• Nie Znaleziono Wyników

Limits on the effective quark radius from inclusive ep scattering at HERA

N/A
N/A
Protected

Academic year: 2022

Share "Limits on the effective quark radius from inclusive ep scattering at HERA"

Copied!
5
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Limits on the effective quark radius from inclusive ep scattering at HERA

ZEUS Collaboration

H. Abramowicz

y,31

, I. Abt

t

, L. Adamczyk

h

, M. Adamus

ae

, S. Antonelli

b

, V. Aushev

q

, O. Behnke

j

, U. Behrens

j

, A. Bertolin

v

, S. Bhadra

ag

, I. Bloch

k

, E.G. Boos

o

, I. Brock

c

, N.H. Brook

ac

, R. Brugnera

w

, A. Bruni

a

, P.J. Bussey

l

, A. Caldwell

t

, M. Capua

e

,

C.D. Catterall

ag

, J. Chwastowski

g

, J. Ciborowski

ad,33

, R. Ciesielski

j,16

, A.M. Cooper-Sarkar

u

, M. Corradi

a,11

, R.K. Dementiev

s

, R.C.E. Devenish

u

, S. Dusini

v

, B. Foster

m,23

, G. Gach

h

, E. Gallo

m,24

, A. Garfagnini

w

, A. Geiser

j

, A. Gizhko

j

, L.K. Gladilin

s

, Yu.A. Golubkov

s

, G. Grzelak

ad

, M. Guzik

h

, C. Gwenlan

u

, W. Hain

j

, O. Hlushchenko

q

, D. Hochman

af

,

R. Hori

n

, Z.A. Ibrahim

f

, Y. Iga

x

, M. Ishitsuka

z

, F. Januschek

j,17

, N.Z. Jomhari

f

, I. Kadenko

q

, S. Kananov

y

, U. Karshon

af

, P. Kaur

d,12

, D. Kisielewska

h

, R. Klanner

m

, U. Klein

j,18

,

I.A. Korzhavina

s

, A. Kota ´nski

i

, U. Kötz

j

, N. Kovalchuk

m

, H. Kowalski

j

, B. Krupa

g

, O. Kuprash

j,19

, M. Kuze

z

, B.B. Levchenko

s

, A. Levy

y

, S. Limentani

w

, M. Lisovyi

j,20

, E. Lobodzinska

j

, B. Löhr

j

, E. Lohrmann

m

, A. Longhin

v,30

, D. Lontkovskyi

j

, O.Yu. Lukina

s

, I. Makarenko

j

, J. Malka

j

, A. Mastroberardino

e

, F. Mohamad Idris

f,14

,

N. Mohammad Nasir

f

, V. Myronenko

j,21

, K. Nagano

n

, T. Nobe

z

, R.J. Nowak

ad

,

Yu. Onishchuk

q

, E. Paul

c

, W. Perla ´nski

ad,34

, N.S. Pokrovskiy

o

, A. Polini

a

, M. Przybycie ´n

h

, P. Roloff

j,22

, M. Ruspa

ab

, D.H. Saxon

l

, M. Schioppa

e

, U. Schneekloth

j

,

T. Schörner-Sadenius

j

, L.M. Shcheglova

s

, R. Shevchenko

q,27,28

, O. Shkola

q

, Yu. Shyrma

p

, I. Singh

d,13

, I.O. Skillicorn

l

, W. Słomi ´nski

i,15

, A. Solano

aa

, L. Stanco

v

, N. Stefaniuk

j

, A. Stern

y

, P. Stopa

g

, D. Sukhonos

q

, J. Sztuk-Dambietz

m,17

, E. Tassi

e

, K. Tokushuku

n,25

, J. Tomaszewska

ad,35

, T. Tsurugai

r

, M. Turcato

m,17

, O. Turkot

j,21

, T. Tymieniecka

ae

, A. Verbytskyi

t

, W.A.T. Wan Abdullah

f

, K. Wichmann

j,21

, M. Wing

ac,∗,32

, S. Yamada

n

, Y. Yamazaki

n,26

, N. Zakharchuk

q,29

, A.F. ˙Zarnecki

ad

, L. Zawiejski

g

, O. Zenaiev

j

, B.O. Zhautykov

o

, D.S. Zotkin

s

aINFNBologna,Bologna,Italy1

bUniversityandINFNBologna,Bologna,Italy1

cPhysikalischesInstitutderUniversitätBonn,Bonn,Germany2 dPanjabUniversity,DepartmentofPhysics,Chandigarh,India eCalabriaUniversity,PhysicsDepartmentandINFN,Cosenza,Italy1

fNationalCentreforParticlePhysics,UniversitiMalaya,50603KualaLumpur,Malaysia3

gTheHenrykNiewodniczanskiInstituteofNuclearPhysics,PolishAcademyofSciences,Krakow,Poland4 hAGH—University ofScienceandTechnology,FacultyofPhysicsandAppliedComputerScience,Krakow,Poland4 iDepartmentofPhysics,JagellonianUniversity,Krakow,Poland

jDeutschesElektronen-SynchrotronDESY,Hamburg,Germany kDeutschesElektronen-SynchrotronDESY,Zeuthen,Germany

lSchoolofPhysicsandAstronomy,UniversityofGlasgow,Glasgow,UnitedKingdom5 mHamburgUniversity,InstituteofExperimentalPhysics,Hamburg,Germany6 nInstituteofParticleandNuclearStudies,KEK,Tsukuba,Japan7

oInstituteofPhysicsandTechnologyofMinistryofEducationandScienceofKazakhstan,Almaty,Kazakhstan pInstituteforNuclearResearch,NationalAcademyofSciences,Kyiv,Ukraine

qDepartmentofNuclearPhysics,NationalTarasShevchenkoUniversityofKyiv,Kyiv,Ukraine rMeijiGakuinUniversity,FacultyofGeneralEducation,Yokohama,Japan7

sLomonosovMoscowStateUniversity,SkobeltsynInstituteofNuclearPhysics,Moscow,Russia8

http://dx.doi.org/10.1016/j.physletb.2016.04.007

0370-2693/©2016CERNforthebenefitoftheZEUSCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

tMax-Planck-InstitutfürPhysik,München,Germany

uDepartmentofPhysics,UniversityofOxford,Oxford,UnitedKingdom5 vINFNPadova,Padova,Italy1

wDipartimentodiFisicaeAstronomiadell’UniversitàandINFN,Padova,Italy1 xPolytechnicUniversity,Tokyo,Japan7

yRaymondandBeverlySacklerFacultyofExactSciences,SchoolofPhysics,TelAvivUniversity,TelAviv,Israel9 zDepartmentofPhysics,TokyoInstituteofTechnology,Tokyo,Japan7

aaUniversitàdiTorinoandINFN,Torino,Italy1

abUniversitàdelPiemonteOrientale,Novara,andINFN,Torino,Italy1

acPhysicsandAstronomyDepartment,UniversityCollegeLondon,London,UnitedKingdom5 adFacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

aeNationalCentreforNuclearResearch,Warsaw,Poland

afDepartmentofParticlePhysicsandAstrophysics,WeizmannInstitute,Rehovot,Israel agDepartmentofPhysics,YorkUniversity,Ontario,M3J1P3,Canada10

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received23February2016

Receivedinrevisedform31March2016 Accepted2April2016

Availableonline12April2016 Editor:L.Rolandi

The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model contributionstoelectron–quarkscattering.Combinedmeasurementsoftheinclusivedeepinelasticcross sectionsinneutralandchargedcurrentep scatteringcorrespondingtoaluminosityofaround1 fb1have beenusedinthisanalysis.AnewapproachtothebeyondtheStandardModelanalysisoftheinclusive ep data ispresented;simultaneousfits ofpartondistributionfunctions togetherwithcontributionsof

“new physics” processeswere performed. Results are presented considering afinite radius ofquarks withinthequarkform-factormodel.Theresulting95% C.L.upper limitontheeffectivequarkradiusis 0.43·1016cm.

©2016CERNforthebenefitoftheZEUSCollaboration.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthor.

E-mailaddress:m.wing@ucl.ac.uk(M. Wing).

1 Supported bytheItalianNationalInstituteforNuclearPhysics(INFN).

2 Supported bytheGermanFederalMinistryofEducationandResearch (BMBF), undercontractNo.05H09PDF.

3 Supported byHIR grantUM.C/625/1/HIR/149and UMRGgrants RU006-2013, RP012A-13AFRandRP012B-13AFRfromUniversitiMalaya,andERGSgrantER004- 2012AfromtheMinistryofEducation,Malaysia.

4 Supported bythe National ScienceCentre under contract No.DEC-2012/06/

M/ST2/00428.

5 Supported bytheScienceandTechnologyFacilitiesCouncil,UK.

6 Supported bytheFederalMinistry ofEducationand Research (BMBF),under contractNo.05h09GUF,andtheSFB676oftheDeutscheForschungsgemeinschaft (DFG).

7 Supported bytheJapaneseMinistryofEducation,Culture,Sports,Science,and Technology (MEXT)anditsgrantsforScientificResearch.

8 Supported byRFPresidentialgrant N3042.2014.2 for theLeading Scientific Schools.

9 Supported bytheIsraelScienceFoundation.

10 Supported bytheNaturalSciencesandEngineeringResearchCouncilofCanada (NSERC).

11 Now atINFNRoma,Italy.

12 Now atSantLongowalInstituteofEngineeringandTechnology,Longowal,Pun- jab,India.

13 Now atSriGuruGranthSahibWorldUniversity,FatehgarhSahib,India.

14 Also atAgensiNuklearMalaysia,43000Kajang,Bangi,Malaysia.

15 Partially supportedbythe PolishNationalScienceCentreprojectsDEC-2011/

01/B/ST2/03643andDEC-2011/03/B/ST2/00220.

16 Now atRockefellerUniversity,NewYork,NY10065,USA.

17 Now atEuropeanX-rayFree-ElectronLaserfacilityGmbH,Hamburg,Germany.

18 Now atUniversityofLiverpool,UnitedKingdom.

19 Now atTelAvivUniversity,Isreal.

20 Now atPhysikalischesInstitut,UniversitätHeidelberg,Germany.

21 Supported bytheAlexandervonHumboldtFoundation.

22 Now atCERN,Geneva,Switzerland.

23 AlexandervonHumboldtProfessor;alsoatDESYandUniversityofOxford.

24 Also atDESY.

25 Also atUniversityofTokyo,Japan.

26 Now atKobeUniversity,Japan.

27 Member ofNationalTechnicalUniversityofUkraine,KyivPolytechnicInstitute, Kyiv,Ukraine.

28 Now atDESYCMSgroup.

29 Now atDESYATLASgroup.

30 Now atLNF,Frascati,Italy.

1. Introduction

Precision measurements ofdeepinelastic e±p scattering (DIS) crosssectionsathighvaluesofnegativefour-momentum-transfer squared, Q2,allowsearchesforcontributionsbeyondtheStandard Model (BSM), even far beyond the centre-of-mass energy of the e±p interactions.Formany“newphysics”scenarios,crosssections canbeaffectedbynewkindsofinteractionsinwhichvirtualBSM particles are exchanged. The cross sections would also be influ- encedwerequarkstohaveafiniteradius.AstheHERAkinematic rangeisassumedtobefarbelowthescaleofthenewphysics,all suchBSMinteractionscanbeapproximatedascontactinteractions (CI).Inallcases,deviationsoftheobservedcrosssectionfromthe Standard Model(SM) predictionare searchedforin ep scattering at thehighest available Q2. The predictions are calculated using partondistributionfunction(PDF)parameterisationsoftheproton.

The H1andZEUScollaborations measuredinclusivee±p scat- teringcrosssectionsatHERAfrom1994to2000(HERAI)andfrom 2002to2007(HERAII),collectingtogetheratotalintegratedlumi- nosityofabout1 fb1.Allinclusivedatawere recentlycombined [1]tocreateoneconsistentsetofneutralcurrent(NC)andcharged current(CC) cross-section measurements fore±p scatteringwith unpolarised beams.The inclusivecross sectionswere used asin- put to a QCD analysis within the DGLAPformalism, resulting in a PDFsetdenoted asHERAPDF2.0. Duetothehighprecision and consistencyoftheinputdata,HERAPDF2.0canbeusedtocalculate SM predictionswithsmalluncertainties.Asearch forBSMcontri- butions in the data should take into account thepossibility that the PDF setmay alreadyhave beenbiasedby partially ortotally absorbingpreviouslyunrecognisedBSMcontributions.

31 Also atMaxPlanckInstituteforPhysics,Munich,Germany,ExternalScientific Member.

32 Also supportedbyDESYandtheAlexandervonHumboldtFoundation.

33 Also atŁód ´zUniversity,Poland.

34 Member ofŁód ´zUniversity,Poland.

35 Now atPolishAirForceAcademyinDeblin.

(3)

IntheZEUSCIanalysisofHERAIe±p data[2],theuncertain- tiesonthePDFsusedwereadominantsourceofsystematicerror.

Estimateduncertaintiesofthepartondensitieswereusedtosmear modelpredictionsinthelimit-settingprocedure.Suchanapproach wasvalidastheCTEQ5Dparameterisation [3,4]usedforcalculat- ing modelpredictions included only1994 HERAdata inaddition tomanyother datasets.The limitswere dominatedby statistical uncertainties.FortheCIanalysispresentedhere,inwhichthedata areidenticaltothoseusedfortheHERAPDF2.0 determinationand the statistical uncertainties are no longer dominant, a new pro- cedure to setlimitson the BSMmodelcontributions is required.

InthisanalysisBSMcontributions andthe QCDevolution arefit- tedsimultaneously.Resultsofasearchforafinitequarkradiusare presentedwithintheformalismofthequarkform-factormodel[5].

2. QCDanalysis

TheQCD analysispresentedinthispaperwas performedsim- ilarly to that for the HERAPDF2.0determination [1]. It was used to predict cross sections without BSM contributions. The HERA combined data on inclusive e±p scattering [1]were used as in- putto the perturbative QCD (pQCD) analysis. Onlycross sections withQ23.5 GeV2 wereused.Afittothedata,resultinginaset ofPDFs, was obtainedby solving the DGLAP evolution equations at NLO in the MS scheme. This was done using the programme QCDNUM[6]withintheHERAFitterframework[7].ForthePDFpa- rameterisation,theapproachadoptedintheHERAPDF2.0 study[1]

was followed. The PDFsof theproton were described ata start- ingscaleof1.9 GeV2intermsof14parameters.Theseparameters werefittothedatausinga

χ

2method,takingintoaccountstatis- ticaluncertainties, aswell asuncorrelatedandcorrelatedsystem- aticuncertaintiesontheexperimentaldata.Thecorresponding

χ

2

formulais:

χ

2

(

m

,

s

) = 

i



mi

+ 

j

γ

jimisj

μ

i0



2



δ

i2,stat

+ δ

i2,uncor

 ( μ

i0

)

2

+ 

j

s2j

,

(1)

where

μ

i0 is themeasuredcross-section valueatthepoint i.The quantities

γ

ij,δi,stat andδi,uncor aretherelativecorrelatedsystem- atic,relativestatisticalandrelativeuncorrelatedsystematicuncer- taintiesoftheinputdata,respectively.Thevectorm representsthe setofpQCDcross-sectionpredictionsmi andthecomponentssjof thevector s representthecorrelatedsystematicshiftsofthecross sections (given in units of

γ

ji). The summations extend over all datapointsi andallcorrelatedsystematicuncertainties j.

The

χ

2 formula used in this analysis differs from that of HERAPDF2.0 study[1]inordertofacilitatetheproductionofdata replicaswithin the HERAFitter framework [7], see Section 4.The resultingsetsofPDFs,referred toasZRqPDFinthefollowing,are neverthelessingoodagreementwithHERAPDF2.0.

TheexperimentaluncertaintiesonthepredictionsfromZRqPDF were determined with the criterion 

χ

2=1. The uncertainties dueto the choice ofmodel settingsand theform ofthe param- eterisationwereevaluatedasforHERAPDF2.0.

3. Quarkformfactor

One of the possible parameterisations of deviations from SM predictions in ep scatteringis achieved by assigning an effective finite radius to electrons and/or quarks while assuming the SM gauge bosons remain point-like and their couplings unchanged.

The expected modification of the SM cross section can be de- scribedusinga semi-classical form-factorapproach [5]. Iftheex-

pecteddeviations aresmall, theSMpredictions forthe crosssec- tionsaremodified,approximately,to:

d

σ

d Q2

=

d

σ

SM

d Q2



1

R2e

6 Q2

2

1

R

2q

6 Q2

2

,

(2)

where R2e and R2q are the mean-square radii of theelectron and the quark, respectively, relatedto newBSMenergyscales. In the presentanalysis,onlythepossiblefinitespatial distributionofthe quark wasconsidered andthe electronwasassumedtobe point- like(R2e0).BothpositiveandnegativevaluesofR2q wereconsid- ered.NegativevaluesofR2qcanbeobtainedifachargedistribution is assumed which changes sign asa function of the radius. The term“quarkradius”isonlyonepossibleinterpretationofBSMef- fectsparameterisedasformfactors.

The QCD analysis described in the previous section was ex- tended by introducing Rq2 as an additional model parameter and modifying all e±p DIS cross-section predictionsaccording to Eq.(2).ValuesforR2qwereextractedusinga

χ

2-minimisationpro- cedure,whereallPDFparameterswerealsosimultaneouslyfit;R2q wastreatedasateststatistictobeusedforlimitsetting.Thevalue ofthisteststatisticforthedataisR2 Dataq = −0.1033cm2.The probability distributions for Rq2 were determined as described in thenextsection.

4. Limit-settingprocedure

The limit ontheeffective quark-radiussquared, Rq2,isderived inafrequentistapproach[8]usingthetechniqueofreplicas.Repli- cas are setsofcross-section valuesthat aregenerated byvarying all cross sections randomly according to their known uncertain- ties. For the analysis presented here, multiple replica sets were used,eachcoveringcross-sectionvaluesonallpointsofthex, Q2 gridusedintheQCDfit.Foran assumedtruevalue ofthequark- radiussquared, R2 Trueq ,replicadatasetswerecreatedbytakingthe reduced cross sections calculated from the ZRqPDF fit and scal- ing them with the quark form factor, Eq. (2), with R2q=R2 Trueq . This results in a set ofcross-section valuesmi0 for the assumed truequark-radiussquared, R2 Trueq .Thevaluesofmi0 werethenvar- iedrandomly withinstatisticalandsystematicuncertaintiestaken from the data, taking correlations into account. All uncertainties wereassumedtofollowaGaussiandistribution.1 Foreachreplica, the generated value of the cross section at the point i,

μ

i, was calculatedas:

μ

i

=

mi0

+

δ

2i,stat

+ δ

i2,uncor

· μ

i0

·

ri



·

1

+ 

j

γ

ij

·

rj

⎠ ,

(3)

wherevariables ri andrj representrandomnumbers froma nor- maldistribution foreach datapoint i andforeachsourceofcor- relatedsystematicuncertainty j,respectively.

Theapproachadoptedwastogeneratesetsofreplicasthatwere used totestthehypothesis thatthe crosssectionsweremodified by a fixed R2q valueaccordingto Eq.(2).Thevalue of R2 Dataq de- termined by the fit to the data themselves was taken as a test statistic,towhichvaluesfromfitstoreplicas,R2 Fitq ,couldbecom- pared. Positive(negative) R2 Trueq valuesthat, inmorethan95%of

1 ItwasverifiedthatusingaPoissonprobabilitydistributionforproducingrepli- casathighQ2,wheretheeventsamplesaresmall,andusingtheχ2minimisation forthesedatadidnotsignificantlychangetheprobabilitydistributionsforthefitted parametervalues.

(4)

Fig. 1. TheprobabilityofobtainingR2 F itq valuessmallerthanthatobtainedforthe actualdata, R2 Dataq ,calculatedfromMonteCarloreplicas,asafunctionoftheas- sumedvalueforthequark-radiussquared,R2 T rueq .Pointswithstatisticalerrorbars representMonteCarloreplicasetsgeneratedfor differentvaluesof R2 T rueq .The solidcirclescorrespondtotheresultsobtainedfromthesimultaneousfitofR2qand PDFparameters(PDF+Rq).Forcomparison,theopencirclesrepresentthedepen- denceobtainedwhenfixingthePDFparameterstotheZRqPDFvalues(Rq-only).

Thedashedlineandthedashed-dottedlinerepresentthecumulativeGaussiandis- tributionsfittedtothePDF+RqandRq-onlyreplicapoints,respectively.Thevertical linerepresentsthe95% C.L.upperlimitonR2q.

thereplicas,resultinthefittedradiussquaredvalue,R2 Fitq ,greater than(lessthan)thatobtainedforthedata, R2 Dataq ,were excluded atthe 95% C.L..The detailsoftheseprocedures aredescribed be- low.

Toset thelimit,a numberofMCreplica cross-sectionsets for eachvalueofR2 Trueq wasusedforaQCDfitwiththePDFparame- tersandthequarkradiusasfreeparameters,yieldingadistribution ofthefittedvaluesofthequark radius, R2 Fitq .The

χ

2 formulaof Eq. (1), with the measured cross-section values,

μ

i0, in the nu- meratorofthefirst termreplacedby thegeneratedvaluesofthe replica,

μ

i,wasusedforfittingR2q andthePDFparameters.

Inalaststep,theprobabilityofobtaininga R2 Fitq valuesmaller thanthat obtained fortheactual data, Prob(R2 Fitq <R2 Dataq ), was plottedasafunctionofRq2 True,forpositiveR2 Trueq values,asshown inFig. 1.Theprobabilitydistributionwasinterpolatedtocalculate theR2qvaluecorrespondingtothe95% C.L.upperlimit.About5000 MonteCarloreplicasweregenerated foreachvalue of R2 Trueq re- sultinginarelativestatisticaluncertaintyoftheextractedlimitof about0.3%. The corresponding plot fornegative Rq2 True values is showninFig. 2.

As a cross check, the limits on R2q were also estimated from the simultaneous PDF and R2q fit to the data by looking at the variationofthe

χ

2 valueminimised withrespectto thePDF pa- rameters when changing the R2q value. Both limits are in good agreement with the results based on the Monte Carlo replicas.

Thelimit-settingprocedurewas alsorepeatedfordifferentmodel and parameter settings, considered as systematic checks in the HERAPDF2.0 analysis[1].The resultingvariations ofthelimitson R2q arenegligible.

Fig. 2. TheprobabilityofobtainingR2 F itq valueslargerthanthatobtainedforthe actualdata,Rq2 Data,calculatedfromMonteCarloreplicas,asafunctionoftheas- sumedvalueforthequark-radiussquared,R2 T rueq .OtherdetailsasforFig. 1.

5. Results

Theresultsofthelimit-settingprocedureusingthesimultane- ous fit to PDF parameters and R2q,based on sets ofMonte Carlo replicas testingthe possible cross-section modifications dueto a quark formfactor,yieldthe95% C.L. limitsontheeffectivequark radiusof

−(

0

.

47

·

1016cm

)

2

<

R2q

< (

0

.

43

·

1016cm

)

2

.

Taking into account the possible influence of quark radii on the PDF parameters is necessary as demonstrated in Figs. 1 and 2, because the limitsthat wouldbe obtained for fixed PDF param- eters aretoo strongby about10%.The limitsareconsistent with the estimated experimental sensitivity, calculated as the median of the limit distribution for the SM replicas, corresponding to a quarkradiusof0.45·1016cm (forbothpositiveandnegative R2q).

Cross-sectiondeviationsgivenbyEq.(2),correspondingtothepre- sented 95% C.L. exclusion limits, are compared to the combined HERAhigh- Q2 NCandCCDISdatainFigs. 3 and4,respectively.

The 95% C.L. upperlimit forthe quark radius presented here is almost a factor of two better than the previous ZEUS limit of 0.85·1016cm, based on the HERA I data [2]. The present re- sultimproves the limit set in ep scattering by the H1collabora- tion [9] (Rq<0.65·1016 cm) and is similar to the limit pre- sented by the L3 collaboration (Rq<0.42·1016 cm), based on quark-pair production atLEP2 [10]. It is important to remember thatthepossibleBSMphysicsparameterisedbytheRq atLEPand HERA canbe very different, sothat the LEP andHERAlimitsare largelycomplementary.Thelimitonnegative R2q valuespresented hereisanimprovementcomparedtothe publishedZEUS limitof R2q > −(1.06·1016cm)2.

6. Conclusions

The HERA combined measurement of inclusivedeep inelastic crosssections inneutralandchargedcurrent e±p scattering was

(5)

Fig. 3. CombinedHERA(a)e+p and(b)ep NCDISdatacomparedtothe95% C.L.

exclusionlimitsontheeffectivemean-squareradiusofquarks.Alsoshownarethe expectationscalculatedusingtheZRqPDFpartondistributions.Thebandsrepresent thetotaluncertaintyonthe predictions.The insetsshow thecomparisoninthe Q2<104GeV2regionwithalinearordinatescale.

usedtosetlimitsonpossibledeviationsfromtheStandardModel due to a finite radius of the quarks. The limit-setting procedure wasbasedonasimultaneousfitofPDF parametersandthequark radius.Theresulting95% C.L.limitsforthequarkradiusare

−(

0

.

47

·

1016cm

)

2

<

R2q

< (

0

.

43

·

1016cm

)

2

.

ThisresultiscompetitivewithadeterminationfromLEP2andsub- stantiallyimprovespreviousHERAlimits.

Acknowledgements

We appreciate the contributions to the construction, mainte- nance and operation of the ZEUS detector of many people who

Fig. 4. CombinedHERA(a)e+p and(b)ep CCDISdatacomparedtothe95% C.L.

exclusionlimitsontheeffectivemean-squareradiusofquarks.Otherdetailsasfor Fig. 3.

are notlistedasauthors.TheHERA machinegroupandtheDESY computing staff are especially acknowledged fortheir success in providingexcellent operationofthecolliderandthedata-analysis environment.WethanktheDESYdirectoratefortheirstrongsup- portandencouragement.

References

[1]H1andZEUSCollaborations,H.Abramowicz,etal.,Eur.Phys.J.C75(2015) 580.

[2]ZEUSCollaboration,S.Chekanov,etal.,Phys.Lett.B591(2004)23.

[3]CTEQCollaboration,H.L.Lai,etal.,Eur.Phys.J.C12(2000)375.

[4]CTEQCollaboration,H.L.Lai,etal.,Phys.Rev.D55(1997)1280.

[5]G.Kopp,etal.,Z.Phys.C65(1995)545.

[6]M.Botje,Comput.Phys.Commun.182(2011)490.

[7]S.Alekhin,etal.,Eur.Phys.J.C75(2015)304.

[8]R.D.Cousins,Am.J.Phys.63(1995)398.

[9]H1Collaboration,F.D.Aaron,etal.,Phys.Lett.B705(2011)52.

[10]L3Collaboration,M.Acciarri,etal.,Phys.Lett.B489(2000)81.

Cytaty

Powiązane dokumenty

For vanishingly small radius, the Cheshire Cat smile reduces to a vortex line with running gapless quarks all spinning in concert (recall the magic angle), naturally explaining

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Modern Physics, University of Science and Technology of China, Anhui; Department

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 90 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

In Section 3 we give an account of some results of [B5]–[B9]: in [B5], [B6], [B8] and [B9] we provided sufficient conditions for continuity of the spectrum and spectral radius

The results show that estimate of the spectral radius that was calculated with the procedure that uses symmetric matrices grows faster than the one calculated by the procedure that