• Nie Znaleziono Wyników

ON THE EQUIVALENCE OF

N/A
N/A
Protected

Academic year: 2021

Share "ON THE EQUIVALENCE OF"

Copied!
16
0
0

Pełen tekst

(1)

VOL. 76 1998 NO. 2

ON THE EQUIVALENCE OF

RICCI-SEMISYMMETRY AND SEMISYMMETRY

BY

KADRI A R S L A N (BURSA), YUNUS C . E L I K (K UTAHYA), ¨ RYSZARD D E S Z C Z (WROC lAW)

AND

RIDVAN E Z E N T A S. (BURSA)

Dedicated to the memory of our friend Dr. S . ahnur Yaprak

Introduction. A semi-Riemannian manifold (M, g), n = dim M ≥ 3, is said to be semisymmetric [28] if

(1) R · R = 0

holds on M . It is well known that the class of semisymmetric manifolds in- cludes the set of locally symmetric manifolds (∇R = 0) as a proper subset.

Recently the theory of Riemannian semisymmetric manifolds has been pre- sented in the monograph [1]. It is clear that every semisymmetric manifold satisfies

(2) R · S = 0.

The semi-Riemannian manifold (M, g), n ≥ 3, satisfying (2) is called Ricci- semisymmetric. There exist non-semisymmetric Ricci-semisymmetric man- ifolds. However, under some additional assumptions, (1) and (2) are equiv- alent for certain manifolds. For instance, we have the following statement.

Remark 1.1. (1) and (2) are equivalent on every 3-dimensional semi- Riemannian manifold as well as at all points of any semi-Riemannian mani- fold (M, g), of dimension ≥ 4, at which the Weyl tensor C of (M, g) vanishes (see e.g. [15, Lemma 2]). In particular, (1) and (2) are equivalent for every conformally flat manifold.

It is a long standing question whether (1) and (2) are equivalent for hy- persurfaces of Euclidean spaces; cf. Problem P 808 of [27] by P. J. Ryan, and references therein. More generally, one can ask the same question for hypersurfaces of semi-Riemannian space forms. It was proved in [29] that

1991 Mathematics Subject Classification: 53B20, 53B30, 53B50, 53C25, 53C35, 53C80.

Key words and phrases: semisymmetric manifolds, pseudosymmetry type manifolds, hypersurfaces.

[279]

(2)

(1) and (2) are equivalent for hypersurfaces which have positive scalar cur- vature in Euclidean space E n+1 , n ≥ 3. In [26] this result was generalized to hypersurfaces of E n+1 , n ≥ 3, which have non-negative scalar curvature and also to hypersurfaces of constant scalar curvature. [26] also proves that (1) and (2) coincide for hypersurfaces of Riemannian space forms with non-zero constant sectional curvature.

Further, in [24] it was proved that (1) and (2) are equivalent for hypersur- faces of E n+1 , n ≥ 3, under the additional global condition of completeness.

In [4] it was shown that (1) and (2) are equivalent for Lorentzian hyper- surfaces of a Minkowski space E n+1 1 , n ≥ 4. [4] also proves that (1) and (2) are equivalent for para-K¨ ahler hypersurfaces of a semi-Euclidean space E 2m+1 s , m ≥ 2. The problem of equivalence of (1) and (2) was solved in the 4-dimensional case. More precisely, we have the following statement.

Theorem 1.1 ([3, Theorem 4.1]). (1) and (2) are equivalent for hyper- surfaces of semi-Riemannian spaces of constant curvature N 5 (c).

The problem of equivalence of (1) and (2) for hypersurfaces with pseu- dosymmetric Weyl tensor of semi-Euclidean spaces was considered in [5].

Theorem 1.2 ([5, Theorem 4.1]). Let M be a Ricci-semisymmetric hy- persurface of a semi-Euclidean space E n+1 s of index s, n ≥ 4. If M has pseudosymmetric Weyl tensor then (1) holds on the set U S consisting of all points of M at which the Ricci tensor S of M is not proportional to the metric tensor of M .

Hypersurfaces with pseudosymmetric Weyl tensor were studied in [7], [20] and [21]. In particular, the following curvature property of semisym- metric hypersurfaces was found.

Theorem 1.3 ([20, Theorem 7.3(ii)]; [21, Theorem 4.1]). Every semisym- metric hypersurface M isometrically immersed in a semi-Euclidean space E n+1 s , n ≥ 4, is a hypersurface with pseudosymmetric Weyl tensor.

Our main result (see Theorem 5.2) is related Theorem 1.2. Namely, we prove that if (M, g), dim M ≥ 4, is a Riemannian Ricci-semisymmetric man- ifold with pseudosymmetric Weyl tensor, satisfying

(3) R · R = Q(S, R),

then (1) holds on U S . Theorem 1.2, in the case when the ambient space is a Euclidean space, is an immediate consequence of Theorem 5.2. We recall that every hypersurface M isometrically immersed in a semi-Euclidean space E n+1 s , n ≥ 3, satisfies (3) ([18, Corollary 3.1]).

The paper is organized as follows. In Section 2 we fix the notations

and give precise definitions of the symbols used. Moreover, we give a short

presentation of classes of semi-Riemannian manifolds satisfying curvature

(3)

conditions of pseudosymmetry type. In Section 3 we give preliminary results.

Finally, in Sections 4 and 5 we present our main results.

2. Certain curvature conditions. Let (M, g) be a connected n-di- mensional, n ≥ 3, semi-Riemannian manifold of class C . We define on M the endomorphisms e R(X, Y ) and X ∧ Y by

R(X, Y )Z = [∇ e X , ∇ Y ]Z − ∇ [X,Y ] Z, (X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y,

where ∇ is the Levi-Civita connection of (M, g) and X, Y, Z ∈ Ξ(M ), Ξ(M ) being the Lie algebra of vector fields on M . Furthermore, we define the Riemann–Christoffel curvature tensor R and the (0, 4)-tensor G of (M, g) by

R(X 1 , X 2 , X 3 , X 4 ) = g( e R(X 1 , X 2 )X 3 , X 4 ), G(X 1 , X 2 , X 3 , X 4 ) = g((X 1 ∧ X 2 )X 3 , X 4 ).

We denote by S and κ the Ricci tensor and the scalar curvature of (M, g), respectively. For a (0, k)-tensor field T on M , k ≥ 1, we define the (0, k + 2)- tensors R · T and Q(g, T ) by

(R · T )(X 1 , . . . , X k ; X, Y ) = ( e R(X, Y ) · T )(X 1 , . . . , X k )

= −T ( e R(X, Y )X 1 , X 2 , . . . , X k ) − . . . − T (X 1 , . . . , X k−1 , e R(X, Y )X k ), Q(g, T )(X 1 , . . . , X k ; X, Y ) = ((X ∧ Y ) · T )(X 1 , . . . , X k )

= −T ((X ∧ Y )X 1 , X 2 , . . . , X k ) − . . . − T (X 1 , . . . , X k−1 , (X ∧ Y )X k ).

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([11], [30]) if

(∗) 1 the tensors R · R and Q(g, R) are linearly dependent at every point of M . This is equivalent to the equality

(4) R · R = L R Q(g, R)

holding on

U R =

 x ∈ M

R − κ

n(n − 1) G 6= 0 at x

 ,

for some function L R on U R . It is clear that every semisymmetric mani-

fold is pseudosymmetric. The condition (∗) 1 arose in the study of totally

umbilical submanifolds of semisymmetric manifolds as well as when consid-

ering geodesic mappings of semisymmetric manifolds ([11], [30]). There exist

pseudosymmetric manifolds which are non-semisymmetric. For instance, in

[12, Example 3.1 and Theorem 4.1] it was shown that the warped product

S p × F S n−p , p ≥ 2, n − p ≥ 1, of the standard spheres S p and S n−p , with

a certain function F , is such a manifold.

(4)

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric ([8], [16]) if

(∗) 2 the tensors R · S and Q(g, S) are linearly dependent

at every point of M . Thus (M, g) is Ricci-pseudosymmetric if and only if

(5) R · S = L S Q(g, S)

on

U S =

 x ∈ M

S − κ

n g 6= 0 at x

 ,

for some function L S on U S . Note that U S ⊂ U R . It is clear that if (∗) 1 holds at x then so does (∗) 2 . The converse is not true. E.g. every warped product M 1 × F M 2 , dim M 1 = 1, dim M 2 = n − 1 ≥ 3, of a manifold (M 1 , g) and a non-pseudosymmetric Einstein manifold (M 2 , e g) is a non- pseudosymmetric, Ricci-pseudosymmetric manifold (cf. [16, Remark 3.4] and [13, Theorem 4.1]).

Remark 2.1. In [10, Theorem 4] it was shown that (∗) 1 and (∗) 2 are equivalent on the subset U S of a 4-dimensional warped product M 1 × F M 2 . In particular, (1) and (2) are equivalent on the subset U S of a 4- dimensional warped product M 1 × F M 2 . We also note that there exist non- semisymmetric Einsteinian 4-dimensional warped products M 1 × F M 2 , e.g.

the Schwarzschild spacetimes as well as the Kerr spacetimes. Moreover, the Schwarzschild spacetimes are pseudosymmetric manifolds.

For any X, Y ∈ Ξ(M ) we define the endomorphism e C(X, Y ) by C(X, Y ) = e e R(X, Y ) − 1

n − 2



X ∧ e SY + e SX ∧ Y − κ

n − 1 X ∧ Y

 . The Ricci operator e S and the Weyl conformal curvature tensor C of (M, g) are defined by

g( e SX, Y ) = S(X, Y ), C(X 1 , X 2 , X 3 , X 4 ) = g( e C(X 1 , X 2 )X 3 , X 4 ).

Now we define the (0, 6)-tensor C · C by

(C · C)(X 1 , X 2 , X 3 , X 4 ; X, Y ) = ( e C(X, Y ) · C)(X 1 , X 2 , X 3 , X 4 )

= −C( e C(X, Y )X 1 , X 2 , X 3 , X 4 ) − . . . − C(X 1 , X 2 , X 3 , e C(X, Y )X 4 ).

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold with pseudosymmetric Weyl tensor ([11], [23], [30]) if

(∗) 3 the tensors C · C and Q(g, C) are linearly dependent

at every point of M . The manifold (M, g) has pseudosymmetric Weyl tensor

if and only if

(5)

(6) C · C = L C Q(g, C) on

U C = {x ∈ M | C 6= 0 at x},

for some function L C on U C . It is known that every warped product M 1 × F M 2 , dim M 1 = dim M 2 = 2, satisfies (∗) 3 ([10, Theorem 2]). An example of a 4-dimensional Riemannian manifold satisfying (∗) 3 , which is not a warped product, was found in [23]. Manifolds satisfying (∗) 1 and (∗) 3 were investi- gated in [23].

For a symmetric (0, 2)-tensor A we define the endomorphism X ∧ A Y of Ξ(M ) by (X ∧ A Y )Z = A(Y, Z)X − A(X, Z)Y . Furthermore, for a (0, k)- tensor field T , k ≥ 1, and the tensor field A we define the tensor Q(A, T ) by

Q(A, T )(X 1 , . . . , X k ; X, Y ) = ((X ∧ A Y ) · T )(X 1 , . . . , X k )

= −T ((X ∧ A Y )X 1 , X 2 , . . . , X k ) − . . . − T (X 1 , . . . , X k−1 , (X ∧ A Y )X k ).

In particular, in this way we obtain the (0, 6)-tensor field Q(S, R).

Semi-Riemannian manifolds satisfying (∗), (∗) 1 , (∗) 2 or (∗) 3 are called manifolds of pseudosymmetry type ([11], [30]). We finish this section with some examples of Ricci-pseudosymmetric manifolds.

Example 2.1. It is known that the Cartan hypersurfaces in the sphere S n+1 (c), n = 3, 6, 12 or 24, are compact, minimal hypersurfaces with con- stant principal curvatures −(3c) 1/2 , 0, (3c) 1/2 having the same multiplicity.

More precisely, the Cartan hypersurfaces are the tubes of constant radius over the standard Veronese embeddings i : FP 2 → S 3d+1 (c) → E 3d+2 , d = 1, 2, 4, 8, of the projective plane FP 2 in the sphere S 3d+1 (c) in E 3d+2 , where F = R (real numbers), C (complex numbers), Q (quaternions) or O (Cayley numbers), respectively. The Cartan hypersurfaces satisfy certain curvature condition of pseudosymmetry type. In [22, Theorem 1] it was shown that ev- ery Cartan hypersurface in S n+1 (c), n = 6, 12, 24, is a non-pseudosymmetric, Ricci-pseudosymmetric manifold with non-pseudosymmetric Weyl tensor satisfying the relations

R · S = e κ

n(n + 1) Q(g, S), R · R − Q(S, R) = − (n − 2) e κ

n(n + 1) Q(g, C)

on M , where e κ is the scalar curvature of S n+1 (c). The Cartan hypersurface in S 4 (c) is a pseudosymmetric manifold satisfying

R · R = e κ

12 Q(g, R).

(6)

3. Preliminary results. Let (M, g), n ≥ 3, be a semi-Riemannian man- ifold covered by a system of coordinate neighbourhoods {U ; x h }. We denote by g ij , R hijk , S ij and C hijk the local components of the tensors g, R, S and C, respectively. Further, we denote by S ij 2 = S ip S j p and S j k = g ks S js

the local components of the tensor S 2 defined by S 2 (X, Y ) = S( e SX, Y ), X, Y ∈ Ξ(M ), and of the Ricci operator e S, respectively.

Let U and S be the (0, 4)-tensor fields on (M, g) defined by

U (X 1 , X 2 , X 3 , X 4 ) = g(X 1 , X 4 )S(X 2 , X 3 ) − g(X 1 , X 3 )S(X 2 , X 4 ) (7)

+ g(X 2 , X 3 )S(X 1 , X 4 ) − g(X 2 , X 4 )S(X 1 , X 3 ), S(X 1 , X 2 , X 3 , X 4 ) = S(X 1 , X 4 )S(X 2 , X 3 ) − S(X 1 , X 3 )S(X 2 , X 4 ).

(8)

Lemma 3.1. The following identities hold on any semi-Riemannian man- ifold (M, g), n ≥ 3:

Q(g, U ) = −Q(S, G), (9)

Q(S, U ) = −Q(g, S), (10)

Q(g, C) = Q(g, R) + 1

n − 2 Q(S, G), (11)

Q(S, C) = Q(S, R) − 1

n − 2 Q(S, U ) + κ

(n − 1)(n − 2) Q(S, G), (12)

Q(S, C) = Q(S, R) + 1

n − 2 Q(g, S) + κ

(n − 1)(n − 2) Q(S, G).

(13)

P r o o f. The identities (9) and (10) are immediate consequences of the definitions of the tensors G, U and S. (11) was shown in [2, Remark 2.1].

Using the definition of the Weyl tensor C we easily get (12). Finally, putting (10) in (12) we obtain (13).

Lemma 3.2. Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (14) R( e S(X), Y, Z, W ) = τ R(X, Y, W, Z),

where τ is a function on M and X, Y, Z, W ∈ Ξ(M ). Then (15) C · C = R · R − 1

n − 2 Q(S, R) + 1 n − 2

 κ n − 1 − τ



Q(g, C).

P r o o f. First of all, it is easy to verify that (14) implies R · S = 0,

(16)

S 2 = τ S.

(17)

Now, using (16), we get

(18) R · C = R · R.

(7)

Further, we can check that the following identities hold on any semi-Rieman- nian manifold:

(C · C) hijklm = (R · C) hijklm + 1 n − 2 Q

 κ

n − 1 g − S, C



hijklm

(19)

− 1

n − 2 (g hl S m p C pijk − g hm S l p C pijk

− g il S m p C phjk + g im S l p C phjk + g jl S m p C pkhi

− g jm S l p C pkhi − g kl S m p C pjhi + g km S l p C pjhi ), S m p C pijk = S m p R pijk − 1

n − 2 (S mk S ij − S mj S ik ) (20)

− 1

n − 2 (g ij S mk 2 − g ik S mj 2 )

+ κ

(n − 1)(n − 2) (g ij S mk − g ik S mj ).

The relation (20), by (14) and (17), turns into S m p C pijk = τ R mijk − 1

n − 2 (S mk S ij − S mj S ik ) (21)

− τ

n − 2 (g ij S mk − g ik S mj )

+ κ

(n − 1)(n − 2) (g ij S mk − g ik S mj ).

Applying (18) and (21) in (19) we find C · C = R · R + κ

(n − 1)(n − 2) Q(g, C) − 1

n − 2 Q(S, C) (22)

− τ

n − 2 Q(g, R) + 1

(n − 2) 2 Q(g, S)

+ 1

(n − 2) 2

 κ

n − 1 − τ



Q(S, G).

This, by making use of (13), gives C · C = R · R − 1

n − 2 Q(S, R) + κ

(n − 1)(n − 2) Q(g, C) (23)

− τ

n − 2 Q(g, R) − τ

(n − 2) 2 Q(S, G), which, by (11), yields (15). Our lemma is thus proved.

Lemma 3.3. If (M, g), n ≥ 4, is a semi-Riemannian Ricci-pseudo- symmetric manifold then at any point x ∈ U S ⊂ M ,

(R · S) hijk = L S (g hj S ik + g ij S hk − g hk S ij − g ik S hj ),

(24)

(8)

S h p R pijk + S j p R pikh + S k p R pihj = 0, (25)

(R · S 2 ) hijk = L S (g hj S ik 2 + g ij S hk 2 − g hk S ij 2 − g ik S hj 2 ), (26)

S ph 2 R p ijk + S pj 2 R p ikh + S pk 2 R p ihj = 0, (27)

A ij = S pq R pijq = S ij 2 − nL S S ij + κL S g ij . (28)

Moreover , if (3) is satisfied at x then

(29) S ij 2 = λS ij + ((n − 1)L S − κ)L S g ij , λ ∈ R, holds at x.

P r o o f. (24) is an immediate consequence of (5). Summing cyclically (24) in h, j, k and using the identity

(30) (R · S) hijk = S h p R pijk + S i p R phjk , we obtain (25). We note that

(R · S 2 ) hijk = S h p (S p a R aijk + S i a R apjk ) + S i p (S p a R ahjk + S h a R apjk ), whence

(R · S 2 ) hijk = S h p (R · S) pijk + S i p (R · S) phjk .

Substituting here (24) we easily get (26). (27) follows from (26). Contracting (24) with g hk and using (30) we obtain (28). From (28) we get

(R · S) pqhk R p ij q + S pq (R · R) pijqhk = (R · S 2 ) ijhk − nL S (R · S) ijhk . Substituting here (3), (5), (24), (26) and

Q(S, R) pijqhk = S ph R kijq + S ih R pkjq + S jh R pikq + S qh R pijk

(31)

− S pk R hijq − S ik R phjq − S jk R pihq − S qk R pijh , we obtain

L S (S kp R p jih + S kp R p ijh − S hp R p jik − S hp R p ijk )

− S kp 2 R p jih − S kp 2 R p ijh + S hp 2 R p jik + S hp 2 R p ijk + S ih A jk + S jh A ik − S ik A jh − S jk A ih

= L S (g ih S jk 2 + g jh S ik 2 − g ik S jh 2 − g jk S ih 2 )

− nL 2 S (g ih S jk + g jh S ik − g ik S jh − g jk S ih ).

Applying (25) and (27) we find

−L S (R · S) ijhk + (R · S 2 ) ijhk + S ih A jk + S jh A ik − S ik A jh − S jk A ih

= L S (g ih S jk 2 + g jh S ik 2 − g ik S jh 2 − g jk S ih 2 )

− nL 2 S (g ih S jk + g jh S ik − g ik S jh − g jk S ih ),

which, by making use of (24), (26) and (28), turns into

(9)

L S ((n − 1)L S − κ)(g ih S jk + g jh S ik − g ik S jh − g jk S ih )

= S ik S jh 2 + S jk S ih 2 − S ih S jk 2 − S jh S ik 2 . The last equality can be rewritten as

S jh (S ik 2 − ((n − 1)L S − κ)L S g ik ) + S ih (S jk 2 − ((n − 1)L S − κ)L S g jk )

− S jk (S ih 2 − ((n − 1)L S − κ)L S g ih )

− S ik (S jh 2 − ((n − 1)L S − κ)L S g jh ) = 0, or briefly

Q(S, S 2 − ((n − 1)L S − κ)L S g) = 0,

from which, in view of Lemma 2.4(i) of [18], we get (29), completing the proof.

4. Ricci-semisymmetric manifolds with κ = 0

Proposition 4.1. If (M, g), n ≥ 4, is a semi-Riemannian Ricci-pseudo- symmetric manifold satisfying (3) then, at any point x ∈ U S ⊂ M ,

(nL S −κ)S m p R pijk = κL S (g mk S ij −g jm S ik ) + nL 2 S (g ij S km −g ki S jm ) (32)

+ (κL S − tr(S 2 ))R mijk − κL 2 S G mijk

+ nL S (S km S ij − S jm S ik ).

P r o o f. From (3) we have (R · R) hijklq = Q(S, R) hijklq , i.e.

R pijk R p hlq − R phjk R p ilq + R pkhi R p jlq − R pjhi R p klq

= S hl R qijk + S il R hqjk + S jl R hiqk + S kl R hijq

− S hq R lijk − S iq R hljk − S jq R hilk − S kq R hijl . Transvecting this with S m q we obtain

R pijk R p hlq S m q − R phjk R p ilq S m q + R pkhi R p jlq S m q − R pjhi R p klq S m q

= S hl S m q R qijk + S il S m q R hqjk + S jl S m q R hiqk + S kl S m q R hijq

− S hm 2 R lijk − S im 2 R hljk − S jm 2 R hilk − S km 2 R hijl . Symmetrizing in l, m and using (24) we get

L S (g hl S m p R pijk + g hm S l p R pijk − g il S m p R phjk − g im S l p R phjk

+ g jl S m p R pkhi + g jm S l p R pkhi − g kl S m p R pjhi − g km S l p R pjhi

− S hm R lijk − S hl R mijk + S im R lhjk + S il R mhjk

− S jm R lkhi − S jl R mkhi + S km R ljhi + S kl R mjhi )

= S jl S m p R pkhi + S jm S l p R pkhi − S kl S m p R pjhi − S km S l p R pjhi

− S hm 2 R lijk − S hl 2 R mijk − S im 2 R hljk − S il 2 R hmjk

− S jm 2 R hilk − S jl 2 R himk − S km 2 R hijl − S kl 2 R hijm .

(10)

Further, contracting with g lh and applying (25), (24) and (27), we find (33) L S (nS m p R pijk − g mj A ik + g mk A ij − κR mijk

+ S jm S ik − S km S ij − g jm S ik − g ij S mk + g mk S ij + g ik S mj )

= κS m p R pijk + L S (S jm S ik + g ij S mk 2 − S mk S ij − g ik S mj 2 )

− S jm A ik + S km A ij + S ik S jm 2 − S ij S km 2

− tr(S 2 )R mijk − S ip 2 R p mjk − S mp 2 R p ijk . We note that (28), by (29), turns into

(34) A ij = (λ − nL S )S ij + (n − 1)L 2 S g ij .

Substituting (29) and (34) into (33) we get (30), completing the proof.

Proposition 4.2. Let (M, g), n ≥ 4, be a semi-Riemannian Ricci- pseudosymmetric manifold. If

(35) βR = nL 2 S U − κL 2 S G + nL S S, β ∈ R, at a point x ∈ U S ⊂ M , then, at x,

(36) β(R · R − L S Q(g, R)) = 0.

P r o o f. First of all we note that (35) implies (37) βR · R = nL 2 S R · U + nL S R · S.

We now prove that, at x,

R · U = L S Q(g, U ), (38)

R · S = L S Q(g, S).

(39) We have

(R · U ) hijklm = g ij (R · S) hklm − g hj (R · S) iklm

+ g hk (R · S) ijlm − g ik (R · S) jhlm

= L S (g ij (g hl S km + g kl S hm − g hm S kl − g km S hl )

− g hj (g il S km + g kl S im − g im S kl − g km S il ) + g hk (g il S jm + g jl S im − g im S jl − g jm S il )

− g ki (g hl S jm + g jl S hm − g hm S jl − g jm S hl ))

= − L S Q(S, G) hijklm , or, briefly,

(40) R · U = −L S Q(S, G).

(11)

Applying (9) in (40) we get (38). Furthermore, we have (R · S) hijklm = S ij (R · S) hklm − S hj (R · S) iklm

+ S hk (R · S) ijlm − S ik (R · S) jhlm

= L S (S ij (g hl S km + g kl S hm − g hm S kl − g km S hl )

− S hj (g il S km + g kl S im − g im S kl − g km S il ) + S hk (g il S jm + g jl S im − g im S jl − g jm S il )

− S ki (g hl S jm + g jl S hm − g hm S jl − g jm S hl ))

= L S Q(g, S) hijklm ,

i.e. (39) holds at x. Applying now (38) and (39) in (37) we get βR · R = nL 2 S (L S Q(g, U ) + Q(g, S)).

But on the other hand, from (35) we also obtain

βQ(g, R) = nL 2 S Q(g, U ) + nL S Q(g, S).

The last two relations complete the proof of our proposition.

Theorem 4.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold and let x ∈ U S ⊂ M .

(i) If (M, g) is a Ricci-pseudosymmetric manifold satisfying (3) then (32) is satisfied on U S .

(ii) If the conditions: (32) and nL S − κ 6= 0 are satisfied at x then R · S = L S Q(g, S) at x.

(iii) If the conditions: (32) and nL S − κ = 0 are satisfied at x then, at x,



tr(S 2 ) − κ 2 n



(R · R − L S Q(g, R)) = 0.

P r o o f. The proof of (i) is presented in Lemma 3.2. Next, (32), by sym- metrization in m, i, implies (5). Finally, (iii) is a consequence of Proposi- tion 4.2.

As an immediate consequence of Theorem 4.1(iii) we have the following.

Theorem 4.2. Let (M, g), n ≥ 4, be a Riemannian Ricci-semisymmetric manifold satisfying (3). If the scalar curvature κ of the manifold (M, g) vanishes on U S ⊂ M then R · R = 0 on U S .

5. Ricci-semisymmetric manifolds with κ 6= 0. Let (M, g),

dim M ≥ 3, be a semi-Riemannian manifold. We denote by U κ the set of

all points of M at which the scalar curvature κ of (M, g) is non-zero. We

note that if (M, g), dim M ≥ 4, is a Ricci-semisymmetric manifold satisfying

(3) then, in view of Lemma 3.3 and Proposition 4.1, (29) and (32) take on

(12)

U S ∩ U κ the forms

S 2 = τ S, (41)

R( e S(X), Y, Z, W ) = τ R(X, Y, Z, W ), (42)

respectively, where X, Y, Z, W ∈ Ξ(M ) and

(43) τ = tr(S 2 )

κ . Now Lemma 3.2 yields immediately the following.

Proposition 5.1. If (M, g), n ≥ 4, is a semi-Riemannian Ricci-semi- symmetric manifold satisfying (3) then

(44) C · C = n − 3

n − 2 R · R + 1 n − 2

 κ

n − 1 − τ



Q(g, C) on U S ∩ U κ .

Theorem 5.1. Let (M, g), n ≥ 4, be a semi-Riemannian Ricci-semi- symmetric manifold satisfying (3). If (M, g) has pseudosymmetric Weyl tensor then R · R = 0 on U S ∩ U κ .

P r o o f. Let x ∈ M . If x ∈ M − U C then our assertion follows from Remark 1.1. Let x ∈ U S ∩ U κ ∩ U C . Thus (44), by (6), turns into

(45) R · R = µQ(g, C),

which, by (2), gives

(46) R · C = µQ(g, C),

where

µ = L C − 1 n − 2

 κ n − 1 − τ

 . We consider two cases.

I. First we assume that dim M ≥ 5. Now (46), in view of [14, Theorem 1], implies R · R = µQ(g, R), whence

(47) R · S = µQ(g, S).

But this, by (2), yields µQ(g, S) = 0. Since x ∈ U S , the last relation gives µ = 0, which reduces (47) to (1).

II. We now assume that dim M = 4. It is well known that the follow- ing identity is satisfied for every 4-dimensional semi-Riemannian manifold (M, g) ([25]):

0 = g hm C lijk + g lm C ihjk + g im C hljk + g hj C likm + g lj C ihkm

(48)

+ g ij C hlkm + g hk C limj + g lk C ihmj + g ik C hlmj .

(13)

From this we get immediately

0 = g hm (R · C) lijkab + g lm (R · C) ihjkab + g im (R · C) hljkab

(49)

+ g hj (R · C) likmab + g lj (R · C) ihkmab + g ij (R · C) hlkmab

+ g hk (R · C) limjab + g lk (R · C) ihmjab + g ik (R · C) hlmjab , which, in virtue of (46), turns into

0 = µ(g hm Q(g, C) lijkab + g lm Q(g, C) ihjkab + g im Q(g, C) hljkab

(50)

+ g hj Q(g, C) likmab + g lj Q(g, C) ihkmab + g ij Q(g, C) hlkmab

+ g hk Q(g, C) limjab + g lk Q(g, C) ihmjab + g ik Q(g, C) hlmjab ).

But on the other hand, (45), by (3), gives

(51) Q(S, R) = µQ(g, C).

Applying (51) in (50) we obtain

0 = g hm Q(S, R) lijkab + g lm Q(S, R) ihjkab + g im Q(S, R) hljkab

(52)

+ g hj Q(S, R) likmab + g lj Q(S, R) ihkmab + g ij Q(S, R) hlkmab

+ g hk Q(S, R) limjab + g lk Q(S, R) ihmjab + g ik Q(S, R) hlmjab . Further, using the definition of the tensor Q(S, R) and (41) and (42), we can easily check the following identities on U S ∩ U κ :

S c p Q(S, R) pijkab = τ Q(S, R) cijkab , (53)

S c p Q(S, R) hijkap = τ Q(S, R) hijkac . (54)

Transvecting now (52) with S p h and using (53) and (54) we get 0 = S pm Q(S, R) lijkab + S pj Q(S, R) likmab + S pk Q(S, R) limjab

(55)

+ τ (g lm Q(S, R) ihjkab + g im Q(S, R) hljkab + g lj Q(S, R) ihkmab

+ g ij Q(S, R) hlkmab + g lk Q(S, R) ihmjab + g ik Q(S, R) hlmjab ).

Subtracting (52) we find

(S pm − τ g pm )Q(S, R) lijkab + (S pj − τ g pj )Q(S, R) likmab

+ (S pk − τ g pk )Q(S, R) limjab = 0.

From this, by transvection with S c m and making use of (41) and (53), we obtain

τ ((S pj − τ g pj )Q(S, R) likcab + (S pk − τ g pk )Q(S, R) licjab ) = 0.

Further, transvecting this with S d j and using again (41) and (53), we find τ 2 (S pk − τ g pk )Q(S, R) licdab = 0,

or, briefly,

τ 2 (S − τ g)Q(S, R) = 0.

(14)

Since x ∈ U S , this reduces to

(56) τ Q(S, R) = 0.

If τ is non-zero at a point x ∈ U S ∩ U κ then (56) implies Q(S, R) = 0 and by (3) we get (1). If τ = 0 at x then (41), (42), (53) and (54) reduce to

S ij 2 = 0, (57)

S m p R pijk = 0, (58)

S a p Q(S, R) pijklm = 0, (59)

S a p Q(S, R) hijkpm = 0, (60)

respectively. Further, from (51) we have

(61) Q(S, R) hijklm = µQ(g, C) hijklm . Transvecting this with S c l and using (60) we get (62) µS a p Q(g, C) hijkpm = 0.

If µ vanishes at x then (61) reduces to Q(S, R) = 0. Thus (3) implies again (1). If µ is non-zero at x then (62) yields

S a p Q(g, C) hijkpm = 0, whence we obtain

0 = S ah C mijk − S ai C mhjk + S aj C mkhi − S ak C mjhi

− g mh S a l C lijk + g mi S a l C lhjk − g mj S a l C lkhi + g mk S a l C ljhi . Contracting this with g ah we find

0 = κC mijk + S i p C pmjk + S j p C pimk − S k p C pimj

(63)

− S m l C lijk + g mj S pq C pkiq − g mk S pq C pjiq . Since τ = 0, (21) reduces to

T mijk = S m p C pijk = − 1

n − 2 (S mk S ij − S mj S ik ) (64)

+ κ

(n − 1)(n − 2) (g ij S mk − g ik S mj ).

Contracting this with g mk and using (57) we obtain (65) P ij = S pq C pijq = − nκ

(n − 1)(n − 2) S ij + κ 2

(n − 1)(n − 2) g ij .

Let T and P be the tensors with local components T mijk and P ij defined

by (64) and (65), respectively. From (64) and (65), in virtue of (2), we obtain

R · T = 0 and R · P = 0, respectively. Applying the last two relations in (63)

we find κR · C = 0, and by the assumption that κ 6= 0, we have R · C = 0,

which reduces (46) to µQ(g, C) = 0. Evidently, if µ 6= 0 then Q(g, C) = 0,

(15)

which, in view of Lemma 1.1 of [6], implies C = 0, a contradiction. Thus we have µ = 0. Now (45) completes the proof.

Finally, using Theorems 4.2 and 5.1 we get our main result.

Theorem 5.2. Let (M, g), n ≥ 4, be a Riemannian Ricci-semisymmetric manifold satisfying (3). If (M, g) is a manifold with pseudosymmetric Weyl tensor then R · R = 0 on U S ⊂ M .

REFERENCES

[1] E. B o e c k x, O. K o w a l s k i and L. V a n h e c k e, Riemannian Manifolds of Conullity Two, World Sci., Singapore, 1996.

[2] F. D e f e v e r, R. D e s z c z, P. D h o o g h e, L. V e r s t r a e l e n and S.. Y a p r a k, On Ricci- pseudosymmetric hypersurfaces in spaces of constant curvature, Results Math. 27 (1995), 227–236.

[3] F. D e f e v e r, R. D e s z c z, Z. S. e n t ¨u r k, L. V e r s t r a e l e n and S.. Y a p r a k, P. J.

Ryan’s problem in semi-Riemannian space forms, Dept. Math., Agricultural Univ.

Wroc law, preprint No. 44, 1997.

[4] F. D e f e v e r, R. D e s z c z and L. V e r s t r a e l e n, On semisymmetric para-K¨ ahler manifolds, Acta Math. Hungar. 74 (1997), 7–17.

[5] F. D e f e v e r, R. D e s z c z, L. V e r s t r a e l e n and S.. Y a p r a k, The equivalence of semisymmetry and Ricci-semisymmetry for certain hypersurfaces, Dept. Math., Agricultural Univ. Wroc law, preprint No. 45, 1997.

[6] J. D e p r e z, R. D e s z c z and L. V e r s t r a e l e n, Examples of pseudosymmetric con- formally flat warped products, Chinese J. Math. 17 (1989), 51–65.

[7] J. D e p r e z, R. D e s z c z, L. V e r s t r a e l e n and S.. Y a p r a k, Hypersurfaces satisfying pseudosymmetry type conditions for their Weyl conformal curvature tensor , Atti Acad. Peloritana Cl. Sci. Fis. Mat. Natur., in print.

[8] R. D e s z c z, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053–1065.

[9] —, On conformally flat Riemannian manifold satisfying certain curvature condi- tions, Tensor (N.S.) 49 (1990), 134–145.

[10] —, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103–120.

[11] —, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Ser. A 44 (1992), 1–34.

[12] —, Curvature properties of a certain compact pseudosymmetric manifold , Colloq.

Math. 65 (1993), 139–147.

[13] R. D e s z c z and W. G r y c a k, On some class of warped product manifolds, Bull.

Inst. Math. Acad. Sinica 15 (1987), 311–322.

[14] —, —, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89–92.

[15] —, —, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259–268.

[16] R. D e s z c z and M. H o t l o´ s, Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor , Prace Nauk. Politech. Szczec. 11 (1988), 23–34.

[17] —, —, On a certain subclass of pseudosymmetric manifolds, Publ. Math. Debrecen,

in print.

(16)

[18] R. D e s z c z and L. V e r s t r a e l e n, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, World Scientific, River Edge, N.J., 1991, 131–147.

[19] R. D e s z c z, L. V e r s t r a e l e n and S.. Y a p r a k, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), 167–179.

[20] —, —, —, Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat manifolds, Dept. Math., Agricultural Univ. Wroc law, preprint No. 32, 1995.

[21] —, —, —, On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math.

Hungar. 78 (1998), 45–57.

[22] R. D e s z c z and S.. Y a p r a k, Curvature properties of Cartan hypersurfaces, Colloq.

Math. 67 (1994), 91–98.

[23] —, —, Curvature properties of certain pseudosymmetric manifolds, Publ. Math.

Debrecen 45 (1994), 333–345.

[24] Y. M a t s u y a m a, Complete hypersurfaces with R · S = 0 in E

n+1

, Proc. Amer.

Math. Soc. 88 (1983), 119–123.

[25] E. M. P a t t e r s o n, A class of critical Riemannian metrics, J. London Math. Soc.

23 (1981), 349–358.

[26] P. J. R y a n, Hypersurfaces with parallel Ricci tensor , Osaka J. Math. 8 (1971), 251–259.

[27] —, A class of complex hypersurfaces, Colloq. Math. 26 (1972), 175–182.

[28] Z. I. S z a b ´ o, Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0.

I. The local version, J. Differential Geom. 17 (1982), 531–582.

[29] S. T a n n o, Hypersurfaces satisfying a certain condition on the Ricci tensor , Tˆ ohoku Math. J. 21 (1969), 297–303.

[30] L. V e r s t r a e l e n, Comments on pseudo-symmetry in the sense of Ryszard Deszcz , in: Geometry and Topology of Submanifolds, VI, World Scientific, River Edge, N.J., 1994, 199–209.

Kadri Arslan and Ridvan Ezentas. Ryszard Deszcz

Department of Mathematics Department of Mathematics

Uludaˇ g University Agricultural University of Wroc law

Gor¨ ukle Kamp¨ us¨ u, Bursa, Turkey Grunwaldzka 53

E-mail: arslan@uu20.bim.uludag.edu.tr 50-357 Wroc law, Poland E-mail: rysz@ozi.ar.wroc.pl Yunus C . elik

Department of Mathematics Dumlupinar University K¨ utahya, Turkey

Received 21 July 1997;

revised 24 October 1997

Cytaty

Powiązane dokumenty

In this chapter, we first show that the problem with a worse condition number is solved, by applying a very simple and cheap deflation technique with only one deflation

simple and Artinian if and only if every finitely generated JR -module is quasi- injective, and that R is semi-local if and only if every finitely generated Jacobson

In the present paper we will consider algebraic properties of 3-structures induced on the hypersurfaces in the Riemannian manifold by genera­.. lized 3-structures given

The purpose of this paper is a construction of Riemannian metric of Sasaki type and Riemannian connection, and its geodesics on a total space of linearized tangent bundle of

Both manifolds are submanifolds of a hypersurface embedded in M* n with an induced 3-etructura Also connections induced on these manifolds and integrability conditions

VOL. This paper deals with a representation ai a 4n-dimensional Riemannian manifold as a Cartesian product of R" and three »-dimensional manifolds with suitably chosen

Other factors indicating the scientific output such as the number of publications with an Impact Factor, the total Impact Factor, the citation index according

Część II książki, zawierająca aż osiem rozdziałów, została zatytułowana: „Przekroczcie Jego bramy z hymnami dziękczynienia”. Wszystkie te rozdziały odnoszą się