• Nie Znaleziono Wyników

Coulomb and nuclear excitations of narrow resonances in ^{17}Ne

N/A
N/A
Protected

Academic year: 2022

Share "Coulomb and nuclear excitations of narrow resonances in ^{17}Ne"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Coulomb and nuclear excitations of narrow resonances in 17 Ne

J. Marganiec

a,b,c

, F. Wamers

a,b,c,d

, F. Aksouh

b

, Yu. Aksyutina

b

, H. Álvarez-Pol

e

,

T. Aumann

a,b

, S. Beceiro-Novo

e

, C.A. Bertulani

f

, K. Boretzky

b

, M.J.G. Borge

g

, M. Chartier

h

, A. Chatillon

b

, L.V. Chulkov

i,b

, D. Cortina-Gil

e

, H. Emling

b

, O. Ershova

b,j

, L.M. Fraile

k

, H.O.U. Fynbo

l

, D. Galaviz

g

, H. Geissel

b

, M. Heil

b

, D.H.H. Hoffmann

a

, J. Hoffmann

b

, H.T. Johansson

m

, B. Jonson

m,∗

, C. Karagiannis

b

, O.A. Kiselev

b

, J.V. Kratz

n

, R. Kulessa

o

, N. Kurz

b

, C. Langer

b,j

, M. Lantz

p

, T. Le Bleis

b,q

, R. Lemmon

r

, Yu.A. Litvinov

b

,

K. Mahata

b,s

, C. Müntz

b

, T. Nilsson

m

, C. Nociforo

b

, G. Nyman

m

, W. Ott

b

, V. Panin

a,b

, S. Paschalis

b,h

, A. Perea

g

, R. Plag

b,j

, R. Reifarth

b,j

, A. Richter

a

, C. Rodriguez-Tajes

e

, D. Rossi

b,u

, K. Riisager

l

, D. Savran

c,d

, G. Schrieder

a

, H. Simon

b

, J. Stroth

j

, K. Sümmerer

b

, O. Tengblad

g

, S. Typel

b

, H. Weick

b

, M. Wiescher

t

, C. Wimmer

b,j

aInstitutfürKernphysik,TechnischeUniversitätDarmstadt,DE-64289Darmstadt,Germany bGSIHelmholtzzentrumfürSchwerionenforschungGmbH,DE-64291Darmstadt,Germany cExtreMeMatterInstituteEMMIandResearchDivisionGSI,DE-64291Darmstadt,Germany dFrankfurtInstituteforAdvancedStudiesFIAS,DE-60438FrankfurtamMain,Germany

eDepartamentodeFísicadePartículas,UniversidadedeSantiagodeCompostela,ES-15782SantiagodeCompostela,Spain fDepartmentofPhysicsandAstronomy,TexasA&MUniversity-Commerce,TX75429,USA

gInstitutodeEstructuradelaMateria,CSIC,ES-28006Madrid,Spain

hDepartmentofPhysics,UniversityofLiverpool,Liverpool, L693BX,UnitedKingdom iNRCKurchatovInstitute,RU-123182Moscow,Russia

jInstitutfürAngewandtePhysik,GoetheUniversität,DE-60438FrankfurtamMain,Germany

kDepartmentofAtomic,MolecularandNuclearPhysics,UniversidadComplutensedeMadrid,ES-28040Marid,Spain lDepartmentofPhysicsandAstronomy,UniversityofAarhus,DK-8000Aarhus,Denmark

mFysik,ChalmersTekniskaHögskola,SE-41296Göteborg,Sweden

nInstitutfürKernchemie, JohannesGutenberg-UniversitätMainz,DE-55122Mainz,Germany oInstytutFizyki,UniwersytetJagello´nski,PL-30-059Krakóv,Poland

pInstitutionenförFysikochAstronomi,UppsalaUniversitet,SE-75120Uppsala,Sweden qPhysik-DepartmentE12,TechnischeUniversitätMünchen,DE-85748Garching,Germany rNuclearPhysicsGroup,STFCDaresburyLab,Warrington, WA44AD,Cheshire,UK sNuclearPhysicsDivision,BhabhaAtomicResearchCentre,Trombay,Mumbai,400085,India tJINA,UniversityofNotreDame,NotreDame,USA

uNationalSuperconductingCyclotronLaboratory,MSU,EastLansing,MI 48824,USA

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received16February2016

Receivedinrevisedform11April2016 Accepted22May2016

Availableonline25May2016 Editor:V.Metag

Newexperimentaldatafordissociationofrelativistic17Neprojectilesincidentontargetsoflead,carbon, and polyethylenetargetsatGSIare presented.Specialattentionispaidtotheexcitationand decayof narrowresonant statesin17Ne.Distributionsofinternalenergyinthe15O+p+p three-bodysystem havebeendeterminedtogetherwithangularandpartial-energycorrelationsbetweenthedecayproducts in different energyregions. The analysis was done usingexisting experimental data on17Ne and its mirrornucleus17N.Theisobaricmultipletmassequationisusedforassignmentofobservedresonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulombexcitations of the narrow resonant states. The

*

Correspondingauthor.

E-mailaddress:Bjorn.Jonson@chalmers.se(B. Jonson).

http://dx.doi.org/10.1016/j.physletb.2016.05.073

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

resulting transition probabilities provide information relevant for a betterunderstanding ofthe 17Ne structure.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

The proton dripline nucleus 17Ne is a candidate for a two- protonBorromeanhalonucleus[1],witha15Ocoresurroundedby two valenceprotons. The protons are expectedto predominantly possessamixed(1s1/2)2and(0d5/2)2configuration.Thereis,how- ever,norealconsensus abouttherelativestrengthofthes andd configurations,neither experimentallynor theoretically. Estimates basedonexperimentalvaluesforinteractioncross-sectionandmo- mentumdistributions offragmentsinone-protonknockout [2–5], the magnetic dipole moment [6], first-forbidden β+-decay [7,8], Coulomb energy difference between the mirror nuclei 17Ne and 17N[9–13],aswellaspuretheoreticalinvestigations[14–16],pro- videwidelydifferingresults.Differentevaluationsoftheamountof (1s1/2)2inthe17Neground-statewavefunction,P(s2),range from 15%to100%. Thereare alsostrongcontradictionsbetweendiffer- enttheoreticalmodelsforCoulombdissociationof17Ne[17–20].

A theoretical study [21] points to the importance of the de- terminationof electric transition strengths to elucidate the two- proton halo properties. The authors emphasise in particular the importance of reduced electric transition probabilities from the 17Negroundstatetolow-lyingstatesasforexampleB(E2,1/2→ 3/2)andB(E2,1/25/2),thatcouldbedeterminedthrough Coulombexcitation.

This paper presents a new comparative study of nuclear and Coulombexcitationof17Neatrelativisticenergiesusingpolyethy- lene(CH2),carbon,andleadtargets.

TheexperimentwasperformedattheGSIHelmholzzentrumfür Schwerionenforschung GmbH in Darmstadt, employing the R3B- LANDsetupformeasurementsininverseandfullkinematics.The reactionproducts, from17Neinteraction, were firstdetected in a pairofsilicon-stripdetectorsandthen separatedinthemagnetic fieldof thelarge dipole magnet(ALADIN).Afterthe magnet, two branchesofdetectorswereused tomeasuretheposition,energy- loss,andtime-of-flight,oneforheavyions(twofibredetectorsand aToF-wall)andanotherforprotons(twodriftchambersPDCand aToF-wall).Thetrajectoriesofchargedparticlesthroughthemag- neticfieldofALADINwerereconstructedforparticleidentification anddeterminationoftheir momentumvectors. The chargeofthe particleswasdirectlymeasuredviatheirenergylossinthesilicon- stripdetectorsandToF-walls,whiletheirmasswasobtainedfrom measurements of B

ρ

using the reconstructed deflection anglein the ALADIN magnet. This analysis is based on knowledge of the magneticfield inside andoutside the ALADINmagnet, measured alongall threecoordinateaxesatmanythousandsofgrid points.

The

γ

-raysemittedbythede-excitingfragmentsweredetectedin the4

π

gamma spectrometer, CrystalBall, placed around thetar- get.Asketch ofthepositions ofthecharged-particle detectorsin theexperimentalsetupisshowninFig. 1ofRef.[22].

The17Nebeamwas directedtowards asecondary199mg/cm lead target, used to induce electromagnetic excitation of 17Ne.

Theexperimentalsotook datawitha 370mg/cm2 carbontarget aswell as a 213 mg/cm2 polyethylene target, to study nuclear- inducedbreakup.Thebackgroundwasdeterminedinrunswithan emptytarget.

Triple coincidences between 15O and two protons were se- lected.Theintrinsictwo-protondetectionefficiencywas57.8(3.1)%.

Thedetectionefficiencywasdeterminedfromlossesoftwo-proton eventsduetotoosmallenergydepositedinthePDCs,lossesdur- ingthereconstruction ofprotontrajectoriesinthemagnetic field ofALADIN, andlosses dueto the spatial resolution inthe PDCs.

ThelossesduetoPDCresolutionareincreasing withthedecreas- ing internal energy in the three-body system. However even at theenergyofthe17Ne(5/2) resonancethechangeinthedetec- tion efficiencywas found to be smallerthan its uncertainty. The magneticspectrometer provided largedifference inprotontrajec- tories.Quadruplecoincidences, including

γ

-raydetectors,showed thatcontributionsfromexcitedstatesin15Oarenegligible.

The momentumvectorsofthe protonsandthe 15Ofragments wereobtainedintherestframeofthebeam.AsinRef.[22]andits Eq.(1),JacobicoordinatesintheY-systemwereusedintheanaly- sis.Theinternalkineticenergy,Ef pp,inthethree-body15O+p+p system, aswell asthe fractional energies



f p=Ef p/Ef pp in the fragment-proton subsystem and the angle θf p between the two vectorspf p andppf p,was determinedforeach event.The anal- ysis was done in two consecutive loops through each event, by selectingonedetectedprotonasthefirstoneinthefirstloopand thenchanging totheoppositeorderinthesecond loop.The data were corrected for acceptance. The overall acceptance, including momentumcutsduetothefinitesizeofdetectorsanddeadwires intheprotondriftchambers,wascalculatedinaMonte-Carlosim- ulation under the assumption of isotopic three-body decay. The acceptance function on Ef pp isshown in Fig. 3of Ref. [22].The experimental energyresolutionwas found to becloseto a Gaus- sianshapewithadispersion

σ

=1.83E0f pp.568 MeV.

The correlation functions, for the fractional-energy distribu- tions W(



f p)aswellasfortheangulardistributions W(θf p),nor- malised to unity (1

0 W(



)d



=1 and 1

1W(θ )dcosθ=1) were thenconstructedandanalysed.

The experimental excitation energy spectra, E = Ef pp + S2p(17Ne), shown in Fig. 1,are well described asresulting from the contribution of several excited states in 17Ne, superimposed onasmoothbackground,shownasdashedlines.Thisbackground corresponds to non-resonant dissociation and may also contain contributionsfromunresolvedresonances.Based onexperimental results[25],thewidthsoftheresonancestructureswereassumed as determined entirely by the experimental resolution. A least- squaresfit was performedusingthe functional minimisationand erroranalysis codeMINUIT [24]. The smooth background,shown asdashedlinesinFig. 1,correspondstonon-resonantdissociation and may also contain contributions from unresolved resonances.

Extrapolation of thissmooth backgroundinto theregion ofreso- nanceswas donebyusinginformationfromtheW(



f p)distribu- tions(seeFig. 5).

Five resonance-like structures corresponding to excitations of narrowresonantstatesin17Neareobservedinthedatafromthe CH2 andCtargets,whileonlythreeareidentifiedinthedatafrom thePbtarget (seeFig. 1andTable 1). Thelevelstructureof17Ne hasbeenstudiedearlierusingthe three-neutrontransfer reaction 20Ne(3He,6He)[25].Theseresultswereusedasafirstguidancein ourinterpretation together withtheavailable experimental infor- mationaboutthestructureofexcitedstatesinthemirrornucleus 17N[26].Atomicmassesandenergylevelsofthe A=17,T=3/2 isobaric multiplets taken from Refs. [27,28] were also used to- gether withthe isobaricmultipletmassequation (IMME)andthe Thomas–Ehrmanshifts(TESs) fortheclassificationofthestates.

(1) The firstpeak inthe spectrumisdueto an unresolved doublet consisting of two narrow states at 1.764(12) MeV (Iπ= 5/2) and at 1.908(15) MeV (1/2+) [25]. The relative contribu-

(3)

Fig. 1. Excitationspectraof17Neafterbreakupof17Ne500MeV/u beamto15O+ p+p inpolyethylene,carbonandleadtargets.Thenumbersinparentheses referto theresonancespresentedinTable 1.

tions of these two states were obtainedfrom an analysisof the three-body correlationsin theenergyregion 0<Ef pp<1.4 MeV (seebelow).

(2) The second peak at E=2.652 MeV (see Table 1) is close in energy to the observed excited state at 2.651(12) MeV [25]. This state was interpreted to be an =5/2+ state. How- ever,a5/2+state isunlikelytobefedinaPbtarget byCoulomb excitation due to the small strength of the required E3 or M2 transitions. Hence, the possibility that the observed peak is due to an unresolved doublet cannot be excluded. Overlapping states withthespin-parity,5/2+1 and5/22,wereproposed(seeRef.[25]

andreferences therein).However, in thiscasean unusuallylarge

Table 2

Isobaric multiplet mass equation coefficients and Thomas–Ehrman shifts (keV), (TES),forA=17,T=3/2 states.Seeexplanationsinthetext.

Iπ a b c χ2 TES

3/21 13025(1.2)2844.8(1.3) 219.8(3.6) 0.3947(14) 5/21 1349(2.5)2825.0(3.5) 210.10(4.9) 0.61 20(16) 1/2+ 13523(3.8)2896.4(4.7) 240.28(5.5) 0.00190(19) Assuming 5/2+1 and 3/22 both at E=2.651 MeV.

5/2+1 14219(2.9)2910.5(3.8) 247.9(4.9) 2.4 3/22 14729(3.2)2699.4(4.5) 169.4(5.0) 2.4 Fit to only17F,17O and17N isobars.

5/2+1 14220(3.0)2906.2(4.7) 237.8(8.1) 220(23) 3/22 14730(3.2)2706.2(6.3) 179.5(8.4) 380(16)

negative cubic-term coefficient is required (d= −25 keV) in the isobaricmultiplet massequation(IMME)forthe5/22 iso-quartet and furthermore the Thomas–Ehrmanshift for the 5/22 state is surprisinglylargeinthiscase(≈1 MeV).1Analternativehypothe- sisisanunresolveddoubletof5/2+1 and3/22 states.Theparabolic IMME wasused intheanalysis(see Table 2). The positionofthe T=3/2, =3/22 state in17Ois not known,but the assump- tionofadoubletrequiresthatthepositionsofthe5/2+1 and3/22 statesin17Nearecloseinenergy,whichonlyleavesonepossibil- ityforthisstate –anarrowstate at14.230(2)MeV. Thefitusing only three states from 17N, 17O and 17F allows then to make a predictionforthepositionsofstates:5/2+1 at2.614(20)MeVand 3/22 at 2.692(21) MeV, respectively. The resulting TES(3/22)= 380(16)keV,is muchlarger than TES(3/21)= −47(14)keV. The structureoftheanalogstatesinthemirrornucleus17Nhasshown that the 3/21 and3/22 states have wave functions [26] with a 14%configurationwithonevalenceprotoninthes-shellfor3/21 and86%for3/22 [26].Asimilarstructureisexpectedfortheana- logstatesin17Ne.ThusasmallvalueforTES(3/21)andalargefor TES(3/22) can beexplained asa largeasymmetry inthe weights of theconfiguration withone valencenucleon inthe s-shell and thelargespatialextensionofthes-waveprotonwavefunction.2

(3) The excitation energy of the third peak, at E = 3.415(38) MeV, is close to the observed position of the 9/2 state at E=3.548(20)MeV [25], butthe energydifference and the factthat thereis nosignofa 7/2 state,which should have similar structureasthe9/2 state[26],excludessuchan assign-

1 TheThomas–Ehrmanshift,TES(Iπ),wasdefinedasthedifferencebetweenthe distancesfrom7/2toIπstatesinthemirrornuclei17Neand17N.The7/2states werechosenasreferencesincetheCoulomb-energyshiftsforthesestates,having three-bodystructurewithtwovalencenucleonsinthed-shell,areexpectedtobe small.

2 NotealsoalargenegativeTESforpositive-paritystates.Thesestatescannotbe incorporatedinthethree-bodymodelsgenerallyusedforthedescriptionof17Ne structureandreactionsinvolvingthisnucleus.Anexplanationoftheexperimental parity-dependenceoftheCoulomb-energyshiftsoftheA=17 iso-quartetwassug- gested,e.g.,inRef.[13],usingamodelwithfivevalencenucleonsaroundthe12C core.

Table 1

Excitationenergies(MeV)andcrosssections(mb)with statisticalerrorbarsforobservedresonancestructuresin17Neexcitationspectra.ThenumberNreferstothe structuresshowninFig. 1.

N CH2 Carbon Lead

E σ E σ E σ

(1) 1.790(5) 4.89(15) 1.780(8) 3.25(15) 1.813(15) 14.08(93)

(2) 2.652(10) 2.39(14) 2.571(37) 1.17(10) 2.603(45) 7.68(74)

(3) 3.422(44) 1.38(12) 3.393(78) 0.646(87)

(4) 5.79(12) 1.13(22) 5.40(20) 0.47(19) 5.210(79) 14.4(1.7)

(5) 10.06(16) 2.10(35) 10.69(59) 0.91(46)

(4)

Fig. 2. Narrowresonancestatesinthelow-energyregion,0<E<4MeV excited inthe CH2 target.Thethinsolid linesshow negative-paritystates,dashed lines stemforpositive-paritystatesandthedash-dottedlineisphysicalbackground.For energyregionsI,IIandIIIthefractionalenergyspectraareanalysedasshownin Figs. 3,4 and5,respectively.

Table 3

Excitationenergiesandcrosssections(mb)withstatisticalerrorsforresolvedreso- nancesin17Ne.

Iπ E CH2 C H Pb

5/2 (i) 1.764(12) 4.04(20) 2.44(18) 0.80(14) 11.6(1.5) 1/2+ (i) 1.908(15) 0.85(15) 0.81(15) <0.1 2.5(1.2) 5/2+ 2.614(20) 0.97(51) 1.14(10) <0.2 7.68(74) (3/22) 2.692(21) 1.40(53) <0.3 0.70(26)

(5/22) 3.415(38) 1.37(12) 0.62(10) 0.38(8) (3/2+) 5.210(79) 1.13(22) 0.46(19) 0.33(15) 14.4(1.7) (i)EnergiesanderrorsarefromRef.[25].

ment.The17Nelevelschemeisratherintricate, whichmakesthe analysis knotty. The three-neutron transfer reaction has a selec- tivity to excitation of states with a definite structure and some states may therefore be missed. A comparison with the level schemeof mirror nucleus, 17N,suggests that this state could be the second 5/2 state. The analysis given in Ref. [26] for the 5/22 state in17N,gave aweight of72% foraconfigurationwith a single proton in the s-shell, a structure similar to that of the 3/22 state. The present value TES(5/22)=359(40) keV is close to TES(3/22)=380(16) keV and is thus in support ofthe 5/22 assignmentforthe E=3.415(38)MeV statein17Ne.

(4)–(5) Two additional resonances at 5.210(79) MeV and 10.06(16)MeVwereobservedinthepresentexperiment,thelatter onlyforthelighttargets.Acomparisonwiththelevelsinthemir- rornucleus17Nandthefactthat theresonanceat5.210(79)MeV isstronglyexcitedwiththeleadtarget,pointstoanassignmentof =3/2+.

The analysisof the narrow resonant statesin the low energy region,basedonthediscussionabove,isshowninFig. 2andthe results are given in Table 3. Cross sections for excitation of en- ergy levels in the 1H(17Ne(g.s.),17Ne(Iπ )) reaction were obtained fromthe relation:

σ

(CH2)=

σ

(C)+2

σ

(H).Thedatademonstrate differentselectivity forthe differenttargets. Thus, forthe hydro- gentarget,positive-parity stateshavelowerexcitation probability comparedtothosewithnegative-parity.Thepartialdecayscheme withdominatingdecaybranchesisshowninFig. 6.

Inorder to extract more information fromthe data, the low- energypartoftheEf pp spectrumwas dividedintothreeseparate regions, asshow in Fig. 2, where thefractional energyspectrum W(



f p)andtheangulardistributionW(θf p)wereconstructedand analysed.Asequentialdecayviaanintermediatenarrowresonance in16Fat



r=Er/Ef pp appearsinthe W(Ef p)distributionastwo peaksat



r and1−



r.A2Hedecay,ordiprotonemission,would

Fig. 3. FractionalenergyspectraW(f p)intheY-systemfortheregionof15O+ p+p internalenergy0Ef pp1.4 MeV fromtheCH2target(a)andPbtarget(b).

Thedistributionsstem fromtheunresolvedresonances17Ne(5/2)and17Ne(1/2+) decayingtothe16Fgroundstate.A fitwithonlyonefreeparametergivestheir relativecontributions.

Fig. 4. FractionalenergyspectraW(f p)intheY-systemfortheregionof15O+ p+p internalenergy1.4Ef pp2.2 MeV fromtheCH2 target(a)andPbtar- get (b).Thinsolidand thickdashed linesshowdecays throughtheintermediate 16F(2)and16F(3)states,respectively.Thesestateshavethestructureof15Owith oneprotoninthed-shell.Thedashedlinesrepresentdecaystothe16F(0)state withthestructure15Owithoneprotoninthes-shell.

Fig. 5. FractionalenergyspectraintheY-systemW(f p)fortheregionof15O+ p+p internalenergy2.2Ef pp3.0 MeV fromtheCH2 target(a)andPbtar- get (b).Thethinsolidlinesshowdecaysto16F(2and3)statesandthedashed linesrepresentdecaysto16F(0and1)states.

be characterised by an asymmetric angular W(θf p) distribution, increasing when θf p gets close to 180. In the present analysis W(θf p) was found tobe closeto isotropic, within statisticalun- certainties,whichexcludesasignificant 2Heemission.Theshapes of the W(



f p) distributions are well described by assuming se- quential decays through the first four excited states in 16F. The parameters forthesestatesweretakenfromRef.[23].The partial W(



f p)shapesarestronglyinfluencedbytheexperimentalresolu- tionandwerecalculatedinMonte-Carlosimulations. TheMINUIT

(5)

Fig. 6. Narrowresonancestatesabovethetwo-protonseparationenergyin17Ne.

Thedominantdecaybranchesoftheresonantstatesto15O+2p,viaintermediate resonantstatesin16F,areshown.Positive-paritystatesarecolouredinredonline.

ResonancesshownasdashedlinesarefromRef.[25]andarenotpopulatedinthe presentexperiment.

code was used forthe least-square fits to the measured W(



f p) spectra.

The fractional energy spectra for the lowest energy bin, 0≤ Ef pp1.4 MeV,areshowninFig. 3.Thepanels(a) and(b) show least-square fits tothe W(



f p) distributions assuming sequential decay from states at excitation energies 1.764 MeV (5/2) and 1.908MeV(1/2+)[25]throughtheintermediate16F(0)state.The distributions W(



f p) are normalised to unity and in the fit the relative intensitywas theonly free parameter used. Forthe CH2 targetthefitgivesa17.5(3.2)% contributionfromthe1/2+ decay, forC25.0(4.3)%(notshown),andforPb17.6(8.7)%,withstatistical errors.

A doublet with 5/2+ and 3/22 states was identified in the energyregion1.4≤Ef pp2.2 MeV (regionIIinFig. 2).Thediffer- enceinexcitationenergyofthesetwostatesismuchsmallerthan theexperimentalresolutionandthedifferenceinshapeofW(



f p) forthedecaybranchesismarginal.The penetrabilitythroughthe Coulomb andcentrifugal barriersfor thedecay of5/2+ to 3 is about20 times smaller than that forthe decay to the 2 state.

Further,thisratioisaround1000forthedecayof3/22 state.The maindecaybranchesforbothstatesarethereforeexpectedtopro- ceedviathe16F(2) state.Theanalysisof W(



f p)froma carbon target gave a decay branch of 86(2)% while the rest can be at- tributedtothefeedingofthe16F(3)state.TheW(



f p)fromCH2 andPbtargetswerefittedwithanassumptionthatthe17Ne(5/2+) and17Ne(3/22) statesdecay predominantlythrough 16F(2) and 16F(0)states.Contributionsfromthe16F(2)branchwere74(2)%

for CH2 and 41(4)% for Pb targets, see Fig. 4. The rest can be attributedtofeedingmainlyofthe16F(0)statewithasmallcon- tributionfromthe16F(3)branch.InthecaseofthePbtarget,the mainpartofthe16F(0)branchiscomingfromacontinuous Ef pp spectrum.

Intheenergyregion2.2≤Ef pp3.0 MeV acontributionfrom the 17Ne(5/22) state is expected. The decay branches from this resonance should proceed mainly by emission of =0 protons, feeding dominantly 2 and 3 states in 16F. The population of 0 and 1 states in the resonance decay requires emission of =2 protons and is expected to be small due to penetrability

factors.Stillthereare sizeablecontributionsinthe W(



f p)distri- butionfromfeedingtothesestates,especiallypronouncedforthe Pbtarget,asshowninFig. 5.Thesepartsofthedistributionswere treatedasaphysicalbackground.

Theratiobetweenthefeedings

σ

(2)/

σ

(3)1 wasobtained forboththeCH2 andtheC target.ForthePbtarget, keepingthis ratio fixed, the W(



f p) cannot be reproduced,which showsthat these events cannot be considered ashaving their origin in the decay of the 5/22 state. Theywere thereforealso considered as coming from a continuous Ef pp spectrum. The distribution was well fittedwithonlythreedecaybranchedtothe 0,1 and2 statesin16F.

ThecrosssectionsforCoulombexcitationofresonantstates,

σ

C, were obtained by subtracting the nuclear contribution from the crosssectionsmeasured withtheleadtarget scaled witha factor 1.84(20).Thescalingfactorwasdeterminedexperimentally.Itwas assumedthatCoulombdissociationto14Ohasaverysmall,ifnot zero, cross section andthe scaling factor was determined as the ratioof (17Ne,14O) crosssectionsobtainedwithPbandCtargets.

Thescalingfactorisclosetotheratiobetweennuclearradiiofpro- jectileandtarget, (A1Ne/3+A1Pb/3)/(A1Ne/3+A1C/3),reflectingthat the nucleardisintegrationisofsurfacecharacter.Inthisanalysisitwas assumedthatthe5/2+stateisnotCoulombexcited.Excitationof thisstatewithalargecrosssectionbyaM2orE3transitionorin amulti-stepprocessisunlikely.CrosssectionsforCoulombexcita- tion oftheidentifiednarrowresonances aregiveninTable 1.For the state at E=5.210(79) MeV anda leadtarget the excitation stemsdominantlyfromCoulombinteraction.

The transition probabilities B(

π

λ) from the groundto an ex- cited state in the projectile, where

π

=E or M stands for an electric or magnetic transition with multipolarity λ, were calcu- latedbythevirtual-photonmethodforintermediateenergies [29, 30]. The cross section for Coulomb excitation of a narrow reso- nanceat E is

σ

Cπλ

(

E

) = (

2

π )

3

+

1

) λ[(

2

λ +

1

)!!]

2



E

¯

hc



2λ−1N

( π λ)

E B

( π λ),

(1) where N(

π

λ) is the numberof virtual photons atexcitation en- ergy E.Thisexpressionisusedtocalculatethetransitionproba- bilitybasedonthemeasuredcrosssection

σ

Cπλ(E)(infm2).

The formalism described in Refs. [29,30] is used to calculate N(

π

λ).InRef. [30]theeffectofstrongabsorptionisincorporated fromthe outset(see Eqs. (13)–(15)),while aminimal impactpa- rameter Bcut has to be used when the analytical semi-classical method fromRef.[29] (Eqs. (2.5.5)) isapplied. Calculationsusing the semi-classical methodwith Bcut=10.8 fm givethe samere- sultasEqs. (13)–(15) inRef.[30].TheresultingN(

π

λ)andB(

π

λ) valuesaregiveninTable 4.

The Coulomb excitation of the first two excited states in 17Ne was studied earlier [31] and the transition probability B(E2,1/25/2)=24 e2 fm4 was deduced. However, in the B(E2) calculations the authors included an extra factor e2 in Eq.(1),whichmeans thattheobtained B(E2) valuesare inunits offm4 andshouldthus bemultipliedwitha factor1.44.Thecor- rected value for B(E2,1/2→5/2) isgiven in thelast rowin Table 4.

The B(E2) values from Ref. [31] without this correction fac- tor were, however,used inRefs. [21,32] asa confirmation ofthe proposed 17Newave function.The correctedvalue B(E2,1/2→ 5/2)isabouttwicelargerthan thatobtainedinthepresentex- periment.Thismightbeconnectedwiththeassumption,madein Ref.[31],thatthedetectedeventswerefrompureCoulombexcita- tion.Inthepresentexperimentitisshownthatnuclearexcitation contributestothecrosssectionwithabout50%,seeTables 3 and 4.

(6)

Table 4

Coulombexcitationcrosssections,σC,inmb,fornarrowresonantstatesin17Ne, virtual-photonnumbersandtransitionprobabilitiesB(πλ)in(e2fm2λ).Thelowest rowgivesB(E2)for 5/2 resonancecalculatedwithEq.(1)usingσC andN(E2) fromTableIinRef.[31].

Iπ E σC πλ N(πλ) B(πλ)

5/2 1.764 7.13(1.5) E2 11868 90(18)

1/2+ 1.908 <2.4 E1 121.43 <0.007

(3/22) 2.692 5.57(76) E2 5180.4 69(10) (3/2+) 5.141 13.6(1.7) E1 68.68 0.071(9)

5/2 1.764 29.9(4.4) E2 24990 179(26)

Fig. 7. TransitionprobabilitiesB(E2,1/25/2)asafunctionofthes-shelloc- cupation,P(s2),in17Ne(g.s.).ThesolidlinegivesexperimentalB(E2)valueandthe hatchedzoneshowsthe1σ deviationfromthisvalue.Thedashedlinerepresents calculationsfromRef.[21].

A comparison between the B(E2,1/25/2) values de- duced from the present experiment and theoretical calculations from[21]isshowninFig. 7.Themostprobablevalueforthes2oc- cupancywouldbeeitherP(s2)=23% orP(s2)=53%.Thehatched zonesinFig. 7showthe1

σ

deviationsfromthesevalues.

Inconclusion, new experimental data on dissociation of 17Ne into 15O+2p studied at GSI with a relativistic 17Ne beam im- pinging on lead, carbon, and polyethylene targets are presented.

Themain attentionis paidtothe excitationanddecayofnarrow resonantstates in17Ne, for whichcross sectionswere measured.

Three-bodycorrelationswere usedtodetermine therelativecon- tributions tounresolvedresonances. Thedata obtainedfromlead and carbon targets allowed the determination of cross sections and transition probabilities for Coulomb excitation. The reduced electric quadrupole transition probability B(E2,1/25/2)= 90(18) e2fm4 was derived by using the virtual-photon method.

ThemeasuredB(E2)valuewascomparedtothemodelcalculations.

Finally,theobservationofaresonanceatE=5.210(79)MeV ten-

tatively interpreted as 3/2+ state, mainly Coulomb excited, is of special interestandshould be a subjectof furtherinvestigations.

The excitation of positive parity states implies that three-body models without inclusion of the core intrinsic structure are not able to fullydescribe the reaction mechanism. Theoretical meth- odsareurgentlyneededtodescribeexcitationspectraandreaction mechanisms,includingtechniquesbeyondthree-bodymodels.

Acknowledgements

Thisproject issupported by NAVI,GSI-TUDarmstadt coopera- tion, HICforFAIR, EMMI andBMBF.C.A.B. acknowledges support fromtheU.S.NSFGrantNo. 1415655,andU.S.DOEgrantNo. DE- FG02-08ER41533. The work was also supported by the Spanish governmentgrantFPA2012-32443andtheSwedishResearchCoun- cil.

References

[1]M.V.Zhukov,I.J.Thompson,Phys.Rev.C52(1995)3505.

[2]A.Ozawa,etal.,Phys.Lett.B334(1994)18.

[3]H.Kitagawa,N.Tajima,H.Sagawa,Z.Phys.A358(1997)381.

[4]R.Kanungo,M.Chiba,S.Adhikari,etal.,Phys.Lett.B571(2003)21.

[5]K.Tanaka,M.Fukuda,M.Mihara,etal.,Phys.Rev.C82(2010)044309.

[6]W.Geithner,etal.,Phys.Rev.C71(2005)064319.

[7]M.J.G.Borge,etal.,Phys.Lett.B317(1993)25.

[8]J.D.Millener,Phys.Rev.C55(1997)R1633.

[9]H.T.Fortune,R.Sherr,Phys.Lett.B503(2001)70.

[10]H.T.Fortune,R.Sherr,B.A.Brown,Phys.Rev.C73(2006)064310.

[11]L.V.Grigorenko,I.G.Mukha,M.V.Zhukov,Nucl.Phys.A713(2003)372;

L.V.Grigorenko,I.G.Mukha,M.V.Zhukov,Nucl.Phys.A740(2004)401(Erra- tum).

[12]E.Garrido,D.V.Fedorov,A.S.Jensen,Phys.Rev.C69(2004)024002.

[13]S.Nakamura,V.Guimarães,S.Kubono,Phys.Lett.B416(1998)1.

[14]S.S.Zhang,etal.,Eur.Phys.J.A49(2013)77.

[15]N.K.Timofeyuk,P.Descouvement,D.Baye,Nucl.Phys.A600(1996)1.

[16]T.Oishi,K.Hagino,H.Sagawa,Phys.Rev.C82(2010)024315;

T.Oishi,K.Hagino,H.Sagawa,Phys.Rev.C82(2010)069901(Erratum).

[17]L.V.Grigorenko,etal.,Phys.Lett.B641(2006)254.

[18]T.Oishi,K.Hagino,H.Sagawa,Phys.Rev.C84(2011)057301.

[19]Z.Y.Ma,Y.Tian,Sci.China54(2011)49.

[20]H.L.Ma,etal.,Phys.Rev.C85(2012)044307.

[21]L.V.Grigorenko,Yu.L.Parfenova,M.Zhukov,Phys.Rev.C71(2005)051604.

[22]J.Marganiec,etal.,Eur.Phys.J.A51(2015)9.

[23]I.Stefan,etal.,Phys.Rev.C90(2014)014307.

[24]F.James,M.Roos,Comput.Phys.Commun.10(1975)343.

[25]V.Guimarães,etal.,Phys.Rev.C58(1998)116.

[26]H.T.Fortune,etal.,Phys.Rev.C20(1979)1228.

[27]M.Wang,etal.,Chin.Phys.C36(2012)1603.

[28] TUNLnucleardataevaluations,http://www.tunl.duke.edu/nucldata/.

[29]C.A.Bertulani,G.Baur,Phys.Rep.163(1988)299.

[30]C.A.Bertulani,A.M.Nathan,Nucl.Phys.A554(1993)158.

[31]M.J.Chromik,etal.,Phys.Rev.C66(2002)024313.

[32]W.Geithner,etal.,Phys.Rev.Lett.101(2008)252502.

Cytaty

Powiązane dokumenty

Intercomponent correlations in attractive one-dimensional mass-imbalanced few-body mixtures Daniel Pecak ˛ and Tomasz Sowi´nski Institute of Physics, Polish Academy of Sciences,

Lower panel: reduced single-particle densities (in the xy plane) of the final states accessible via  M z = −2 resonant dipolar processes and the spin-dependent contact

Wykształcenie fi lologiczne jako warunek konieczny do zdobycia zawodu tłumacza znalazło się na trzecim miejscu, osiągając wartość 3,34 w grupie porównawczej i 3,40 w

Joseph Boyden’s novel Three Day Road (2005) interweaves the depiction of the horrors of World War I and their detrimental influence on the human psyche with the recollections

Using the fundamental property on which the NExT method is based, auto- and cross-correlation functions of the responses to white noise can be handled as being impulse

Voltage and current waveforms in circuits with supercapacitors are described by relations using fractional-order integral or differential equations.. A simple

Since its proclamation of the Act of Independence in 2006, the Republic of Serbia has been subjected to strong influence by countries, such as the Russian Federation, the US,

We have shown that the evolution of different measures of quantum correlations is qualitatively different, with a rather strange behaviour of the geometric discord.. Some aspects of