• Nie Znaleziono Wyników

Products of Toeplitz and Hankel operators on the Bergman space in the polydisk

N/A
N/A
Protected

Academic year: 2021

Share "Products of Toeplitz and Hankel operators on the Bergman space in the polydisk"

Copied!
14
0
0

Pełen tekst

(1)

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXXII, NO. 2, 2018 SECTIO A 57–70

PAWEŁ SOBOLEWSKI

Products of Toeplitz and Hankel operators on the Bergman space in the polydisk

Abstract. In this paper we obtain a condition for analytic square integrable functions f, g which guarantees the boundedness of products of the Toeplitz operators TfTg¯ densely defined on the Bergman space in the polydisk. An analogous condition for the products of the Hankel operators HfHg is also given.

1. Introduction. Let D be the open unit disk in the complex plane C. For a fixed positive integer n ≥ 2, the unit polydisk D

n

is the Cartesian product of n copies of D. By dA we will denote the Lebesgue volume measure on D

n

, normalized so that A(D

n

) = 1.

The Bergman space A

2

= A

2

(D

n

) is the space of all analytic functions on D

n

such that

kf k

2

= Z

Dn

|f (z)|

2

dA(z) < ∞.

For w = (w

1

, w

2

, . . . , w

n

) ∈ D

n

the reproducing kernel in A

2

is the function K

w

given by

K

w

(z) =

n

Y

j=1

1

(1 − ¯ w

j

z

j

)

2

, z ∈ D

n

.

If h·, ·i is the inner product in L

2

(D

n

), then for every function f ∈ A

2

we have

hf, K

w

i = f (w), w ∈ D

n

.

2010 Mathematics Subject Classification. 30H05, 32A36.

Key words and phrases. Toeplitz operator, Bergman space.

(2)

In the special case when f = K

w

, we obtain kK

w

k

2

= hK

w

, K

w

i = K

w

(w) =

n

Y

j=1

1

(1 − |w

j

|

2

)

2

, w ∈ D

n

. So, the normalized reproducing kernel for A

2

is

k

w

(z) =

n

Y

j=1

1 − |w

j

|

2

(1 − ¯ w

j

z

j

)

2

, z ∈ D

n

.

Now we quote the definition of the Toeplitz operator. The orthogonal projection P from L

2

(D

n

) onto A

2

is defined by

P (f )(w) = hf, K

w

i = Z

Dn

f (z)

n

Y

j=1

1

(1 − ¯ z

j

w)

2

dA(z), f ∈ L

2

(D

n

), w ∈ D

n

. For a function f ∈ L

and h ∈ A

2

the Toeplitz operator T

f

is given by

T

f

h(w) = P (f h)(w), w ∈ D

n

.

Similarly, the Hankel operator H

f

acting on A

2

is defined as H

f

h = f h − P (f h), h ∈ A

2

,

and P is the projection mentioned above. It is clear that H

f

h ∈ A

2⊥

. Both operators T

f

and H

f

can be defined when the symbol f belongs to the space L

2

(D

n

). In that case the Toeplitz and Hankel operators are densely defined on the Bergman space A

2

, that is on H

.

Let w

i

, i = 1, 2, . . . , n, belong to the unit disk D. For each w

i

we define an automorphism ϕ

wi

of D by

ϕ

wi

(z

i

) = w

i

− z

i

1 − ¯ w

i

z

i

, z

i

∈ D, i = 1, 2, . . . , n.

Then the map

ϕ

w

(z) = (ϕ

w1

(z

1

), ϕ

w2

(z

2

), . . . , ϕ

wn

(z

n

)), z, w ∈ D

n

is an automorphism of the polydisk D

n

, in fact, ϕ

−1w

= ϕ

w

. The real Jaco- bian of ϕ

w

is equal to

|k

w

|

2

=

n

Y

j=1

(1 − |w

j

|

2

)

2

|1 − ¯ w

j

z

j

|

4

, thus we have change-of-variable formula

Z

Dn

(h ◦ ϕ

w

)(z)dA(z) = Z

Dn

h(z)|k

w

(z)|

2

dA(z),

whenever such integrals make sense.

(3)

2. Problem and results. As we mentioned, the Toeplitz operator may be considered when the index f belongs to the space L

2

(D

n

). If f ∈ A

2

, then by the definition of the Toeplitz operator, we have

T

f¯

h(w) = P ( ¯ f h)(w) = Z

Dn

f (z)h(z)

n

Y

j=1

1

(1 − ¯ z

j

w)

2

dA(z), w ∈ D

n

. The main problem in this note is what conditions must be satisfied by functions f, g ∈ A

2

to guarantee that the product of the Toeplitz operators T

f

T

g¯

is bounded on the Bergman space A

2

in the polydisk D

n

. We provide a sufficient condition for boundedness of such products. Similarly, we give a sufficient condition to ensure that the product of the Hankel operators H

f

H

g

is bounded on the space (A

2

)

, where H

is the adjoint of H.

For u ∈ L

2

(D

n

) we denote

˜

u(w) = B[u](w) = Z

Dn

(u ◦ ϕ

w

)(z)dA(z), w ∈ D

n

.

In [9] Stroethoff and Zheng established the following necessary condition for boundedness of the products T

f

T

¯g

on the unit disk D.

Theorem 1. Let f and g be in A

2

. If T

f

T

¯g

is bounded, then sup

w∈D

|f | g

2

(w)g |g|

2

(w) < ∞.

In the same paper the authors also gave a little stronger sufficient condi- tion.

Theorem 2. Let f and g be in A

2

. If there is a positive constant ε such that

sup

w∈D

|f |

^2+ε

(w) |g|

^2+ε

(w) < ∞, then T

f

T

¯g

is bounded.

There is a conjecture that the necessary condition is also a sufficient condition for boundedness. But in view of a counter-example of Nazarov [6]

for Toeplitz products on the Hardy space, it may not be possible to prove that this necessary condition is also sufficient.

Stroethoff and Zheng [12] showed the analogous results on the Bergman spaces of the polydisk [11], weighted Bergman space of the unit disk [13]

and the unit ball [12]. Next, Miao in [4] gave an interesting way to transfer Theorem 1 and Theorem 2 to the space A

pα

, 1 < p < ∞, α > −1, of the unit ball. Recently, Michalska and Sobolewski [5] improved a sufficient condition on boundedness of T

f

T

¯g

on A

pα

.

A similar problem concerns the products of the Hankel operators H

f

H

g

.

Such operators are densely defined on space (A

2

)

. The following condition

for the Hankel products on the unit disk was established by Stroethoff and

Zheng in [9].

(4)

Theorem 3. Let f and g be in L

2

(D, dA). If H

f

H

g

is bounded on (A

2

)

, then

sup

w∈D

kf ◦ ϕ

w

− P (f ◦ ϕ

w

)k

L2

kg ◦ ϕ

w

− P (g ◦ ϕ

w

)k

L2

< ∞.

The same authors showed that this necessary condition is, like for T

f

T

¯g

, very close to being sufficient.

Theorem 4. Let f and g be in L

2

(D, dA). If there is a positive constant ε such that

sup

w∈D

kf ◦ ϕ

w

− P (f ◦ ϕ

w

)k

L2+ε

kg ◦ ϕ

w

− P (g ◦ ϕ

w

)k

L2+ε

< ∞, then the product H

f

H

g

is bounded on (A

2

)

.

Their theorems were extended to the weighted Bergman spaces of the unit ball by Lu and Liu [2] and for the Bergman space of the polydisk by Lu and Shang [3].

In this paper we provide a sufficient condition for the boundedness of the operators T

f

T

¯g

and H

f

H

g

.

For u ∈ L

1

, ε > 0 and w ∈ D

n

we define B

ε

[u](w) =

Z

Dn

(u ◦ ϕ

w

)(z)

n

Y

i=1

log

1+ε

1

1 − |z

i

| dA(z),

where ϕ

w

is the automorphism of D

n

and z = (z

1

, z

2

, . . . , z

n

). The following theorems are the main results in this paper.

Theorem 5. Let f, g ∈ A

2

. If there is a positive constant ε > 0 such that sup

w∈Dn

B

ε

[|f |

2

](w)B

ε

[|g|

2

](w) < ∞, then the operator T

f

T

g¯

is bounded on A

2

.

Theorem 6. Let f, g ∈ L

2

(D

n

). If there is a positive constant ε > 0 such that

sup

w∈Dn

(f ◦ ϕ

w

− P (f ◦ ϕ

w

))

n

Y

j=1

log

(1+ε)/2

1 1 − |z

j

|

L2

×

(g ◦ ϕ

w

− P (g ◦ ϕ

w

))

n

Y

j=1

log

(1+ε)/2

1 1 − |z

j

|

L2

< ∞,

then the operator H

f

H

g

is bounded on (A

2

)

.

After sending this paper for publication we found that Theorem 5 is

contained in a result obtained in [1].

(5)

3. Proofs. A very important role in our considerations is played by the for- mula for the inner product in A

2

introduced in [11]. Let α = {α

1

, α

2

, . . . , α

m

} be a nonempty subset of {1, 2, . . . , n} with α

1

< α

2

< . . . < α

m

. We define the measure on D

n

by

α

(z) = 3

n−m

6

m

(1 − |z

1

|

2

)

2

(1 − |z

2

|

2

)

2

. . . (1 − |z

n

|

2

)

2

× Y

j∈α

(5 − 2|z

j

|)

2

dA(z

1

)dA(z

2

) . . . dA(z

n

)

and

(z) = 3

n

(1 − |z

1

|

2

)

2

(1 − |z

2

|

2

)

2

. . . (1 − |z

n

|

2

)

2

dA(z

1

)dA(z

2

) . . . dA(z

n

), where m is the cardinality of α. Let us set D

j

h = ∂h/∂z

j

and

D

α

h = D

α1

D

α2

. . . D

αm

h, D

h = h.

For f, g ∈ A

2

we have

(1)

Z

Dn

f (z)g(z)dA(z) = X

α

Z

Dn

D

α

f (z)D

α

g(z)dµ

α

(z),

where α runs over all subsets of {1, 2, . . . , n}.

We start with some lemmas which we will apply to prove the main theo- rems.

Lemma 1. Let f ∈ A

2

, h ∈ H

and ε > 0. If α = {α

1

, α

2

, . . . , α

m

} is a subset of {1, 2, . . . , n}, then

|D

α

T

fα¯

h(w)| ≤ C

n

Y

i=1

1

(1 − |w

i

|

2

) B

ε

[|f |

2

](w) 

12

× Z

Dn

|h(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

for all w ∈ D

n

.

(6)

Proof. First we show the inequality for α = ∅.

|T

f¯

h(w)| ≤ 2

n

Z

Dn

|f (z)|

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

1+ε2

1 1 − |ϕ

wi

(z

i

)|

× |h(z)|

n

Y

i=1

1

|1 − w

i

z

i

|

n

Y

i=1

log

1+ε2

1

1 − |ϕ

wi

(z

i

)| dA(z)

≤ C Z

Dn n

Y

i=1

1

(1 − |w

i

|

2

)

2

|f (z)|

2

n

Y

i=1

(1 − |w

i

|

2

)

2

|1 − w

i

z

i

|

4

n

Y

i=1

log

1+ε

1 1 − |ϕ

wi

(z

i

)|

!

12

× Z

Dn

|h(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−(1+ε)

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

≤ C

n

Y

i=1

1

(1 − |w

i

|

2

) B

ε

[|f |

2

](w)

12

× Z

Dn

|h(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−(1+ε)

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

.

In the case α = {1, 2, . . . , n}, we have

|D

α

T

f¯

h(w)| ≤ 2

n

Z

Dn

|f (z)||h(z)|

n

Y

i=1

|z

i

|

|1 − w

i

z

i

|

3

dA(z)

≤ Z

Dn

|f (z)|

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

1+ε2

1 1 − |ϕ

wi

(z

i

)|

× |h(z)|

n

Y

i=1

1

|1 − w

i

z

i

|

n

Y

i=1

log

1+ε2

1

1 − |ϕ

wi

(z

i

)| dA(z).

Following the previous calculations, we obtain the desired inequality. It remains to consider the case when α is a proper subset of {1, 2, . . . , n}.

Then

|D

α

T

f¯

h(w)| ≤ Z

Dn

|f (z)||h(z)| Y

i∈α

2|z

i

|

|1 − w

i

z

i

|

3

Y

i /∈α

1

|1 − w

i

z

i

|

2

dA(z)

≤ C Z

Dn

|f (z)|

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

1+ε2

1 1 − |ϕ

wi

(z

i

)|

× |h(z)|

n

Y

i=1

1

|1 − w

i

z

i

|

n

Y

i=1

log

1+ε2

1

1 − |ϕ

wi

(z

i

)| dA(z),

(7)

where the last inequality follows from

Y

j∈α

2z

j

(1 − ¯ w

j

z

j

)

3

Y

j /∈α

1 (1 − ¯ w

j

z

j

)

2

≤ C

n

Y

j=1

1

|1 − ¯ w

j

z

j

|

3

.

 Lemma 2. Let ε > 0, u ∈ (A

2

)

, f ∈ L

2

(D

n

), α = {α

1

, α

2

, . . . , α

m

} ⊂ {1, 2, . . . , n}, α

1

< α

2

< . . . < α

m

. Then

|D

α

H

f

u(w)| ≤ C

n

Y

j=1

1 1−|w

j

|

2

(f ◦ ϕ

w

− P (f ◦ ϕ

w

))

n

Y

j=1

log

(1+ε)/2

1 1 − |z

j

|

×

 Z

Dn

|u(z)|

2

n

Y

j=1

1

|1 − ¯ z

j

w

j

|

2

n

Y

j=1

log

−1−ε

1

1 − |ϕ

wj

(z

j

)| dA(z)

1 2

.

Proof. The proof will proceed in three steps as above. Suppose first that α = ∅. Then

hH

f

u, K

w

i =

n

Y

j=1

1

1 − |w

j

|

2

hH

f

u, k

w

i =

n

Y

j=1

1

1 − |w

j

|

2

hu, H

f

k

w

i.

In view of [8, Proposition 1] we may write

H

f

k

w

= (f − P (f ◦ ϕ

w

) ◦ ϕ

w

) k

w

and

hH

f

u, K

w

i =

n

Y

j=1

1

1 − |w

j

|

2

hu, (f − P (f ◦ ϕ

w

) ◦ ϕ

w

) k

w

i.

Thus, by H¨ older’s inequality, we obtain

|hu, (f − P (f ◦ ϕ

w

) ◦ ϕ

w

) k

w

(z)i|

= Z

Dn

u(z)

n

Y

j=1

log

1+ε2

1

1 − |ϕ

wj

(z

j

)| (f − P (f ◦ ϕ

w

) ◦ ϕ

w

) (z)k

w

(z)

×

n

Y

j=1

log

1+ε2

1

1 − |ϕ

wj

(z

j

)| dA(z)

(8)

 Z

Dn

| (f −P (f ◦ ϕ

w

) ◦ ϕ

w

) (z)|

2

|k

w

(z)|

2

n

Y

j=1

log

1+ε

1

1−|ϕ

wj

(z

j

)| dA(z)

1 2

×

 Z

Dn

|u(z)|

2

n

Y

j=1

log

−1−ε

1

1 − |ϕ

wj

(z

j

)| dA(z)

1 2

.

By the change-of-variable formula z 7→ ϕ

w

(z) and using that |1 − ¯ z

j

w

j

| ≤ 2, we have

|hu, (f − P (f ◦ ϕ

w

) ◦ ϕ

w

) k

w

(z)i|

≤ C

(f ◦ ϕ

w

− P (f ◦ ϕ

w

))

n

Y

j=1

log

(1+ε)/2

1 1 − |z

j

|

×

 Z

Dn

|u(z)|

2

n

Y

j=1

1

|1 − ¯ z

j

w

j

|

2

n

Y

j=1

log

−1−ε

1

1 − |ϕ

wj

(z

j

)| dA(z)

1 2

.

This proves the first case. Now, let α = {1, 2, . . . , n}. Then H

f

u(w) = P ( ¯ f u)(w) =

Z

Dn

f (z)u(z)

n

Y

j=1

1

(1 − w

j

z ¯

j

)

2

dA(z).

Hence

D

α

H

f

u(w) = Z

Dn

f (z)u(z)

n

Y

j=1

2¯ z

j

(1 − w

j

¯ z

j

)

3

dA(z).

Let

F

w

(z) = P (f ◦ ϕ

w

) ◦ ϕ

w

(z)

n

Y

j=1

2z

j

(1 − ¯ w

j

z

j

)

3

. The function F

w

belongs to ∈ A

2

, thus

hu, F

w

i = Z

Dn

u(z)P (f ◦ ϕ

w

) ◦ ϕ

w

(z)

n

Y

j=1

2z

j

(1 − ¯ w

j

z

j

)

3

dA(z) ≡ 0.

So,

D

α

H

f

u(w) = D

α

H

f

u(w) − hu, F

w

i

= Z

Dn

u(z)(f (z) − P (f ◦ ϕ

w

) ◦ ϕ

w

(z))

n

Y

j=1

2z

j

(1 − ¯ w

j

z

j

)

3

dA(z).

(9)

Using H¨ older’s inequality, we get

|D

α

H

f

u(w)|

≤ C

 Z

Dn

|u(z)|

2

n

Y

j=1

1

|1 − ¯ z

j

w

j

|

2

n

Y

j=1

log

−1−ε

1

1 − |ϕ

wj

(z

j

)| dA(z)

1 2

×

n

Y

j=1

1 1 − |w

j

|

2

×

 Z

Dn

| (f −P (f ◦ ϕ

w

) ◦ ϕ

w

) (z)|

2

|k

w

(z)|

2

n

Y

j=1

log

1+ε

1

1−|ϕ

wj

(z

j

)| dA(z)

1 2

= C

n

Y

j=1

1 1 − |w

j

|

2

×

 Z

Dn

|u(z)|

2

n

Y

j=1

1

|1 − ¯ z

j

w

j

|

2

n

Y

j=1

log

−1−ε

1

1 − |ϕ

wj

(z

j

)| dA(z)

1 2

×

(f ◦ ϕ

w

− P (f ◦ ϕ

w

))

n

Y

j=1

log

(1+ε)/2

1 1 − |z

j

|

L2

.

Suppose now that α = {α

1

, α

2

, . . . , α

m

} is a nonempty subset of {1, 2, . . . , n}.

Then

D

α

H

f

u(w) = Z

Dn

f (z)u(z) Y

j∈β

2¯ z

j

(1 − w

j

z ¯

j

)

3

Y

j /∈β

1

(1 − w

j

z ¯

j

)

2

dA(z).

Putting

F

w

(z) = P (f ◦ ϕ

w

) ◦ ϕ

w

(z) Y

j∈β

2z

j

(1 − ¯ w

j

z

j

)

3

Y

j /∈β

1 (1 − ¯ w

j

z

j

)

2

and using the fact that

Y

j∈β

2z

j

(1 − ¯ w

j

z

j

)

3

Y

j /∈β

1 (1 − ¯ w

j

z

j

)

2

≤ C

n

Y

j=1

1

|1 − ¯ w

j

z

j

|

3

, we obtain

|D

β

H

f

u(w)|

≤ C Z

Dn

|u(z)|

n

Y

j=1

1

|1− ¯ w

j

z

j

| |f (z) − P (f ◦ ϕ

w

) ◦ ϕ

w

(z)|

n

Y

j=1

1

|1 − ¯ w

j

z

j

|

2

dA(z).

(10)

Using the same arguments as in the proof of Lemma 1, the stated result

follows. 

Now, we give the proofs of the main theorems.

Proof of Theorem 5. Let u, v ∈ H

. We show that

|hT

f

T

g¯

u, vi| ≤ Ckukkvk.

By (1), we get

hT

f

T

g¯

u, vi = hT

¯g

u, T

f¯

vi

= Z

Dn

T

g¯

u(w)T

f¯

v(w)dA(w)

= X

α

Z

Dn

D

α

T

¯g

u(w)D

α

T

f¯

v(w)dµ

α

(w).

Using Lemma 1, we obtain

|hT

f

T

g¯

u, υi| ≤ C X

α

Z

Dn

Z

Dn n

Y

i=1

1

(1 − |w

i

|

2

) B

ε

[|f |

2

](w) 

12

× Z

Dn

|u(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

× Z

Dn n

Y

i=1

1

(1 − |w

i

|

2

) B

ε

[|g|

2

](w) 

12

× Z

Dn

|υ(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

 dµ

α

(z)

≤ C sup

w∈Dn

B

ε

[|f |

2

](w)B

ε

[|g|

2

](w)

12

X

α

Z

Dn n

Y

i=1

1 (1 − |w

i

|

2

)

2

× Z

Dn

|u(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

× Z

Dn

|υ(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

α

(w).

(11)

Since

α

(z) = 3

n−m

6

m

n

Y

j=1

(1 − |z

j

|

2

)

2

Y

j∈α

(5 − 2|z

j

|)

2

dA(z

1

)dA(z

2

) . . . dA(z

n

)

≤ 3

n

n

Y

j=1

(1 − |z

j

|

2

)

2

dA(z

1

)dA(z

2

) . . . dA(z

n

), we get

|hT

f

T

¯g

u, υi| ≤ C sup

w∈Dn

B

ε

[|f |

2

](w)B

ε

[|g|

2

](w)

12

× Z

Dn

Z

Dn

|u(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

12

× Z

Dn

|v(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)

!

1

2

dA(w).

Now, applying H¨ older’s inequality and Fubini’s theorem, we have

|hT

f

T

g¯

u, υi| ≤ C sup

w∈Dn

B

ε

[|f |

2

](w)B

ε

[|g|

2

](w)

12

× Z

Dn

Z

Dn

|u(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)dA(w)

!

12

× Z

Dn

Z

Dn

|υ(z)|

2

n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(z)dA(w)

!

12

= C sup

w∈Dn

B

ε

[|f |

2

](w)B

ε

[|g|

2

](w)

12

× Z

Dn

|u(z)|

2

Z

Dn n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(w)dA(z)

!

1

2

× Z

Dn

|υ(z)|

2

Z

Dn n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(w)dA(z)

!

12

. It remains to prove that the integral

I = Z

Dn n

Y

i=1

1

|1 − w

i

z

i

|

2

n

Y

i=1

log

−1−ε

1

1 − |ϕ

wi

(z

i

)| dA(w)

is convergent independently of z. Indeed, the change-of-variable formula

ζ = ϕ

z

(w) and the fact that |ϕ

wi

(z

i

)| = |ϕ

zi

(w

i

)| imply

(12)

I = Z

Dn n

Y

i=1

|1 − z

i

w

i

|

2

(1 − |z

i

|

2

)

2

n

Y

i=1

log

−1−ε

1 1 − |ϕ

zi

(w

i

)|

n

Y

i=1

(1 − |z

i

|

2

)

2

|1 − z

i

w

i

|

4

dA(w)

= Z

Dn n

Y

i=1

|1 − z

i

ϕ

zi

i

)|

2

(1 − |z

i

|

2

)

2

n

Y

i=1

log

−1−ε

1

1 − |ζ

i

| dA(ζ)

= Z

Dn n

Y

i=1

(1−|zi|2)2

|1−ziζi|2

(1 − |z

i

|

2

)

2

n

Y

i=1

log

−1−ε

1

1 − |ζ

i

| dA(ζ)

=

n

Y

i=1

Z

D

1

|1 − z

i

ζ

i

|

2

log

−1−ε

1

1 − |ζ

i

| dA(ζ

i

).

We need only to show that I

j

=

Z

D

1

|1 − z

j

ζ

j

|

2

log

−1−ε

1

1 − |ζ

j

| dA(ζ

j

) ≤ C for j = 1, 2, . . . , n. Let ζ

j

= re

.

According to Theorem 1.7 in [14], we have Z

0

1

|1 − z

j

re

|

2

dθ ≤ C

1 − |z|r ≤ C 1 − r . Therefore

I

j

≤ C 1 π

Z

1

0

r

1 − r log

−1−ε

1 1 − r dr.

By the change-of-variable formula, I

j

≤ C

Z

+∞

0

t

−1−ε

(1 − e

−t

)dt

= C Z

1

0

t

−1−ε

(1 − e

−t

)dt + Z

+∞

1

t

−1−ε

(1 − e

−t

)dt

≤ C Z

1

0

t

−ε

dt + Z

+∞

1

t

−1−ε

dt.

Clearly, for ε ∈ (0, 1) the integrals I

i

are bounded by a constant which is independent of z. Finally, we conclude that

|hT

f

T

g¯

u, υi| ≤ Ckukkυk,

which proves the theorem. 

Proof of Theorem 6. To prove the theorem we need to use Lemma 2 and the method used in the proof of Theorem 5. The details are left to the

reader. 

(13)

Now, we propose one additional theorem concerning products of Toeplitz and Hankel operators T

f

H

g

. The following result can be proved in much the same way as Theorem 5 and Theorem 6.

Theorem 7. Let f ∈ A

2

, g ∈ L

2

(D

n

). If sup

Dn

B

ε

[|f |

2

](w)

(g ◦ ϕ

w

− P (g ◦ ϕ

w

))

n

Y

j=1

log

(1+ε)/2

1 1 − |z

j

|

L2

< ∞,

then the operator T

f

H

g

is bounded on (A

2

)

.

It is clear that the above condition also gives the boundedness of H

g

T

f¯

. The next proposition reveals that Theorem 5 extends Theorem 2.

Proposition 1. Let f, g ∈ A

2

and ε > 0. Then for all w ∈ D

n

, B

ε

[|f |

2

]B

ε

[|g|

2

] ≤ C B[|f |

2+ε

]B

ε

[|g|

2+ε

]

2/(2+ε)

.

Proof. Let w ∈ D

n

. Then by the change-of-variable formula and H¨ older’s inequality we have

B

ε

[|f |

2

](w) = Z

Dn

|f (z)|

2

n

Y

i=1

log

1+ε

1 1 − |ϕ

wi

(z

i

)|

n

Y

j=1

(1 − |w

j

|

2

)

2

|1 − ¯ w

j

z

j

|

4

dA(z)

 Z

Dn

|f (z)|

2+ε

(z)

n

Y

j=1

(1 − |w

j

|

2

)

2

|1 − ¯ w

j

z

j

|

4

dA(z)

2 2+ε

×

 Z

Dn n

Y

j=1

log

(1+ε)(2+ε)ε

 1

1 − |ϕ

wi

(z

i

)|



n

Y

j=1

(1 − |w

j

|

2

)

2

|1 − ¯ w

j

z

j

|

4

dA(z)

ε 2+ε

= {B[|f |

2+ε

](w)}

2+ε2

 Z

Dn n

Y

j=1

log

(1+ε)(2+ε)ε

 1

1 − |z

i

|

 dA(z)

ε 2+ε

.

Since the last integral is convergent, our claim follows.  References

[1] Gonessa, J., Sheba, B., Toeplitz products on the vector weighted Bergman spaces, Acta Sci. Math. (Szeged) 80 (3–4) (2014), 511–530.

[2] Lu, Y., Liu, C., Toeplitz and Hankel products on Bergman spaces of the unit ball, Chin. Ann. Math. Ser. B 30 (3) (2009), 293–310.

[3] Lu, Y., Shang, S., Bounded Hankel products on the Bergman space of the polydisk, Canad. J. Math. 61 (1) (2009), 190–204.

[4] Miao, J., Bounded Toeplitz products on the weighted Bergman spaces of the unit ball, J. Math. Anal. Appl. 346 (1) (2008), 305–313.

[5] Michalska, M., Sobolewski, P., Bounded Toeplitz and Hankel products on the weighted Bergman spaces of the unit ball, J. Aust. Math. Soc. 99 (2) (2015), 237–249.

(14)

[6] Nazarov, F., A counter-example to Sarason’s conjecture, preprint. Available at http://www.math.msu.edu/fedja/prepr.html.

[7] Pott, S., Strouse, E., Products of Toeplitz operators on the Bergman spaces A2, Al- gebra i Analiz 18 (1) (2006), 144–161 (English transl. in St. Petersburg Math. J. 18 (1) (2007), 105–118).

[8] Stroethoff, K., Zheng, D., Toeplitz and Hankel operators on Bergman spaces, Trans.

Amer. Math. Soc. 329 (2) (1992), 773–794.

[9] Stroethoff, K., Zheng, D., Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1) (1999), 289–313.

[10] Stroethoff, K., Zheng, D., Invertible Toeplitz products, J. Funct. Anal. 195 (1) (2002), 48–70.

[11] Stroethoff, K., Zheng, D., Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278 (1) (2003), 125–135.

[12] Stroethoff, K., Zheng, D., Bounded Toeplitz products on Bergman spaces of the unit ball, J. Math. Anal. Appl. 325 (1) (2007), 114–129.

[13] Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J.

Operator Theory 59 (2) (2008), 277–308.

[14] Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Springer- Verlag, New York, 2000.

Paweł Sobolewski Institute of Mathematics

Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin

Poland

e-mail: pawel.sobolewski@umcs.eu Received September 20, 2018

Cytaty

Powiązane dokumenty

present paper establishes modi ed results in a similar dire tion..

Asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces1. These operators are natural generalizations of truncated

In the case when u is a finite Blaschke product the matrix representation of a truncated Toeplitz operator has been found by J. We obtain a similar representation for infinite

In this note we consider a certain class of convolution operators acting on the L p spaces of the one dimensional torus.. We prove that the identity minus such an operator is

Theorem 2.. One cannot hope to prove a statement similar to Theorem 2 for purely atomic measures. The main difficulty is that this operator is not globally invertible. [G], [Ba]

Considering the Theorem together with Motorny˘ı’s and Os- kolkov’s results, we might have reasons to guess that there might be some connections between the interpolation

We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of

The purpose of this paper is to develop the theory of Markov operators acting on the space M E of vector measures defined on Borel subsets of a compact metric space X.. These