• Nie Znaleziono Wyników

Pauli Crystals

N/A
N/A
Protected

Academic year: 2021

Share "Pauli Crystals"

Copied!
27
0
0

Pełen tekst

(1)

Coauthors:

M. Gajda, M. ZaĿuska-Kotur, J. Mostowski

Pauli Crystals

hidden geometric structures

of the quantum statistics

Tomasz Sowiński

Institute of Physics of the Polish Academy of Sciences ArXiv:1511.01036

(2)

instead of the

introduction

(3)

(r

1

, . . . , r

N

) = Det

2

6 6

6 4

1

(r

1

)

2

(r

1

) . . .

N

(r

1

)

1

(r

2

)

2

(r

2

) . . .

N

(r

2

)

.. . .. . .. . .. .

1

(r

N

)

2

(r

N

) . . .

N

(r

N

)

3

7 7

7 5

ground-state of spinless fermions

V (r)

{ i(r)}

 ~

2

2m r

2

+ V (r)

i

(r) = E

i i

(r)

• We consider spinless fermions

confined in some external potential

• In principle the corresponding Schrödinger equation can be solved

• The set of eigenstates is known

• Wave function of the noninteracting many-body ground-state

(4)

(r

1

, . . . , r

N

) = Perm

2

6 6

6 4

1

(r

1

)

2

(r

1

) . . .

N

(r

1

)

1

(r

2

)

2

(r

2

) . . .

N

(r

2

)

.. . .. . .. . .. .

1

(r

N

)

2

(r

N

) . . .

N

(r

N

)

3

7 7

7 5

(r

1

, . . . , r

N

) =

1

(r

1

)

2

(r

2

) · . . . ·

N

(r

N

)

small digression

• Fundamentally distinguishable particles

• Bosons

1

(r) =

2

(r) = . . . =

N

(r)

Ground-state is obtained for

(5)

-3 -2 -1 0 1 2 3 0.2

0.4 0.6

0.5 1.5 2.5 3.5

two distinguishable particles

˜

x

1

= 0 x ˜

2

= ±1

the most probable configuration

density profiles

⇢(x

1

, x

2

) = | (x

1

, x

2

) |

2

⇢(˜ x

1

, ˜ x

2

) = max [⇢(x

1

, x

2

)]

first observation

(x

1

, x

2

) = '

0

(x

1

)'

1

(x

2

)

(6)

first observation

0.5 1.5 2.5 3.5

two identical bosons

density profiles

-3 -2 -1 0 1 2 3

0.2 0.4 0.6

(x

1

, x

2

) = 1

p 2 ['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

˜

x

1

= ± 1

p 2 x ˜

2

= ˜ x

1

the most probable configuration

boson

enhancement

(7)

-3 -2 -1 0 1 2 3 0.2

0.4 0.6

first observation

0.5 1.5 2.5 3.5

two identical bosons

density profiles

(x

1

, x

2

) = 1

p 2 ['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

˜

x

1

= ± 1

p 2 x ˜

2

= ˜ x

1

the most probable configuration

boson

enhancement

⇢(x) = Z

dx2 | (x, x2)|2

single-particle density

(8)

first observation

0.5 1.5 2.5 3.5

two identical fermions

the most probable configuration

density profiles

(x1, x2) = 1

p2 ['0(x1)'1(x2) '1(x1)'0(x2)]

˜

x

1

= ± 1

p 2 x ˜

2

= x ˜

1

many-body

ground-state

(x

1

,x

2

) =

1 p 2

['

0

(x

1

)'

1

(x

2

) + '

1

(x

1

)'

0

(x

2

)]

-3 -2 -1 0 1 2 3

0.2 0.4 0.6

⇢(x) = Z

dx2 | (x, x2)|2

single-particle density

(9)

general scheme

(r

1

, . . . , r

N

) = Det

2

6 6

6 4

1

(r

1

)

2

(r

1

) . . .

N

(r

1

)

1

(r

2

)

2

(r

2

) . . .

N

(r

2

)

.. . .. . .. . .. .

1

(r

N

)

2

(r

N

) . . .

N

(r

N

)

3

7 7

7 5

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

probability density of finding given configuration

we can find its maximum (the most probable configuration)

we can simulate an experiment with given number of particles!

With Metropolis algorithm we can generate

an ensemble of configurations

according to given density distribution

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953)

(10)

two-dimensional

harmonic trap

(11)

Two-dimensional harmonic trap

nm

(x, y) = N

nm

H

n

(x)H

m

(y)e

(x2+y2)/2

,

V (r) = m⌦

2

2 r

2

= m⌦

2

2 (x

2

+ y

2

)

single-particle basis

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

unique ground-state

N = 1, 3, 6, 10, 15, . . .

N=3

(12)

0 1 2

-1 -2

0 1 2 -1

-2

N=3

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

the most probable configuration

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(13)

0

1

2

-1

-2

0 1 2

-1

-2

N=3

Energy shell Energy

(osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

⇢(r) =

Z

. . .

Z

dr

2

. . . dr

N

| (r, r

2

, . . . , r

N

) |

2

Averaged positions 106 elements

0 1 2

-1 -2

0 1 2 -1

-2

P (r

1

,. .., r

N

)= | (r

1

,. .., r

N

)|

2

(14)

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

N=3

⇢(r) = Z

. . . Z

dr2 . . . drN| (r, r2, . . . , rN)|2

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

P(r

1

, . . . , r

N

) = | (r

1

, . . . , r

N

) |

2

N=6

(15)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

N=6

Energy shell Energy

(osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

N=10

(16)

N=6

N=10

Energy shell Energy

(osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

(17)

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

N=10

N=15

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

(18)

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

0 1 2

-1 -2

0 1 2 -1

-2 0

1 2

-1 -2

0 1 2 -1

-2

N=3 N=6

N=10 N=15

(19)

instead of

conclusions

RIDDLE!

(20)

N=5

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(21)

N=5

Energy shell Energy (osc. units)

Degeneracy Excitation structure (n,m)

s 1 1 (0,0)

p 2 2 (1,0) (0,1)

d 3 3 (2,0) (1,1) (0,2)

f 4 4 (3,0) (2,1) (1,2) (0,3)

g 5 5 (4,0) (3,1) (2,2) (1,3) (0,4)

(22)

Appendix:

numerical

recipes

(23)

Towards the most probable config.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= {r

i

}

t

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with some random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

4. Conditionally accept a new configuration

5. Go to 2.

Ensemble of configurations

(24)

Towards the most probable config.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= {r

i

}

t

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with some random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

4. Conditionally accept a new configuration

5. Go to 2.

Ensemble of configurations

THE MOST PROBABLE
 CONFIGURATION

(25)

Ensemble of configurations

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with some random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

5. Go to 2.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= RAND ( {r

i

}

t

, {R

i

})

4. Conditionally accept a new configuration

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953)

(26)

Ensemble of configurations

P({R

i

}) and P({r

i

}

t

)

{r

i

}

0

= RAND

{R

i

} = {r

i

}

t

+ RAND( {

i

})

1. Start with some random configuration

2. Shift the configuration randomly

3. Calculate corresponding probabilities

5. Go to 2.

P({R

i

}) > P({r

i

}

t

) ) {r

i

}

t+1

= {R

i

}

P({R

i

})  P({r

i

}

t

) ) {r

i

}

t+1

= RAND ( {r

i

}

t

, {R

i

})

4. Conditionally accept a new configuration P({rP({Ri})

i}t)

1 P({Ri}) P({ri}t)

N. Metropolis et al, J. Chem. Phys. 21, 1087 (1953)

(27)

Thank You!

Cytaty

Powiązane dokumenty

Dielectric and Phonon Spectroscopy, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8.. Oprócz pracy naukowej, w ramach relaksu

It follows from the proof that in order to estimate the norms of powers of A it suffices to estimate the dimension and norm of the eigenprojection on the subspace spanned

In the quasidegenerate regime, the vanishing small energy gap does not protect the ground state against mixing with other states from the manifold: If the system’s temperature is of

It is shown that in an anisotropic harmonic trap that rotates with the properly chosen rotation rate, the force of gravity leads to a resonant behavior.. Full analysis of the

Ciekawy i cenny jest krótki fragment dotyczący zastosowania do modelowania i rozwiązywania zadania wieloetapowego podejmowania decyzji znanej z gier uogólnionych

27 and different type of high-pressure measurements. To date, various of materials including solids, liquids and gases have been proposed for pressure transmitting media. In this

Additionally it is shown that: (i) the critical behavior of this dilute magnetic insulator is similar to critical behavior observed for disordered ferromagnets,

Another breakthrough was associated with further improvements of the MOCVD technique, leading to a successful deposition of a high quality InGaN layers, de- signed to form the