• Nie Znaleziono Wyników

On the Exponential Stability of a Neutral Differential Equation of First Order

N/A
N/A
Protected

Academic year: 2021

Share "On the Exponential Stability of a Neutral Differential Equation of First Order"

Copied!
13
0
0

Pełen tekst

(1)

J o u r n a l of

Mathematics

and Applications

JMA No 41, pp 95-107 (2018)

COPYRIGHT c by Publishing House of Rzesz´ow University of Technology P.O. Box 85, 35-959 Rzesz´ow, Poland

On the Exponential Stability of a Neutral Differential Equation of First Order

Melek G¨ ozen and Cemil Tun¸c

Abstract: In this work, we establish some assumptions that guar- anteeing the global exponential stability (GES) of the zero solution of a neutral differential equation (NDE). We aim to extend and improves some results found in the literature.

AMS Subject Classification: 34K20, 93D09, 93D20.

Keywords and Phrases: (GES); (NDE); Time-varying delays.

1. Introduction

In [1], sufficient conditions for solutions of the (NDEs) form d

dt(x(t) + c(t)x(t − τ )) + p(t)x(t) + q(t)x(t − σ) = 0 (1) to tend zero as t → ∞ are established.

In [4, 8, 10, 15, 17], it was considered a (NDE), d

dt(x(t) + px(t − τ )) = −αx(t) + b tanh(x(t − σ)) = 0 (2) and the asymptotic stability (AS) of solutions are investigated.

In addition, some qualitative behaviors of solutions of equation (2) or some differ- ent models of that (NDE) were investigated in the relevant literature; for example, (S), (AS), (ES) in [2, 6, 9, 11, 14, 16, 17-25], (GES) in [3], asymptotic behaviors in [13], oscillation and non-oscillation in [5, 7] and so on.

(2)

In this paper, we deal with the following (NDE) with different variable delays:

d dt

 x(t) +

2

X

i=1

pi(t)x(t − τi(t))



+ a(t)h(x(t)) −

2

X

i=1

bi(t) tanh x(t − σi(t)) = 0, (3)

for t ≥ 0 where ai, bi : [0, ∞) → [0, ∞) are continuously differentiable functions and P2

i=1a2i(t) ≤ 1. The functions τi(.) : [0, ∞) → [0, τi], (τi > 0) and σi(.) : [0, ∞) → [0, σi], (σi > 0) are bounded and continuously differentiable, and the functions h, p1 and p2 are continuous with h(0) = 0. Let ri = max{τi, σi} > 0, (i = 1, 2).

Let µ1, µ2, µ3, µ4 ∈ (0, 1) be positive constants such that τ10(t) ≤ µ1, τ20(t) ≤ µ2, σ10(t) ≤ µ3and σ20(t) ≤ µ4. For each solution of (NDE) (3), we suppose that

x0(θ) = φ(θ), θ ∈ [−ri, 0], where φ ∈ C([−ri, 0]; R).

2. Stability Result

Our stability result is given below.

Theorem. Let K, α0, α1, α2, α3 and α4 be positive constants. The zero solution of (NDE)(3) is global exponential stable if the following matrix inequalities hold:

Ω =

1112131415 0

∗ Ω22232425 0

∗ ∗ Ω333435 0

∗ ∗ ∗ Ω44 0 0

∗ ∗ ∗ ∗ Ω55 0

∗ ∗ ∗ ∗ ∗ Ω66

< 0,

∆ =

1112131415 0

∗ ∆22232425 0

∗ ∗ ∆333435 0

∗ ∗ ∗ ∆44 0 0

∗ ∗ ∗ ∗ ∆55 0

∗ ∗ ∗ ∗ ∗ ∆66

< 0, (4)

where

h1(x) =h(x)x−1, x 6= 0 h0(0) , x = 0 and

11=2Kα0λ1− 2a(t)α0h(x)

x λ1+ α1λ1

2

X

i=1

e2Kτi+ α3λ1

2

X

i=1

e2Kσi

(3)

2λ1 2K

2

X

i=1

(e2Kτi− 1) +α4λ1 2K

2

X

i=1

(e2Kσi− 1),

12=2λ10p1(t) − λ1α0a(t)h(x) x p1(t), Ω13=2λ10p2(t) − λ1α0a(t)h(x)

x p2(t), Ω141α0b1(t),

151α0b2(t),

22=2λ10p21(t) − α1λ1(1 − µ1), Ω23=2λ10p1(t)p2(t),

241α0p1(t)b1(t), Ω251α0p1(t)b2(t),

33=2λ10p22(t) − α1λ1(1 − µ2), Ω341α0p2(t)b1(t),

351α0p2(t)b2(t), Ω44= − α3λ1(1 − µ3), Ω55= − α3λ1(1 − µ4), Ω66= − α2τi,

11=2Kα0λ2− 2a(t)α0

h(x)

x λ2+ α1λ2 2

X

i=1

e2Kτi+ α3λ2 2

X

i=1

e2Kσi,

2λ2

2K

2

X

i=1

(e2Kτi− 1) +α4λ2

2K

2

X

i=1

(e2Kσi− 1),

12=2λ20p1(t) − λ2α0a(t)h(x) x p1(t),

13=2λ20p2(t) − λ2α0a(t)h(x) x p2(t),

142α0b1(t),

152α0b2(t),

22=2λ20p21(t) − α1λ2(1 − µ1),

23=2λ20p1(t)p2(t),

242α0p1(t)b1(t),

252α0p1(t)b2(t),

33=2λ20p22(t) − α1λ1(1 − µ2),

342α0p2(t)b1(t),

352α0p2(t)b2(t),

44= − α3λ2(1 − µ3),

55= − α3λ2(1 − µ4),

66= − α4σi, λ1=1

2 τi

τi+ σi, λ2= 1 2

σi

τi+ σi, (i = 1, 2).

(4)

Proof. Choose an auxiliary functional, that is, Lyapunov functional (LF) by

V (.) = V (t, x) = e2Ktα0

 x(t) +

2

X

i=1

pi(t)x(t − τi(t))

2

+ α1 2

X

i=1 t

Z

t−τi(t)

e2K(s+τi)x2(s)ds

+ α2 2

X

i=1 0

Z

−τi

t

Z

t+θ

e2K(s−θ)x2(s)dsdθ

+ α3

2

X

i=1 t

Z

t−σi(t)

e2K(s+σi)tanh2x(s)ds

+ α4

2

X

i=1 0

Z

−σi

t

Z

t+θ

e2K(s−θ)tanh2x(s)dsdθ,

where αi∈ <, (i = 0, 1, ..., 4), αi> 0, and we choose them later.

The calculation of derivative of (LF) V (.) with respect to the (NDE) (3) gives that dV (.)

dt = 2Ke2Ktα0

 x(t) +

2

X

i=1

pi(t)x(t − τi(t))

2

+ 2e2Ktα0

 x(t) +

2

X

i=1

pi(t)x(t − τi(t))



×



− a(t)h(x(t)) +

2

X

i=1

bi(t) tanh x(t − σi(t))



+ α1

2

X

i=1

e2K(t+τi)x2(t) − α1

2

X

i=1

(1 − τi0(t))e2K(t−τi(t)+τi)x2(t − τi(t))

− α2

2K

2

X

i=1

[e2Kt− e2K(t+τi)]x2(t) − α2e2Kt

2

X

i=1 t

Z

t−τi

x2(s)ds

+ α3

2

X

i=1

e2K(t+σi)tanh2x(t)

− α3 2

X

i=1

(1 − σ0i)e2K(t−σi(t)+σi)tanh2x(t − σi(t))

(5)

− α4

2K

2

X

i=1

[e2Kt− e2K(t+σi)] tanh2x(t) − α4e2Kt

2

X

i=1 t

Z

t−σi

tanh2x(s)ds

= 2Ke2Ktα0[x2(t) + 2x(t)p1(t)x(t − τ1(t)) + 2x(t)p2(t)x(t − τ2(t))]

+ p21(t)x2(t − τ1(t)) + p22x2(t − τ2(t)) + 2p1(t)p2(t)x(t − τ1(t))x(t − τ2(t)) + 2e2Ktα0



− α(t)h(x)

x x2(t) + x(t)b1(t) tanh x(t − σ1(t)) + x(t)b2(t) tanh x(t − σ2(t)) − a(t)h(x)

x x(t)p1(t)x(t − τ1(t))

− a(t)h(x)

x x(t)p2(t)x(t − τ2(t))

+ (p1(t)x(t − τ1(t)) + p2(t)x(t − τ2(t)))(b1(t) tanh x(t − σ1(t)) + b2(t) tanh x(t − σ2(t)))



+ α1 2

X

i=1

e2K(t+τi)x2(t) − α1(1 − τ10(t))e2K(t−τ1(t)+τ1)x2(t − τ1(t))

− α1(1 − τ20(t))e2K(t−τ2(t)+τ2)x2(t − τ2(t))

+ α2 2Ke2Kt

2

X

i=1

[e2Kτi− 1]x2(t) − α2e2Kt

2

X

i=1 t

Z

t−τi

x2(s)ds

+ α3 2

X

i=1

e2K(t+σi)tanh2x(t)

− α3(1 − σ01(t))e2K(t−σ1(t)+σ1)tanh2x(t − σ1(t))

− α3(1 − σ02(t))e2K(t−σ2(t)+σ2)tanh2x(t − σ2(t))

+ α4

2Ke2Kt

2

X

i=1

[e2Kσi− 1] tanh2x(t) − α4e2Kt

2

X

i=1 t

Z

t−σi

tanh2x(s)ds.

The assumptions of the theorem implies

− α1(1 − τ10(t))e2K(τ1−τ1(t))≤ −α1(1 − µ1)

− α1(1 − τ20(t))e2K(τ2−τ2(t))≤ −α1(1 − µ2)

− α3(1 − σ01(t))e2K(σ1−σ1(t))≤ −α3(1 − µ3) and

− α3(1 − σ02(t))e2K(σ2−σ2(t))≤ −α3(1 − µ4).

(6)

Then, dV (.)

dt ≤ 2Ke2Ktα0[x2(t) + 2x(t)p1(t)x(t − τ1(t)) + 2x(t)p2(t)x(t − τ2)) + p21(t)x2(t − τ1(t)) + p22(t)x2(t − τ2(t))

+ 2p1(t)p2(t)x(t − τ1(t))x(t − τ2(t)) + 2e2Ktα0



− α(t)h(x)

x x2(t) + x(t)b1(t) tanh x(t − σ1(t)) + x(t)b2(t) tanh x(t − σ2(t)) − a(t)h(x)

x x(t)p1(t)x(t − τ1(t))

− a(t)h(x)

x x(t)p2(t)x(t − τ2(t))

+ p1(t)b1(t)x(t − τ1(t)) tanh x(t − σ1(t)) + p1(t)b2(t)x(t − τ1(t)) tanh x(t − σ2(t)) + p2(t)b1(t)x(t − τ2(t)) tanh x(t − σ1(t)) + p2(t)b2(t)x(t − τ2(t)) tanh x(t − σ2(t)) + α1

2

X

i=1

e2K(t+τi)x2(t) − α1e2Kt(1 − µ1)x2(t − τ1(t))

− α1e2Kt(1 − µ2)x2(t − τ2(t))

+ α2 2Ke2Kt

2

X

i=1

[e2Kτi− 1]x2(t) − α2e2Kt

2

X

i=1 t

Z

t−τi

x2(s)ds

+ α3 2

X

i=1

e2K(t+σi)tanh2x(t) − α3e2Kt(1 − µ3) tanh2x(t − σ1(t))

− α3e2Kt(1 − µ4) tanh2x(t − σ2(t)) + α4

2Ke2Kt

2

X

i=1

[e2Kσi− 1] tanh2x(t)

− α4e2Kt

2

X

i=1 t

Z

t−σi

tanh2x(s)ds.

Since

tanh2x ≤ x2, then

dV (.)

dt ≤ e2Kt{[2Kα0− 2α0a(t)h(x) x + α1

2

X

i=1

e2Kτi+ α2 2K

2

X

i=1

(e2Kτi− 1)

+ α3

2

X

i=1

e2Kσi+ α4 2K

2

X

i=1

(e2Kσi− 1)]x2(t)

(7)

+ [4Kα0p1(t) − 2α0a(t)h(x)

x p1(t)]x(t)(t − τ1(t)) + [4Kα0p2(t) − 2α0a(t)h(x)

x p2(t)]x(t)(t − τ2(t)) + 2α0b1(t)x(t) tanh x(t − σ1(t))

+ 2α0b2(t)x(t) tanh x(t − σ2(t))

+ [2Kα0p21(t) − α1(1 − µ1)]x2(t − τ1(t)) + 4Kα0p1(t)p2(t)x(t − τ1(t))x(t − τ2(t)) + 2α0p1(t)b1(t)x(t − τ1(t)) tanh x(t − σ1(t)) + 2α0p1(t)b2(t)x(t − τ1(t)) tanh x(t − σ2(t)) + [2Kα0p22(t) − α1(1 − µ2)]x2(t − τ2(t)) + 2α0p2(t)b1(t)x(t − τ2(t)) tanh x(t − σ1(t)) + 2α0p2(t)b2(t)x(t − τ2(t)) tanh x(t − σ2(t))

− α3(1 − µ3) tanh2x(t − σ1(t))

− α3(1 − µ4) tanh2x(t − σ2(t))

− α2 2

X

i=1 t

Z

t−τi

x2(s)ds

− α4 2

X

i=1 t

Z

t−σi

tanh2x(s)ds}.

Then, dV (.)

dt ≤

2

X

i=1

1 τi

t

Z

t−τi

ξ1T(t, s)Ωξ1(t, s)ds +

2

X

i=1

1 σi

t

Z

t−σi

ξ2T(t, s)∆ξ2(t, s)ds,

where

ξ1(t, s) = [x(t), x(t − τ1(t)), x(t − τ2(t)), tanh x(t − σ1(t)), tanh x(t − σ2(t)), x(s)]T and

ξ2(t, s) = [x(t), x(t−τ1(t)), x(t−τ2(t)), tanh x(t−σ1(t)), tanh x(t−σ2(t)), tanh x(s)]T. From (4), we have dV (.)dt < 0 , which implies that V (.) ≤ V (0, x(0)). In view of the (LF) V (.), we find

V (0, x(0)) = α0[x(0) +

2

X

i=1

pi(0)x(−τi(0))]2+ α1 2

X

i=1 0

Z

−τi(0)

e2K(s+τi)x2(s)ds

(8)

+ α2 2

X

i=1 0

Z

−τi 0

Z

θ

e2K(s−θ)x2(s)dsdθ + α3 2

X

i=1 0

Z

−σi(0)

e2K(s+σi)tanh2x(s)ds

+ α4 2

X

i=1 0

Z

−σi

0

Z

θ

e2K(s−θ)tanh2x(s)dsdθ.

It is also obvious that α0[x(0) +

2

X

i=1

pi(0)x(−τi(0))]2= α0[x2(0) + 2x(0)

2

X

i=1

pi(0)x(−τi(0))

+ (

2

X

i=1

pi(0)x(−τi(0)))2]

= α0[x2(0) + 2x(0)

2

X

i=1

pi(0)x(−τi(0)) + p21(0)x2(−τ1(0)))

+ 2p1(0)x(−τ1(0)))p2(0)x(−τ2(0)) + p22(0)x2(−τ2(0))].

If we use the inequality

2|xy| ≤ x2+ y2, then

α0[x(0) +

2

X

i=1

pi(0)x(−τi(0))]2≤ α0[x2(0) + 2x2(0) + p21(0)x2(−τ1(0)) + p22(0)x2(−τ2(0)) + p21(0)x2(−τ1(0)) + p21(0)x2(−τ1(0) + p22(0)x2(−τ2(0)) + p22(0)x2(−τ2(0))]

= α0[3x2(0) + 3p21(0)x2(−τ1(0)) + 3p22(0)x2(−τ2(0)))].

In view of the assumptionP2

i=1p2i(t) ≤ 1, it follows that α0[x(0) +

2

X

i=1

pi(0)x(−τi(0))]2≤ α0[3x2(0) + 3x2(−τ1(0)) + 3x2(−τ2(0)))]

≤ 9α0 sup

θ∈[−ri,0]

|φ(θ)|2,

α1 2

X

i=1 0

Z

−τi(0)

e2K(s+τi)x2(s)ds ≤ α1 2

X

i=1

e2Kτi

0

Z

−τi(0)

sup

t∈[−τi(0),0]

e2Ktx2(t)ds

(9)

= α1

2

X

i=1

e2Kτi sup

t∈[−τi(0),0]

e2Ktx2(t)τi(0)

≤ α1 2

X

i=1

e2Kriri sup

t∈[−τi(0),0]

e2Ktx2(t)

≤ α1 2

X

i=1

e2Kriri sup

θ∈[−ri,0]

|φ(θ)|2,

α2

2

X

i=1 0

Z

−τi

0

Z

θ

e2K(s−θ)x2(s)dsdθ ≤ α2

2

X

i=1 0

Z

−τi

[ sup

s∈[θ,0]

x2(s)

0

Z

θ

e2K(s−θ)ds]dθ

= α2 2

X

i=1 0

Z

−τi

sup

s∈[−θ,0]

x2(s)[ 1

2Ke−2Kθ− 1 2K]dθ

≤ 1 2Kα2

2

X

i=1 0

Z

−τi

sup

s∈[−θ,0]

x2(s)e−2Kθ

≤ α2 2

X

i=1

sup

θ∈[−ri,0]

|φ(θ)|2[− 1 4K2 + 1

4K2e2Kτi]

≤ 1

4K2α2 2

X

i=1

e2Kri sup

θ∈[−ri,0]

|φ(θ)|2,

α3

2

X

i=1 0

Z

−σi(0)

e2K(s+σi)tanh2x(s)ds ≤ α3

2

X

i=1

e2Kσi

0

Z

−σi(0)

e2Ksx2(s)ds

≤ α3

2

X

i=1

e2Kσi

0

Z

−σi(0)

sup

t∈[−σi(0),0]

e2Ktx2(t)ds

= α3

2

X

i=1

e2Kσi sup

t∈[−σi(0),0]

e2Ktx2(t)σi(0)

≤ α3 2

X

i=1

e2Kriri sup

t∈[−σi(0),0]

e2Ktx2(t),

α4 2

X

i=1 0

Z

−σi 0

Z

θ

e2K(s−θ)tanh2x(s)dsdθ ≤ α4 2

X

i=1 0

Z

−σi

[ sup

s∈[θ,0]

x2(s)

0

Z

θ

e2K(s−θ)ds]dθ

= α4

2

X

i=1 0

Z

−σi

sup

s∈[−θ,0]

x2(s)[ 1

2Ke−2Kθ− 1 2K]dθ

≤ 1 2Kα4

2

X

i=1 0

Z

−σi

sup

s∈[−θ,0]

x2(s)e−2Kθ

(10)

≤ α4 2

X

i=1

sup

θ∈[−ri,0]

|φ(θ)|2[− 1 4K2 + 1

4K2e2Kσi]

≤ 1

4K2α4

2

X

i=1

e2Kri sup

θ∈[−ri,0]

|ϕ(θ)|2.

Hence,

V (0, x(0)) = α0[x(0) +

2

X

i=1

pi(0)x(−τi(0))]2+ α1

2

X

i=1 0

Z

−τi(0)

e2K(s+τi)x2(s)ds

+ α2

2

X

i=1 0

Z

−τi

0

Z

θ

e2K(s−θ)x2(s)dsdθ + α3

2

X

i=1 0

Z

−σi(0)

e2K(s+σi)tanh2x(s)ds

+ α4 2

X

i=1 0

Z

−σi 0

Z

θ

e2K(s−θ)tanh2x(s)dsdθ

≤ [9α0+ (α1+ α3)

2

X

i=1

rie2Kri+ (α2+ α4) 1 4K2

2

X

i=1

e2Kri]

2

X

i=1

sup

θ∈[ri,0]

|φ(θ)|2

≡ M.

We can now write

|x +

2

X

i=1

pi(t)x(−τi(t))|2≤ M1e−2kt,

where M1 =αM

0 > 0. For ∀ε ∈ (0, min{2K, −r2

ilog |pi(t)|}) and v > 0, the inequality xy ≤ vx2+1vy2 for any x, y ∈ R implies that

eεt|x|2≤ (1 + v)eεt

x(t) +

2

X

i=1

pi(t)x(t − τi(t))

2

+1 + v v eεt

2

X

i=1

|pi(t)x(t − τi(t))|2

≤ (1 + v)M1+1 + v v

2

X

i=1

|pi(t)|2|x(t − τi(t))|2eεrieε(t−τi(t)).

And from ∀ε ∈ (0, min{2K, −r2

ilog |pi(t)|}), we have P2

i=1|pi(t)|2eεri < 1. Thus, if we choose v > 0 sufficiently large, then it follows that

γ = P2

i=1|pi(t)|2(1 + v)eεri

v < 1.

(11)

Therefore,

eεt|x|2≤ (1 + v)M1+ γ

2

X

i=1

|x(t − τi(t))|2eε(t−τi(t)) (∀T ≥ 0), sup

0≤t≤T

{eεt|x(t)|2} ≤ (1 + v)M1+ γ sup

θ∈[ri,0]

|ϕ(θ)|2+ γ sup

0≤t≤T

{eεt|x(t)|2}, (i = 1, 2).

Consequently, we obtain

sup

0≤t≤T

{eεt|x|2} ≤ (1 + v)M1+ γ supθ∈[ri,0]|ϕ(θ)|2

1 − γ , (i = 1, 2).

When T → +∞, we can find that

sup

0≤t≤∞

{eεt|x(t)|2} ≤ (1 + v)M1+ γ supθ∈[ri,0]|ϕ(θ)|2

1 − γ , (i = 1, 2).

Thus,

|x| ≤ M2e−at, where

M2= s

(1 + v)M1+ γ supθ∈[ri,0]|ϕ(θ)|2

1 − γ > 0, α = ε

2 > 0, (i = 1, 2).

This ends the proof.

References

[1] R.P. Agarwal, S.R. Grace, Asymptotic stability of certain neutral differential equa- tions, Math. Comput. Modelling 31 (8-9) (2000) 9–15.

[2] H. Chen, X. Meng, An improved exponential stability criterion for a class of neu- tral delayed differential equations, Appl. Math. Lett. 24 (11) (2011) 1763–1767.

[3] H. Chen, Some improved criteria on exponential stability of neutral differential equation, Adv. Difference Equ. 2012 (2012:170) 9 pp.

[4] S. Deng, X. Liao, S. Guo, Asymptotic stability analysis of certain neutral differen- tial equations: a descriptor system approach, Math. Comput. Simulation 79 (10) (2009) 2981–2993.

[5] H.A. El-Morshedy, K. Gopalsamy, Non-oscillation, oscillation and convergence of a class of neutral equations. Lakshmikantham’s legacy: a tribute on his 75th birthday, Nonlinear Anal. 40 (1-8) (2000) Ser. A: Theory Methods 173–183.

(12)

[6] E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, Systems Control Lett. 43 (4) (2001) 309–319.

[7] M.R.S. Kulenovic, G. Ladas, A. Meimaridou, Necessary and sufficient condition for oscillations of neutral differential equations, J. Austral. Math. Soc. Ser. B 28 (3) (1987) 362–375.

[8] O.M. Kwon, Ju H. Park, On improved delay-dependent stability criterion of certain neutral differential equations, Appl. Math. Comput. 199 (1) (2008) 385–391.

[9] X. Li, Global exponential stability for a class of neural networks, Appl. Math. Lett.

22 (8) (2009) 1235–1239.

[10] P.T. Nam, V.N. Phat, An improved stability criterion for a class of neutral dif- ferential equations, Appl. Math. Lett. 22 (1) (2009) 31–35.

[11] Ju H. Park, S. Won, Stability analysis for neutral delay-differential systems, J. Franklin Inst. 337 (1) (2000) 1–9.

[12] Ju H. Park, Ho Y. Jung, On the exponential stability of a class of nonlinear systems including delayed perturbations, J. Comput. Appl. Math. 159 (2) (2003) 467–471.

[13] J.H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations, Appl. Math. Lett. 17 (10) (2004) 1203–1206.

[14] Ju H. Park, O. Kwon, On new stability criterion for delay-differential systems of neutral type, Appl. Math. Comput. 162 (2) (2005) 627–637.

[15] Ju H. Park, O.M. Kwon, Stability analysis of certain nonlinear differential equa- tion, Chaos Solitons Fractals 37 (2) (2008) 450–453.

[16] T. Rojsiraphisal, P. Niamsup, Exponential stability of certain neutral differential equations, Appl. Math. Comput. 217 (8) (2010) 3875–3880.

[17] Y.G. Sun, L. Wang, Note on asymptotic stability of a class of neutral differential equations, Appl. Math. Lett. 19 (9) (2006) 949–953.

[18] C. Tun¸c, Asymptotic stability of nonlinear neutral differential equations with con- stant delays: a descriptor system approach, Ann. Differential Equations 27 (1) (2011) 1–8.

[19] C. Tun¸c, Exponential stability to a neutral differential equation of first order with delay, Ann. Differential Equations 29 (3) (2013) 253–256.

[20] C. Tun¸c, Asymptotic stability of solutions of a class of neutral differential equa- tions with multiple deviating arguments, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57 (105) (1) (2014) 121–130.

[21] C. Tun¸c, On the uniform asymptotic stability to certain first order neutral dif- ferential equations, Cubo 16 (2) (2014) 111–119.

(13)

[22] C. Tun¸c, Convergence of solutions of nonlinear neutral differential equations with multiple delays, Bol. Soc. Mat. Mex. 21 (2) (2015) 219–231.

[23] C. Tun¸c, Y. Altun, Asymptotic stability in neutral differential equations with multiple delays, J. Math. Anal. 7 (5) (2016) 40–53.

[24] C. Tun¸c, A. Sirma, Stability analysis of a class of generalized neutral equations, J. Comput. Anal. Appl. 12 (4) (2010) 754—759.

[25] S. Xu, J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Trans. Automat. Control 50 (3) (2005) 384–387.

DOI: 10.7862/rf.2018.8 Melek G¨ozen

email: melekgozen2013@gmail.com ORCID: 0000-0002-7487-9869

Department of Business Administration Management Faculty

Van Yuzuncu Yil University 65080, Erci¸s

TURKEY Cemil Tun¸c

email: cemtunc@yahoo.com ORCID: 0000-0003-2909-8753 Department of Mathematics Faculty of Sciences

Van Yuzuncu Yıl University 65080, Van

TURKEY

Received 07.09.2017 Accepted 13.04.2018

Cytaty

Powiązane dokumenty

In this paper, we present some results concerning the existence and the local asymptotic stability of solutions for a functional integral equation of fractional order, by using

Proof. We choose a, B, 50, p according to the assumptions of the theorem.. On the Stability of Solutions of Differential Equations... Let sets Slz and £2° be defindet similarly

В работе доказано несколько достаточных условий о существо вании и единственности периодических решений уравнений нейтрально

We consider both small and large amplitude waves cases (larger amplitude waves correspond to smaller values of p):.. a) small amplitude

Tun¸ c, A result on the instability of solutions of certain non-autonomous vector differential equations of fourth order,

Oscillation criteria, extended Kamenev and Philos-type oscillation theorems for the nonlinear second order neutral delay differential equa- tion with and without the forced term

For linear time-delay systems of neutral type, some delay-independent stability conditions were obtained.. They were formulated in terms of a matrix measure and a matrix norm (Hu

this integral is asymptotic