 0 U

•»#.0 - ...

H

-4 0 0 0

«O.OOu 8 3 .004) 64 00u M O O u 6>.00u

Fig.5. C urrent and v oltage w av efo rm s o f b u c k ZV S o b tain ed as a resu lt o f s im u la tio n ,C \= 2 , 3 , / = 909kH z

Fig.4 and 5 show cu rrent and voltage w aveform s o f th e converter during steady operation for th e values o f frequency / = 625kH z a n d / = 909kH z, w hen Cn = 2,3. C urrent and voltage w aveform s in the steady state are stable in nature. W hen / = 625kH z, th e transistor voltage ucs does n o t exceed the value o f voltage E, and the diode voltage ucd does not exceed double the value o f voltage E. T he increase o f sw itching fre q u e n c y /in flu e n c e s grow th o f the transistor voltage u Cs and drop o f the diode voltage uCd, and reduces losses in th e transistor, as the im pact o f p arasitic capacitance on the circ u it’s operation increases in the circum stances.

Param eters o f the tran sisto r and the diode lim it th e range o f the co n v erter’s switching frequency.

S im ulation te sts have confirm ed the influence o f transistor and diode param eter values, and values o f elem ents o f the resonant circuit, on the converter’s stability and efficiency. The value o f capacitance C s should be m arkedly higher than th at o f parasitic capacitance Cos, in o rder to take over a dom inant share o f resonant current. C hoice o f a transistor o f the lowest possible output capacitance Cos, results in increased efficiency o f the converter. I f the ratio Cn is sm all, the co n v e rter’s operation proves unstable. In the case o f presented circuit param eters, the co n v erter’s operation is stable if C V > 2,2. The value o f capacitance ratio Cn is increased by choice o f th e capacitance C d values (w hile keeping in m ind the presence o f parasitic capacitance C o d ) -

(7)

M ultiresonant converter to be applied in pow er supply system s o f telem atics equipm ent 467

Fig.6 show s current and voltage w aveform s o f the converter during stable operation w hen Cn = 4,6. The higher the ratio Cn is, the higher the m axim um value o f resonant current in th e inductance L and the conducting losses, thus the low er the circ u it’s efficiency. G row th o f the ratio Cn low ers the sw itching frequency, raises the transistor voltage uCs, and reduces the diode voltage u c d -

5. C O N C LU SIO N

S im ulation testin g o f th e converter under analysis leads to the follow ing conclusions:

1. S w itching o f the transistor and the rectifying diode at zero voltage in resonant converters (ZV S ) enables to obtain high operating frequencies o f the converter w hile m aintaining high energy efficiency and operating reliability, since parasitic capacitances o f the tran sisto r and the diode, parasitic inductances o f connections and the leakage inductance o f the transform er are involved in the resonant circuit.

(8)

2. Z ero-voltage-sw itching m ultiresonant converters provide advantageous conditions for zero-voltage sw itching o f b oth the transistor and the diode. The transistor and the diode voltage levels, and m agnitudes o f parasitic capacitance currents can be reduced by choice o f parallel resonant capacitances.

3. M ultiresonant buck ZV S converter generates D C voltage w ithin a range o f frequency in the area o f stable operation and can be used in pow er supplies for transport telem atics equipm ent, w here h igh energy efficiency and operating reliability are required.

4. R esearch should continue on real m odels to verify and confirm results o f sim ulation testing u nder conditions o f the converter’s pow er supply and load. A ctual tests should determ ine perm issible ranges o f operating frequency, w here electrom agnetic com patibility o f telecom m unications, control and m onitoring equipm ent used in transport telem atics is obtained.

B IB LIO G R A PH Y

[1] C IT K O T., T U N IA H ., W IN IA R S K I B. „U kłady rezonansow e w en ergoelektronice” (R eso n an t Converters in P o w er E lectro n ics), W y d aw n ictw a P olitechniki B iałostockiej, B iały sto k 2001.

[2] JA N U S Z E W S K I S., Ś W IĄ T E K H ., Z Y M M E R K. „P ó łp rzew o d n ik o w e p rzyrządy m o cy ” (Sem i-C onductor P o w er D evices), W arszaw a. 1999, W K Ł.

[3] S Z Y C H T A E. “H ig h F requency V oltage Inverter w ith an A dditional R esonant C ircu it” , Jakość i U żytkow anie E nergii E lektrycznej, vol. 10, bo o k 1 /2 ,2 0 0 4 .

[4] S Z Y C H T A E. “ W łasności m u ltirezonansow ych przek ształtn ik ó w D C ” (Properties o f D C M ultiresonant C onverters), P rz eg ląd E lek tro tech n iczn y , in th e Press.

[5] S Z Y C H T A E. “ W pływ p o jem n o śc i w yjściow ych tranzystorów ty p u M O SF E T na pracę jednofazow ego szeregow ego falo w n ik a n ap ięcia” (Im p act o f Input C apacitances o f M O SF E T T ran sisto rs upon the O peration o f O n e-P h ase S eries V oltage Inverter), P rzegląd E lektrotechniczny, nr4 2005.

[6] T A B IS Z W .A ., L E E F.C . “D C analysis and design o f zero-voltage-sw itched m u lti-reso n an t converters”, P ow er E lectronics S p ecialists C onference, 1989. P E S C '89 R ecord., 20th A nnual IEEE V olum e, Issue, D ate: 2 6 -2 9 Ju n 1989, p. 243 - 251 v o l.l.

[7] T A B IS Z W .A ., Lee F.C .Y . “Z ero -v o ltag e-sw itch in g m u ltiresonant technique-a novel ap p ro ach to improve perform ance o f h ig h -freq u en cy q uasi-resonant co nverters” , P o w er E lectronics, IEE E T ransactions on V olum e 4 , Issue 4, D ate: O ct 1989, p. 4 5 0 - 4 5 8 .

R eview er: Ph. D. Jerzy Mikulski

Cytaty

Powiązane dokumenty

On ignore cependant lequel de ces récits aurait in- fluencé Charles Perrault dans sa rédaction de Barbe Bleue, ayant pour héros un personnage atroce et suscitant

1) two-way power scheme, 2) nodal, 3) parallel Th e theory of calculation the instant schemes of electric power supply specifi es the usage of functions for power

a) dielectric losses (tan 6) as measured on a 40years old oil filled power cable length 12.4 km using damped AC voltages (23 Hz) in function of the test voltage up to 1.5 U0;

Abstract: The paper describes new approaches to high-efficient high-frequency power supply design for specialized computer systems, which require high load current

• It receives the 400V(460) three-phase mains supply (terminal block B2) and provides the dc voltage power output (550 V internal bus) to the DIGIVEX servoamplifiers.. • It

Railway power supply system’s safety related functions are examined and each function is modelled in detail using Markov modelling method in section 4.. Finally results and

Three modes of (MVAR) control are implemented on the super high voltage grid system at its worst operating condition, to recognize the significance and the efficiency of the

On this background the protection principles for water supply systems were formulated, the purpose of which is to prepare the resources and the public for