• Nie Znaleziono Wyników

Bajocian transgressive-regressive sequences of the Tecocoyunca Group, southern Mexico, with maximum flooding surfaces marked by Thalassinoides

N/A
N/A
Protected

Academic year: 2022

Share "Bajocian transgressive-regressive sequences of the Tecocoyunca Group, southern Mexico, with maximum flooding surfaces marked by Thalassinoides"

Copied!
11
0
0

Pełen tekst

(1)

Bajocian transgressive-re gres sive se quences of the Tecocoyunca Group, south ern Mex ico, with max i mum flood ing sur faces marked by Thalassinoides

Grzegorz PIEÑKOWSKI1, *, Mi chel an gelo MARTINI2 and Mil dred ZEPEDA-MARTÍNEZ2

1 Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute, Rakowiecka 4, 00-975 Warszawa, Po land

2 Universidad Nacional Autónoma de México, Instituto de Geología, México D.F., 04510 Mex ico

Pieñkowski, G., Mar tini, M., Zepeda-Martínez. M., 2019. Bajocian transgressive-re gres sive se quences of the Tecocoyunca Group, south ern Mex ico, with max i mum flood ing sur faces marked by Thalassinoides. Geo log i cal Quar terly, 63 (3):

449–459, doi: 10.7306/gq.1480 As so ci ate ed i tor: Micha³ Zatoñ

Bajocian (Mid dle Ju ras sic) transgressive-re gres sive se quences (TRS), out crop ping in the Rosario Nuevo Creek (Tezoatlán Ba sin, Tecocoyunca Group) in Oaxaca State, Mex ico, rep re sent one of the Ju ras sic phases of open ing and wid en ing of a trans-Pangaean ma rine cor ri dor (called also the His panic Cor ri dor) and show a retrogradational-progradational set of sed i - men tary suc ces sions with de ci pher able and di verse fa cies. Two TRSs have been dis tin guished. The lower one starts with fluvio-deltaic sand stones in clud ing pedogenic ho ri zons. Drown ing of the deltaic plain and grad ual ris ing of the wa ter ta ble is marked by change in veg e ta tion: from large trees to low-rise veg e ta tion with char ac ter is tic clumps of dense roots ce mented by sid er ite. The delta plain suc ces sion is topped by a thin coal seam, fol lowed by a transgressive sur face. En su ing lam i nated mudstones of re stricted ma rine or i gin pass into open ma rine de pos its, rep re sented by bioturbated heterolithic strata with ammonites fol lowed by nearshore sand stones, de pos ited in a storm-dom i nated ba sin. A sim i lar suc ces sion, al though with - out the deltaic part, is re peated in the next TRS. Of note are two thin (15–20 cm) con tin u ous beds with Thalassinoides isp.

net works, pres ent within open ma rine de pos its. Al though large Thalassinoides net works are mostly known from shal low-ma - rine and coastal en vi ron ments, the case from Mex ico rep re sents less com mon oc cur rences from a deeper ma rine (off shore) set ting, as so ci ated with max i mum flood ing sur faces, sed i ment star va tion and firmgrounds (Glossifungites ichnofacies). Oc - cur rences of Thalassinoides meshes, pre cisely mark ing max i mum flood ing sur faces, are help ful in de fin ing the hi er ar chy of se quence strati graphic cy cles.

Key words: Mex ico, Ju ras sic, Thalassinoides, max i mum flood ing sur faces, siliciclastic se quence stra tig ra phy.

INTRODUCTION

Avail able palaeontological and geo log i cal ev i dence sug - gests the ex is tence of an Early–Mid dle Ju ras sic trans-Pan - gaean ma rine sea way that con nected the east ern Pa cific and west ern Tethyan oce anic realms ~25 m.y. be fore the birth of the At lan tic Ocean (Hal lam, 1983; Smith, 1983; Damborenea, 2000; Aberhan, 2002; Fig. 1A, C). This sea way, called by many au thors the His panic Cor ri dor (e.g., Smith, 1983), was opened be tween Late Sinemurian and Pliens bachian time (Aberhan, 2002; Por ter et al., 2013), per mit ting an in ter mit tent bi otic in ter - change be tween the Pa cific and Tethyan oceans be fore the be - gin ning of Pangea breakup and dis per sion (Hal lam, 1983;

Damborenea, 2000; Aberhan, 2002; Fig. 1A). De spite its rel e - vance in con trol ling the global oce anic cir cu la tion and pro duc -

ing ma jor changes in the fau nal palaeogeographic dis tri bu tion dur ing Ju ras sic time, the evo lu tion of the His panic Cor ri dor, from its foun da tion to its pro gres sive wid en ing, is still not exhaustively de fined. This is mostly be cause the Lower and Mid dle Ju ras sic transgressive strati graphic re cord ex posed in many ar eas along the in ferred trace of the His panic Cor ri dor has not been stud ied in de tail. Lower and Mid dle Ju ras sic suc - ces sions ex posed in Mex ico con tain the re cord of a re - gional-scale transgressive event that is finely pre served in the Huayacocotla and Tezoatlán ar eas, in Veracruz and Oaxaca states, re spec tively (López-Ticha, 1985; Goldhammer, 1999;

Ochoa-Camarillo et al., 1999; Fig. 1). Based on their Lower and Mid dle Ju ras sic age, some au thors in ter preted these transgressive suc ces sions as the man i fes ta tion of wid en ing of the His panic Cor ri dor into Mex i can ter ri tory (Sandoval and Westermann, 1986; Carrasco-Ramírez, 2003). How ever, sedimentological stud ies of these suc ces sions are few (Erben, 1956a; Ochoa-Camarillo et al., 1999; Carrasco-Ramírez, 2003;

Vite-del Ángel, 2014), and are mostly fo cused on de fin ing the Ju ras sic stra tig ra phy and biodiversity of these ar eas.

In this work, we pres ent new sedimentological data from the Mid dle Ju ras sic suc ces sion ex posed in the Rosario Nuevo

* Cor re spond ing au thor, e-mail: grzegorz.pienkowski@pgi.gov.pl Re ceived: February 28, 2019; ac cepted: April 23, 2019; first pub lished on line: July 17, 2019

(2)

Creek sec tion, Tezoatlán area, south ern Mex ico. These data con trib ute to our un der stand ing of the evo lu tion of the sed i men - tary en vi ron ment in south ern Mex ico dur ing the ma jor transgressive event re lated to the de vel op ment of the His panic Cor ri dor.

GEOLOGICAL SETTING

The Tezoatlán area is lo cated in the state of Oaxaca, south - ern Mex ico (Fig. 1A). López-Ticha (1985) con sid ered Ju ras sic rocks of the Tezoatlán area as part of the Tlaxiaco Ba sin, a

~200 km wide rift ba sin that is dis con tin u ously ex posed in south ern Mex ico be tween Olinalá (Guerrero state) and Nochistlán (Oaxaca state; Fig. 1A, B). In the Tezoatlán area, the Ju ras sic suc ces sion is com posed of four main strati graphic

in ter vals (Fig. 1D) that were in for mally in tro duced by Erben (1956a). The old est in ter val is rep re sented by felsitic to in ter me - di ate vol ca nic rocks of the Diquiyú For ma tion (Erben, 1956a;

Morán-Zenteno et al., 1993; Fig. 1D). Avail able U-Pb zir con ages from vol ca nic rocks of the Diquiyú For ma tion vary be - tween ~197 and ~184 Ma (Durán-Aguilar, 2014). The Diquiyú For ma tion is con form ably over lain by al lu vial fan de pos its of the Rosario and Cualac for ma tions. The Rosario For ma tion is dom - i nantly sourced from the south by vol ca nic rocks, whereas al lu - vial fan de pos its of the Cualac For ma tion were de rived from a meta mor phic base ment high, lo cated di rectly to the north of the Tezoatlán area (Zepeda-Martínez et al., 2018). This het er o ge - neous prov e nance of de pos its from the Ju ras sic suc ces sion ex - posed in the Tezoatlán area has been in ter preted by Zepeda-Martínez et al. (2018) as the man i fes ta tion of an abrupt to pog ra phy, which re sulted from the ex hu ma tion of crustal 450 Grzegorz Pieñkowski, Mi chel an gelo Martini and Mil dred Zepeda-Martínez

Fig. 1. Lo cal ity, palaeogeography and stra tig ra phy of the area stud ied

A – geo graphic map of south ern Mex ico show ing the lo ca tion of the Huayacocotla and Tezoatlán ar eas and map show ing the lo ca tion and ex ten sion of the Tlaxiaco Ba sin with Ju ras sic Sys tem out crops (af ter López-Ticha, 1985); B – geo log i cal out line of the Tezoatlán area show - ing the ex ten sion of the dif fer ent Ju ras sic lithostratigraphic in ter vals, as well as the lo ca tion of the mea sured strati graphic col umn (af ter Zepeda-Martínez et al., 2018); C – global-scale Mid dle Ju ras sic (Bajocian) palaeo geo graphi cal map show ing the lo ca tion of the His panic Cor ri dor and the bi otic ex change route (af ter Damborenea, 2000, mod i fied); D – geo log i cal map and chronostratigraphic col umn of the Tezoatlán area (mod i fied by Zepeda-Martínez et al., 2018)

(3)

blocks of dif fer ent com po si tion dur ing the con ti nen tal at ten u a - tion that ac com pa nied Pangea breakup. Al lu vial fan de pos its of the Cualac For ma tion are con form ably over lain by the Tecocoyunca Group (Fig. 1D). This group con sists of a lower part which is com posed of flood-plain sand stone, mudstone, metre-thick coal lay ers with an abun dant fos sil flora, and an up - per part made up of ma rine sand stone and mudstone (Erben, 1956a; Morán-Zenteno et al., 1993). The age of trans gres sion in the Tezoatlán area is brack eted to Bajocian time by ammonite fos sils (Sandoval and Westermann, 1986;

Cantú-Chapa, 1998; Mitta, 2018).

LOCATION OF THE STUDY SECTION

The sec tion stud ied in this work is lo cated 1 km to the north-east of the vil lage of Rosario Nuevo, along the Rosario Nuevo Creek (co or di nates: 17°36’29.6”N, 97°50’38.7”W;

Fig. 1B, D). We se lected this sec tion be cause it is the best ex po - sure in the area, rep re sen ta tive of the Mid dle Ju ras sic ma rine trans gres sion rep re sented in the Tecocoyunca Group (Figs. 2–4), that has been vis ited by many in ter na tional re search - ers dur ing dif fer ent field trips or ga nized in the last 60 years (e.g., Erben, 1956b; Mar tini et al., 2017). Most of the pre vi ous stud ies were mostly fo cused on palaeontological finds. How ever, de spite its geo log i cal im por tance, pre vi ous au thors did not pro vide a de - tailed de scrip tion of the dif fer ent lithofacies that com pose this sec tion and an ex haus tive in ter pre ta tion of the sed i men tary en vi - ron ment is lack ing. With the aim of im prov ing the re con struc tion of the Mid dle Ju ras sic trans gres sion in south ern Mex ico, we mea sured this con tin u ous sec tion bed-by-bed with a Ja cob’s staff and de scribed in de tail the dif fer ent fa cies that make up this trans gressive strati graphic re cord.

LITHOFACIES DESCRIPTION

Along the mea sured sec tion, we rec og nized 16 strati graphic in ter vals that dis play dif fer ent sedimentological fea tures. From the base to the top of the sec tion, we named these strati graphic in ter vals from A to P (Fig. 2).

In ter vals A–D cor re spond to the low er most 2 m of the mea - sured sec tion (Figs. 2 and 3) and are com posed of me dium- to fine-grained, grey to brown ish-grey sand stone with thin silt - stone/mudstone in ter ca la tions. Sed i men tary struc tures are dom i nated by large-scale trough cross-bed ding and pla nar bed - ding. In places cur rent rip ples are ob served. Plant roots are per - va sive; ho ri zons with denser and thin ner roots oc cur at the top of each in ter val. Roots are sed i ment-filled, and in the up per in - ter val D many of them are coalified. Root traces are par tic u larly dense at the top of in ter val D, where many of them are grouped in char ac ter is tic clumps, ce mented by sid er ite (due to weath er - ing, the sid er ite is widely re placed by Fe ox ides; Figs. 3B and 4A). In places, bioturbation ap pears. There are sev eral pe cu liar hol lows in the in ter val C (Fig. 3B). On their in ter nal walls one can ob serve traces of tree lin ings, in di cat ing that they are hol - lows af ter tree trunks. Drifted plant de tri tus is com mon through - out in ter vals A–D, par tic u larly at the top of in ter val D.

In ter val E is up to 20 cm thick (Fig. 3A) and is com posed of coal and coaly mudstone. In places yel low sul phur stain ing is vis i ble, in di cat ing traces of de com posed py rite.

In ter val F is ~3.5 m thick (Figs. 3A and 4B, C) and is com - posed of dark grey to black lam i nated mudstone with thin silty-sandy laminae (Fig. 4B) and sid er ite nod ules (Fig. 4C).

Some of the nod ules are large and con tain char ac ter is tic cone-in-cone struc tures. Mudstones are finely lam i nated; len - tic u lar lam i na tion (where sandy/silty laminae or lenses oc cur - ring in mudstone do not show cross-lam i na tion – Fig. 4B, C) is also com mon.

In ter val G is ~1.8 m thick (Figs. 3A and 4D) and is char ac - ter ized by a va ri ety of cross-lam i na tion re sult ing from mixed lithologies of sand and mud, termed heterolithic, rep re sented by grey len tic u lar to wavy heterolithic units (Reineck and Wunderlich, 1968; de Raaf et al., 1977; Schieber, 1999) with thin beds of fine-grained sand stones with hummocky cross-strat i fi ca tion (Harms et al., 1975; Dott and Burgeois, 1982). Sid er ite bands and nod ules are com mon in the mid dle part (Fig. 2). The up per (but not the up per most) part of this in - ter val con tains more abun dant sandy beds (wavy bed ding) with mi cro-hummocky cross-strat i fi ca tion and pla nar lam i na tion and is heavily bioturbated with a dom i nance of Rhizocorallium isp.

and Teichichnus isp. (Figs. 2 and 4D). The up per most part (~0.15 m) is com posed of slightly darker len tic u lar heterolithic strata with ammonites (Figs. 2, 3A and 4G). The whole in ter val G (par tic u larly in its up per most part) con tains nu mer ous fos sils, mostly bi valves and ammonites, that point to a Bajocian age (Sandoval and Westermann, 1986; Cantú-Chapa, 1998; Mar - tini et al, 2018; Mitta, 2018).

In ter val H (~0.1 m thick) is a thin, slightly ferruginous layer with epirelief bur rows (Fig. 4E, G), sharply in serted be tween in - ter vals G and I. The bur rows rep re sent a boxwork sys tem com - posed of hor i zon tal, cy lin dri cal (in places in flated), un lined, branched tun nels form ing ir reg u lar poly gons. The bur rows are red and pink stained, smooth-walled and un lined, pas sively mud-filled, with bur row di am e ters vary ing from 3 to 10 cm. Ver ti - cal shafts are ab sent, only few that are in clined were ob served.

Some tun nels dem on strate lo cal in fla tions (Fig. 4E). Mudstone pre served be tween bur rows and bur row-infills is sim i lar to the over ly ing mudstones. The char ac ter is tics of these bur rows ful fill the def i ni tion of Thalassinoides isp. given by Ehrenberg (1944).

In ter val I is 4 m thick (Fig. 2) and is rep re sented by grey len - tic u lar to wavy heterolithic strata with thin beds of fine-grained sand stone with hummocky cross strat i fi ca tion. Bioturbation is mod er ate to per va sive and pro gres sively de creases up wards.

Sid er ite bands and nod ules are com mon. In ter val I is very sim i - lar to in ter val G.

In ter val J is 0.3 m thick (Fig. 2) and con tains lam i nated, dark grey mudstone with silty-sandy lamina and thin sid er ite bands. This in ter val is sim i lar to in ter val F.

In ter val K (~2.5 m) is rep re sented by grey len tic u lar to wavy heterolithic strata with thin beds of fine-grained sand stones with mi cro-hummocky cross-lam i na tion. Sid er ite bands and nod ules are com mon. In ter val I is very sim i lar to the in ter vals G and I.

In ter val L (~2.7 m) con tains fine- to me dium-grained sand - stones with hummocky and swaley cross-strat i fi ca tion (Fig. 4F).

Sub or di nate flaser bed ding was ob served, Mudstone oc curs as thin and of ten dis con tin u ous laminae which drape rip ple marks and are gen er ally con fined to rip ple troughs.

In ter val M (~0.35 m) lies with a sharp con tact on in ter val L.

It is sim i lar to in ter vals G, I and K and is com posed of grey len - tic u lar to wavy heterolithic strata with thin beds of fine-grained sand stones with mi cro-hummocky cross-strat i fi ca tion.

In ter val N (~0.2 m) is a thin slightly ferruginous, muddy layer, sharply in serted be tween in ter vals M and O, with a dense Thalassinoides isp. net work. The in ter val is sim i lar to in ter val H.

Disarticulated bi valves oc cur be tween Thalassinoides bur rows.

In ter val O (~6 m) con tains grey len tic u lar to wavy heterolithis strata with thin beds of fine-grained sand stones with

(4)

452 Grzegorz Pieñkowski, Mi chel an gelo Martini and Mil dred Zepeda-Martínez

Fig. 2. Rosario Nuevo creek (Tecocoyunca Group) geo log i cal pro file show ing lithological in ter vals A–P, fa cies and ma jor bound ing sur faces

(5)

hummocky cross-strat i fi ca tion and pla nar bed ding. Bioturbation is mod er ate. In ter val O is sim i lar to in ter vals G, I, K and M – al - though in ter val O does not con tain many sid er ite bands.

In ter val P (>1m) con tains fine- to me dium-grained sand - stones with hummocky cross-strat i fi ca tion and is sim i lar to in ter - val L.

DEPOSITIONAL ENVIRONMENTS

In ter vals A–D of the sec tion stud ied con tain mostly sand - stones lithofacies (Figs. 2, 3 and 4A) char ac ter is tic of flu vial (mostly chan nel-fill) de pos its. In ter nal struc tures of dif fer ent scale ob served in the sand stones com prise mainly those of dune

mi gra tion, pro duc ing trough cross-bed ding (Fig. 3B) with some pla nar (hor i zon tal) bed ding, the lat ter pro duced ei ther by up per flow re gime cur rents or those of lower flow re gime. Fine sand - stone, siltstone, and lo cally mudstone (Fig. 4A) were de pos ited along the mar gins of the chan nels as de cel er at ing, sus - pended-load-rich wa ters spilled over the banks (Miall, 1996). In - di vid ual lay ers are sep a rated by pedogenic ho ri zons with plant roots. Plant roots may be pre served ei ther as coalified struc tures, com monly as so ci ated also with ferruginous mat ter (pri mar ily sid - er ite) or as sed i ment-filled struc tures, usu ally with thin coaly lin - ings on the outer sur face. These dif fer ent stages of pres er va tion re flect diagenetic changes in con di tions of vary ing ox y gen a tion – the less ox y gen in the sed i ment, the higher chance for “coalified forms” of pres er va tion. In ad di tion, long plant roots pre served in Fig. 3. Rosario Nuevo Creek pro file with ma jor lithofacies

A – part of the Rosario Nuevo Creek sec tion show ing in ter vals D–L; Thalassinoides isp. bed is marked by blue lines (for lithological de scrip tion see Fig. 2); B – in ter vals B–D (delta plain/es tu - ary fa cies as so ci a tion), black ar rows – plant root ho ri zons, root marks are pro gres sively smaller and shal lower upsection, red ar rows – subcircular clumps (30 to 50 cm wide) with dense plant roots and con cen tra tions of iron com pounds (for merly sid er ite), white ar row – hol low af ter large tree trunk, pen e trat ing in ter val C (for lithological de scrip tion see Fig. 2)

(6)

454 Grzegorz Pieñkowski, Mi chel an gelo Martini and Mil dred Zepeda-Martínez

Fig. 4. Lithofacies types of the Rosario Nuevo Creek pro file

A – iron-rich clus ter with dense and short plant roots, top of in ter val D, note in ter nal cham bers vis i ble in side the roots (ar rowed); B – lamination in dark grey mudstone, in ter val F; C – sid er ite bands and nod u lar con cre tions in lam i nated dark mudstone with silty-sandy laminae (len tic u lar lam i na tion), in ter val F; D – bioturbated heterolithic strata with dense Rhizocorallium isp. and Teichichnus isp., up per part of in ter - val “G”, ammonites and bi valves are com mon in this part of the sec tion; E – in ter val (bed) H, dense net work of Thalassinoides isp. bur rows; F – hummocky- and swaley cross-strat i fi ca tion in fine-grained sand stones, in ter val L; G – con tin u ous lat eral ex ten sion of Thalassinoides isp.

bed (in ter val H, ar rowed) in serted be tween be tween open-ma rine heterolithic strata of in ter vals G and I, sym bols of ammonites in di cate finds of Parastrenoceras tlaxiacense Ochoterena and Oppelia (Oppelia) subradiata erbeni Westermann (Mitta, 2018) in len tic u lar heterolithic strata just be low the Thalassinoides isp. bed

(7)

the freely drained sandy par ent ma te rial (Fig. 3B) in di cate a low - ered wa ter ta ble and more ox y gen ated soil (Podzol), which is usu ally as so ci ated with coarser sed i ments (Arndorff, 1993).

Short, coalified plant roots (Fig. 4A) were de vel oped in the low re - lief, poorly drained ar eas cov ered with backswamps and marshes (Fig. 3A) and point to a high wa ter ta ble and re duc ing, of ten acidic con di tions, which is usu ally as so ci ated with more fine-grained sed i ments and a Gleysol type of palaeosol (Arndorff, 1993). In such a palaeosol, plant roots may de velop in - ter nal cham bers (Fig. 4A) which fa cil i tate gas ex change with the outer en vi ron ment (Sarjeant, 1975). Over all, the plant roots get smaller and denser up wards (most dense roots oc cur at the top of in ter val D). In in ter val C there are pe cu liar hol lows, in ter preted as rem nants of large tree trunks in life po si tion. Ver ti cally-ori - ented tree trunks were pre served in life po si tion and point to well-drained sed i ment, a rel a tively lower wa ter ta ble and very rapid de po si tion. The wa ter ta ble rose sig nif i cantly dur ing de po si - tion of in ter vals D and E. Veg e ta tion ob served in these in ter vals was dom i nated by low-rise plants, di min ish ing in size up the sec - tion. In the up per most part of in ter val D plant roots are grouped in char ac ter is tic clumps (Figs. 3 and 4A) ce mented by ferruginous ce ment (for merly sid er ite). Sid er ite pre cip i ta tion can be as so ci - ated with roots (Ludvigson et al., 1998, 2013). Ox y gen de ple tion, in com bi na tion with a de crease in sed i men ta tion rate, pro moted anoxic diagenetic con di tions, fa vour ing abun dant sid er ite pre cip i - ta tion (Fimmen et al., 2008; Bojanowski et al., 2016). Par tic u larly fa vour able con di tions for car bon ate ce men ta tion oc curred when the sed i ments were cov ered by swamp de pos its. Such clumps prob a bly rep re sent stressed veg e ta tion on in ter mit tently sub - merged ter rain. This would in di cate fur ther rise of the wa ter ta ble, con sis tent with base-level rise dur ing an ap proach ing ma rine trans gres sion.

The next in ter val E is rep re sented by coal and coaly mudstone (Fig. 3A), oc cur ring just be neath the transgressive sur face and rep re sent ing a pe riod of di min ished siliciclastic sed i ment sup ply with some what in creased ac com mo da tion space, al low ing de vel op ment of marshes. The tran si tion from flood plain to marsh could have been ad di tion ally caused by en - hanced tec tonic sub si dence in the ba sin. For ma tion of raised mires on the coastal plain could have sta bi lized the shore line rise for some time, in hib it ing trans gres sion and en cour ag ing ver ti cal stack ing of fa cies belts (McCabbe, 1984; Shanley and McCabe, 1993). Py rite-bear ing palaeosols and coals of ten un - der lie flood ing and transgressive sur faces (Figs. 2 and 3A). This sug gests that the py rite was pre cip i tated due to the in tro duc tion of sul phate ions by per co lat ing ma rine wa ter (Mar tini and John - son, 1987; Arndorff, 1993). The same rule re lated to diagenesis of coal was shown by Postma (1982) and Ketzer et al. (2003).

Over all, the whole A–E suc ces sion would rep re sent a stage of grad ual drown ing of a delta plain/es tu ary as so ci ated with di min - ish ing cur rent speed and wa ter-ta ble rise. Suc ces sion A–E would then be long to the ini tial (non-ma rine) part of a transgressive sys tems tract (Pieñkowski, 2004), de vel oped be - low the ac tual transgressive sur face.

In ter vals F and J are com posed of dark grey to black lam i - nated mudstone that we in ter pret as de pos its that are typ i cal of a la goonal or re stricted ma rine bay or i gin. The ab sence of trace fos sils, re sult ing in well-pre served lam i na tion and nu mer ous sid - er ite bands and nod ules, point to poorly ox y gen ated bot tom con - di tions. Ox y gen de fi ciency was likely caused by the re stricted char ac ter of the ba sin and en hanced de liv ery of nu tri ents, re sult - ing in eutrophication and de po si tion of or ganic-rich sed i ments.

A relatively high ad mix ture of iron in the form of sid er ite nod ules and si der it ic mudstone beds was prob a bly caused by the prox im - ity of marsh ar eas that are a prom i nent source of iron.

In ter vals G, I, K, M, O (com pared to in ter vals F and J) are the re sult of a higher en ergy of waves and cur rents. The col our of these sed i men tary rocks is much paler rel a tive to that of in ter -

vals F and J, and in places bioturbation by de posit-feed ing or - gan isms is in tense, which led to mod er ate to ex ten sive oblit er a - tion of pri mary sed i men tary struc tures. Cross-lam i na tion re sult - ing from mixed lithologies of sand and mud, called heterolithic strata, im plies al ter nat ing cur rent flow and slackwater con di - tions. In most cases cross-lam i na tion is vis i ble in the lenses, form ing len tic u lar bed ding or (when cross-lam i nated sandy in - ter ca la tions are more fre quent and show lat eral con ti nu ity) wavy bed ding (Fig. 4D, F). In most cases, the sandy-silty laminae in the hererolithic units show mi cro-hummocky cross lam i na tion (Fig. 4D), in ter preted as an in di ca tion of storm-gen - er ated wave ac tion. Bioturbation is com mon, in di cat ing fa vour - able, well-ox y gen ated bot tom con di tions with suf fi cient nu tri ent de liv ery. Sand stone in ter ca la tions with ero sional bases, graded bed ding and mi cro-hummocky cross-strat i fi ca tion are com mon, fur ther point ing to storm ac tiv ity. Of note are oc cur rences of ma - rine fauna, in clud ing bi valves and ammonites. All these in ter - vals are in ter preted as de pos ited in an open shelf ba sin, where the bot tom was af fected by heavy storms – most likely in the off - shore zone (Handford, 1985; Leckie and Krystynik, 1989; Gal - lo way and Hobday, 1996).

In ter vals L and P are com posed of fine-grained sand stones with sub or di nate silty or muddy in ter ca la tions (Fig. 2). Most com mon is hummocky cross-strat i fi ca tion and swaley cross-strat i fi ca tion (Fig. 4F) that point to a storm-dom i nated nearshore depositional en vi ron ment. Ad di tion ally, pla nar bed - ding is also ob served (Fig. 2). Pla nar bed ding can be at trib uted ei ther to low-en ergy de po si tion from sus pen sion or, by con trast, such struc tures can be pro duced by strong cur rents (up per flow re gime). Lee-side grain avalanching on rip ples and dunes with low height/length ra tios is not ca pa ble of pro duc ing well-de fined cross-strata, and bedform mi gra tion in such cases pro duces

“hor i zon tal” strat i fi ca tion (Smith, 1971). There are no in di ca tors of emer gence (i.e. struc tures char ac ter is tic of the beach zone) or shal low shoreface forms, such as sandwaves and dunes pro duced by on shore-di rected or long shore cur rents. Most likely, these sand stones were de pos ited in a storm-dom i nated nearshore zone (deeper shoreface) zone, at the av er age storm wave base, be low the fair-weather wave base with de po si tion of graded, storm-gen er ated beds – tempestites (Dott and Bour - geois, 1982; Aigner, 1985).

In ter vals H and N are thin beds with dense net works of Thalassinoides isp. (Fig. 4E, G). In ter vals H and N show sharp lithological bound aries with the un der ly ing and over ly ing strata, which in di cate an abrupt change in sed i men ta tion rate to wards sed i ment star va tion and con den sa tion. Three-di men sional, ex - cel lent pres er va tion with no com pac tion, sharp bound aries, lack of lin ing and pas sive in fill ing point to their for ma tion in a co - her ent (clayey–silty) com pacted firmground. Firmground con di - tions were as so ci ated with early ce men ta tion and very slow or no sed i men ta tion. Thalassinoides bur rows are gen er ally re - garded as dwell ing bur rows pro duced by de posit-feed ing crus - ta ceans (Decapoda). Dur ing their life time, these or gan isms formed a sys tem of hol low tun nels in the mid dle well-ven ti lated ichnotier up to 75 cm deep (Pem ber ton and MacEachern, 1995; Bromley, 1996; Pem ber ton et al., 2004; Rodriquez-Tovar et al., 2007), which be came pas sively back filled with over ly ing sed i ments af ter the or gan ism’s death. In a firmground sub - strate, tracemakers do not need to re in force their bur rows (e.g., Ghibaudo et al., 1996; Sharafi et al., 2012). Thus, these bur - rows should be dis cussed in the con text of the Glossifungites ichnofacies (Ekdale et al., 1984). The un lined, pas sively infilled bur rows in the Rosario Nuevo Creek sec tion are thought to have been pro duced dur ing the omis sion stage, as a re sult of sed i ment star va tion (Ghibaudo et al., 1996; MacEachern and Bur ton, 2000; Wetzel and Uchman, 1998). Thalassinoides bur - rows oc cur in all the ma rine and coastal fa cies (Mo naco et al., 2007), but in most pub li ca tions Thalassinoides finds are men -

(8)

tioned from shal low-wa ter Glossifungites, Cruziana, less com - monly from the Skolithos, and oc ca sion ally from the Teredolites ichnofacies and it is be lieved that firmground Thalassinoides char ac ter izes usu ally di verse en vi ron ments of coastal ar eas and shoals. (i.e., Seilacher, 1967; Pem ber ton and Frey, 1985;

Pem ber ton and MacEachern, 1995) or the shoreface zone (Pervesler et al., 2011). This would im ply that Thalassinoides beds in the Rosario Nuevo sec tion of the Tecocoyunca Group would rep re sent ex tremely rapid shallowing events oc cur ring in open-ma rine fine-grained fa cies (Figs. 2 and 4G). How ever, such a sce nario seems to be un likely be cause there is no tran - si tional fa cies be low and above the Thalassinoides beds. More - over, Thalassinoides beds oc cur within the most dis tal mud - stone fa cies with ammonites (Fig. 4G). Thus, a more plau si ble ex pla na tion is that these Thalassinoides beds were de vel oped by deep-wa ter con den sa tion/no sed i men ta tion con di tions where a deep-wa ter, firmground sub strate was colo nised by Thalassinoides trace mak ers. In deed, Thalassinoides net works (al though not as large and shal low as those in the Rosario Nuevo sec tion) have been re ported from deep ma rine con - densed beds of New Jer sey, USA (Savrda et al., 2001) and from off shore omis sion (transgressive) flood ing sur faces of Mio cene age in It aly (Ghibaudo et al., 1996). Open Thalassinoides bur rows were also ob served in re cent firm sub - strate in the deep South China Sea, in an area re ceiv ing very lit - tle sed i ment in put (Wetzel, 2008). Thus Thalassinoides beds at the Rosario Nuevo sec tion would rep re sent a rather atyp i cal (low en ergy and dis tal) Glossifungites ichnofacies (Mac - Eachern and Bur ton, 2000; Wetzel and Uchman, 1998), dom i - nated by the shal lowly for ag ing, prob ing and de posit-feed - ing/dwell ing struc tures of firmground Thalassinoides, shal lowly ex ca vated within a firm sub strate. Con se quently, we sug gest that con densed Thalassinoides beds in the Tecocoyunca Group sec tion were formed in re sponse to sed i ment star va tion in duced by max i mum trans gres sion.

SEQUENCE STRATIGRAPHY

The se quence is the pri mary in ter val of se quence stra tig ra - phy and can be de fined in sev eral ways by bound ing un con - formi ties, such as subaerial un con formi ties – se quence bound - aries or their equiv a lents in the case of depositional se quences or a transgressive-re gres sive se quence (Vail et al., 1977;

Posamentier and Vail, 1988), or max i mum flood ing sur faces in the case of ge netic strati graphic se quences (Gal lo way, 1989).

In the pres ent pa per, the transgressive-re gres sive se quence (TRS) par a digm (Embry, 2002) is adopted, be cause of its prac - ti cal ity and use ful ness. Se quence stra tig ra phy pro vides a use - ful geo log i cal frame work for re gional cor re la tion of events and sed i men tary in ter vals.

Sed i men ta tion of deltaic in ter vals A–E (Figs. 2 and 5) was con trolled by grad ual base-level rise caus ing wa ter-ta ble rise, di min ish ing trans port en ergy and a change in the stand ing veg -

456 Grzegorz Pieñkowski, Mi chel an gelo Martini and Mil dred Zepeda-Martínez

Fig. 5. Se quence stra tig ra phy of the Rosario Nuevo Creek sec tion with two transgressive-re gres sive se quences (TRS)

shown

Rel a tive sea level curve to the right, d.pl. – delta plain, L-r.b. – re - stricted ba sin, s.f. – shoreface, o.s. – off shore; max i mum flood ing sur faces (Thalassinoides beds) are marked with blue ar row; sys - tems tracts: TST – transgressive sys tems tract (retro gra da tion), RST – re gres sive sys tems tract (progradation), ts – transgressive sur face, mfs – max i mum flood ing sur face; note over all stepwise de - vel op ment of trans gres sion

(9)

e ta tion. Based on these fea tures, one can re gard this suc ces - sion as an aggradational/retrogradational suc ces sion of non-ma rine de pos its be low the transgressive sur face, be long - ing to the transgressive sys tems tract (TST; Pieñkowski, 2004).

The se quence bound ary, lo cated be low the sec tion stud ied, is not vis i ble in the Rosario Nuevo ex po sure. A thin coal seam (in - ter val E), lo cated above a pedogenic ho ri zon with char ac ter is tic clumpy veg e ta tion and just be low the transgressive sur face, re - cords a time of very lim ited clastic sed i men ta tion and ris ing base level, al low ing for ma tion of marshes and ac cu mu la tion of plant or ganic mat ter (Fig. 2). Pres er va tion of coal is de pend ent on a ris ing wa ter-ta ble, which it self is best achieved by base level rise (McCabbe and Parrish, 1992). Mires de vel oped un der con di tions of ris ing base level may main tain them selves through many thou sands of years (Flint et al., 1995). The mire was fi nally (and quickly) drowned (transgressive sur face – Fig. 5) and the next stage of the TST is rep re sented by sed i - men ta tion of dark, or ganic-rich mudstone with diagenetic sid er - ite nod ules (in ter val F – Fig. 3A) in a re stricted ma rine (la goon – embayment). This re stricted ba sin opened and trans formed into a fully ma rine ba sin with sed i men ta tion of ma rine heterolithic strata (in ter val G). The pe riod of max i mum flood ing, sed i ment star va tion and con den sa tion is marked by a Thalassinoides bed (max i mum flood ing sur face – in ter val H – Fig. 4F). The max i mum flood ing sur face marks the piv otal mo - ment be tween ris ing sea level (transgressive sys tems tract – TST – in ter vals A–G) and fall ing sea level (progradation – re - gres sive sys tems tract – RST – in ter vals I–L – Fig. 5). The thin in ter val J with darker mudstone may in di cate tran sient re stric - tion in the ba sin as so ci ated with eutrophication. In ter val L (storm-dom i nated shoreface zone) marks shallowing of the ba - sin and its top is iden ti fied with a se quence bound ary, max i mum re gres sion and at the same time the transgressive sur face of the next se quence, which is con nected with sed i men tary by - pass and omis sion. The rel a tively thin in ter val M (ma rine heterolithic beds) would rep re sent the transgressive sys tems tract of the next TRS with the max i mum flood ing sur face rep re - sented by the sec ond con densed Thalassinoides bed (in ter - val N – Fig. 5). Con se quently, in ter vals O and P would rep re - sent the progradational stage (RST) of the sec ond TRS. The oc cur rence of max i mum flood ing sur faces marked by well-vis i - ble ve neers of con densed beds with Thalassinoides is help ful in de ter min ing the hi er ar chy of the sea level cy cles – as there are two max i mum flood ing sur faces they rep re sent transgressive- re gres sive se quences, not parasequences caused by more lo - cal fluc tu a tions in the sea level/sed i men tary re gime.

CONCLUSIONS

The strati graphic sec tion mea sured in the Rosario Nuevo sec tion of the Tecocoyunca Group pro vides a fine ex am ple of step-wise ma rine trans gres sion on a fluvio-deltaic plain (or es - tu ary) with a well-pre served and di verse fa cies suc ces sion. Of note are changes of fa cies con trolled by base-level and wa - ter-ta ble rise with a suc ces sion of dif fer ent types of veg e ta tion from high-rise for est to low-rise mire veg e ta tion. The first TRS shows a very grad ual de vel op ment of retrogradational fa cies, cul mi nat ing in a max i mum flood ing sur face marked by a con - densed bed with Thalasssinoides. The prograding part of the TRS is ter mi nated by storm-dom i nated sandy fa cies of the shoreface zone. The next TRS lacks a deltaic/flu vial com po - nent in its lower part, which might point to a gen eral wid en ing and deep en ing of the ma rine en vi ron ment dur ing the later TRS.

The sec ond TRS is oth er wise sim i lar to the first one, in clud ing the pres ence of a sec ond max i mum flood ing sur face marked by Thalasssinoides, con firm ing sys tem atic rep e ti tion of this cor - re la tive ho ri zon. Con densed beds with Thalassinoides at the Rosario Nuevo sec tion were formed in re sponse to sed i ment star va tion in duced by max i mum trans gres sion and pro vide a well pre served and rel a tively un com mon ex am ple of deep-wa - ter Glossifungites ichnofacies (MacEachern and Bur ton, 2000;

Wetzel, 2008), As deep-wa ter firm-ground sur faces with Thalassinoides are es sen tially in dis tin guish able from Thalassinoides – dom i nated fab rics at shelf se quence bound - aries that formed by subaerial ex po sure or sub se quent transgressive ravinement (Savrda et al., 2001) cau tion must be used in de vel op ing a pre cise se quence strati graphic in - ter pre ta tion of firmground ichnofabrics – par tic u larly in the ab - sence of broader strati graphic con text. In the case of this well-doc u mented ex am ple from Mex ico, the firm-sub strates with dis tinc tive Thalassinoides net works can be used as a sig - nif i cant tool for rec og niz ing key se quence-strati graphic sur - faces and their hi er ar chy.

Ac knowl edge ments. We are grate ful to P. Leonowicz and A. Wetzel for their valu able com ments. This pa per is a part of the pro ject fi nanced from stat u tory re sources of the Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute pro ject 62-9614-1701-00-1 and from the Pol ish Na tional Sci ence Cen tre, granted on the ba sis of de ci sion no. DEC-2012/06/M/ST10/00478. This is a con tri bu - tion to the ICDP pro ject JET and IGCP pro ject 632 “Con ti nen tal Cri ses of the Ju ras sic”.

REFERENCES

Aberhan, M., 2002. Open ing of the His panic Cor ri dor and Early Ju - ras sic bi valve biodiversity. Geo log i cal So ci ety of Lon don Spe - cial Pub li ca tions, 194: 127–139.

Aigner, T., 1985. Storm depositional sys tems. Lec ture Notes in Earth Sci ences, 3: 1–174.

Arndorff, L., 1993. Lat eral re la tions of deltaic palaeosols from the Lower Ju ras sic Rønne For ma tion on the is land of Born holm, Den mark. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol - ogy, 100: 235–250

Bojanowski, M.J., Jaroszewicz, E., Kosir, A., £oziñski, M., Marynowski, L., Wysocka, A., Derkowski, A., 2016. Root-re - lated rhodochrosite and concretionary sid er ite for ma tion in ox y - gen-de fi cient con di tions in duced by a ground-wa ter ta ble rise.

Sedimentology, 63: 523–551.

Bromley, R.G., 1996. Trace fos sils in bi ol ogy, taphonomy and ap pli - ca tions. 2nd Edi tion. Chap man and Hall, Lon don.

Cantú-Chapa, A., 1998. Las trasgresiones jurásicas en México.

Revista Mexicana de Ciencias Geológicas, 15: 25–37.

Carrasco-Ramírez, R.S., 2003. Los ammonites del Caloviano de la región Mixteca, Oaxaca, México. Boletín de la Sociedad Geológica Mexicana, 56: 42–55.

Damborenea, S.E., 2000. His panic Cor ri dor: its evo lu tion and the biogeography of bi valve molluscs. GeoResearch Fo rum, 6:

369–380.

De Raaf, J.F.M., Boersma, J.R., Van Gelder, A., 1977. Wave-gen - er ated struc tures and se quences from a shal low ma rine suc ces - sion, Lower Car bon if er ous, County Cork, Ire land.

Sedimentology 24: 451–483.

(10)

Dott, R.H.Jr., Bour geois, J., 1982. Hummocky strat i fi ca tion: sig nif - i cance of its vari able bed ding se quences. Bul le tin of the Geo - log i cal Societyof Amer ica, 93: 663–680.

Durán-Aguilar, R.F., 2014. Sedimentología y geocronología de los lechos rojos del Jurásico, Región Norte de la Cuenca de Tlaxiaco, Tezoatlán, Oaxaca: Correlaciones y procedencia.

Msc. the sis. Instituto de Geología, Universidad Nacional Autónoma de México, México D.F.

Ehrenberg, K., 1944. Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paläontologische Zeitschrift, 23: 345–359.

Ekdale, A.A., Bromley, R.G., Pem ber ton, G.S., 1984. Ichnology:

the use of trace fos sils in sedimentology and stra tig ra phy.

SEPM Short Course, 15: 1–317.

Embry, A., 2002. Transgressive-Re gres sive (T-R) Se quence Stra - tig ra phy. 22nd An nual Gulf Coast Sec tion SEPM Foun da tion Bob F. Perkins Re search Con fer ence 2002: 151–172, doi:

10.5724/gcs.02.22.0151

Erben, H.K., 1956a. El Jurásico medio y el Calloviano de México.

XX Congreso Geológico Internacional, Monografía, México D.F., México.

Erben, H.K., 1956b. Estratigrafía y Paleontología del Mesozoico de la Cuenca Sedimentaria de Oaxaca y Guerrero. Especialmente del Jurásico In fe rior y Medio. XX Congreso Geológico Internacional, Excursión A-12. México D.F: 11–36.

Fimmen, R.L., Rich ter, D.D., Vasudevan, D., Wil liams, M.A., West, L.T., 2008. Rhizogenic Fe–C re dox cy cling: a hy po thet i - cal biogeochemical mech a nism that drives crustal weath er ing in up land soils. Biogeochemistry, 87: 127–141.

Flint, S., Aitken, J., Hampson, G., 1995. Ap pli ca tion of se quence stra tig ra phy to coal-bear ing coastal plain suc ces sions: im pli ca - tions for the UK Coal Mea sures. Geo log i cal So ci ety Spe cial Pub li ca tion 82: 1–16.

Gal lo way, W.E., 1989. Ge netic strati graphic se quences in ba sin anal y sis i: ar chi tec ture and gen e sis of flood ing-sur face bounded depositional in ter vals. Amer i can As so ci a tion of Pe tro leum Ge - ol o gists Bul le tin, 73: 125–142.

Gal lo way, W.E., Hobday, D.K., 1996. Terrigenous Clastic Depositional Sys tems. Springer-Verlag, Berlin.

Ghibaudo, G., Grandesso, P., Massari, F., Uchman, A., 1996. Use of trace fos sils in de lin eat ing se quence strati graphic sur faces (Ter tiary Ve ne tian Ba sin, north east ern It aly). Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 120: 261–279.

Goldhammer, R.K., 1999. Me so zoic se quence stra tig ra phy and paleogeographic evo lu tion of north east Mex ico. Geo log i cal So - ci ety of Amer ica Spe cial Pa per, 340: 1–58.

Hal lam, A., 1983. Early and mid-Ju ras sic mol lus can biogeography and the es tab lish ment of the cen tral At lan tic sea way. Palaeo ge - ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 43:181–193.

Handford, C.R., 1985. Fa cies and bed ding se quences in shelf-storm-de pos ited car bon ates – Fayetteville shale and Pitkin Lime stone (Mis sis sip pian), Ar kan sas. Jour nal of Sed i - men tary Pe trol ogy, 56: 123–137.

Harms, J.C., Southard, J.B., Spear ing, D.R., Walker, R.G., 1975.

Depositional en vi ron ments as in ter preted from pri mary sed i - men tary struc tures and strat i fi ca tion se quences. Short Course of the So ci ety of Eco nomic Pa le on tol o gists and Min er al o gists, 2: 1–166.

Ketzer, J.M., Holz, M., Morad, S., Al.-Aasm, I.S., 2003. Se quence strati graphic dis tri bu tion of diagenetic al ter ations in coal-bear - ing, paralic sand stones: ev i dence from the Rio Bo nito For ma - tion (Early Perm ian), south ern Brasil. Sedimentology, 50:

855–877.

Leckie, D.A., Krystynik, L., 1989. Is there ev i dence for geostrophic cur rents pre served in the sed i men tary re cord of in ner to mid dle -shelf de pos its? Jour nal of Sed i men tary Pe trol ogy, 59: 862–870 López-Ticha, D., 1985. Revisión de la estratigrafía y potencial petrolero de la Cuenca de Tlaxiaco. Asociación Mexicana Geólogos Petroleros, Boletín, 37: 49–92.

Ludvigson, G.A., Gon za lez, L.A., Metzger, R.A., Witzke, B.J., Brenner, R.L., Murillo, A.P., White, T.S., 1998. Me te oric

sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Ge ol ogy, 26: 1039–1042.

Ludvigson, G.A., Gon za lez, L.A., Fowle, D.A., Rob erts, J.A., Driese, S.G., Villarreal, M.A., Smith, J.J., Suarez, M.B., 2013.

Paleoclimatic ap pli ca tions and mod ern pro cess stud ies of pedogenic sid er ite. SEPM Spe cial Pub li ca tions, 104: 79–87.

MacEachern, J.A., Bur ton, J.A., 2000. Firmground Zoophycos in the Lower Cre ta ceous Vi king For ma tion, Al berta: a dis tal ex - pres sion of the Glossifungites ichnofacies. Palaios, 15:

387–398.

Mar tini, L.P., John son, D.P., 1987. Cold-cli mate, flu vial to paralic coal-form ing en vi ron ments in the Perm ian Col lins ville coal mea sures, Bowen Ba sin, Aus tra lia. In ter na tional Jour nal of Coal Ge ol ogy, 7: 365–388.

Mar tini, M., Velasco-de León, P., Zepeda-Martínez, M., Lozano-Carmona, D.E., Ramírez-Calderón, M., 2017. Field guide to the Ju ras sic Otlaltepec and Tezoatlán Bas ins, south ern Mex ico: sedimentological and paleontological re cords of Puebla and Oaxaca. Boletín de la Sociedad Geológica Mexicana, 69:

691–709.

McCabe, P.J., 1984. Depositional mod els of coal and coal-bear ing strata. In ter na tional As so ci a tion of Sedimentologists, Spe cial Pub li ca tion, 7: 13–42.

McCabe, P.J., Parrish, J.T., 1992. Tec tonic and cli ma tic con trols on the dis tri bu tion and qual ity of Cre ta ceous coals. Geo log i cal So - ci ety of Amer ica, Spe cial Pa per, 267: 1–15.

Miall, A.D., 1996. The Ge ol ogy of Flu vial De pos its: Sed i men tary Fa - cies, Ba sin Anal y sis, and Pe tro leum Ge ol ogy. Springer, Berlin, New York.

Mitta, V.V., 2018. On the geo log i cal ex cur sions of the 10th In ter na - tional Con gress on The Ju ras sic Sys tem (Mex ico, 2018). In:

Con tri bu tions to Cur rent Cephalopod Re search: Mor phol ogy, Sys tem at ics, Evo lu tion, Ecol ogy and Biostratygraphy, vol. 5., Pro ceed ing of con fer ence Mos cow, 29–31 Oc to ber, 2018 (eds.

T.B. Leonova, I.S. Barskov and V.V. Mitta): 16–19. Rus sian Acad emy of Sci ences, Borissiak Paleontological In sti tute, Mos - cow, PIN RAS, 2018.

Mo naco, P., Caracuel, J.E., Giannetti, A., 2007. Thalassinoides and Ophiomorpha as cross-fa cies trace fos sils of crus ta ceans from shal low to deep wa ter en vi ron ments: Me so zoic and Ter - tiary ex am ples from It aly and Spain. Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 35: 79–82.

Morán-Zenteno, D., Ca bal lero-Miranda, G., Silva-Romo, G., Ortega-Guerrero, B., González-Torres, E., 1993. Ju ras - sic–Cre ta ceous paleogeographic evo lu tion of the north ern Mixteca terrane. south ern Mex ico. Geofisica Internacional, 23:

453–473.

Ochoa-Camarillo, H.R., Buitrón, B.E., Silva-Pineda, A., 1999.

Redbeds of the Huayacocotla anticlinorium, state of Hi dalgo, east-cen tral Mex ico. Geo log i cal So ci ety of Amer ica Spe cial Pa - per, 340: 59–68.

Pem ber ton, S.G., Frey, R.W., 1985. The Glossifungites ichnofacies: mod ern ex am ples from the Geor gia Coast, USA.

Mineralogical Special Pub li ca tions, 35: 237–259.

Pem ber ton, S.G., MacEachern, J.A., 1995. The se quence stra tig - ra phy sig nif i cance of trace fos sils: ex am ples from the Cre ta - ceous fore land ba sin of Al berta, Can ada. Amer i can As so ci a tion of Pe tro leum Ge ol o gists Mem oirs, 64: 429–475.

Pem ber ton, S.G., MacEachern, J.A., Saunders, T., 2004. Strati - graphic ap pli ca tions of sub strate-spe cific ichnofacies: de lin eat - ing dis con ti nu ities in the rock re cord. Geo log i cal So ci ety, Spe - cial Pub li ca tions, 228: 29–62.

Pervesler, P., Roetzel, R., Uchman, A., 2011. Ichnology of shal low sublittoral siliciclastics of the Burgschleinitz For ma tion (Lower Mio cene, Eggenburgian) in the Al pine-Carpathian Foredeep (NE Aus tria). Aus trian Jour nal of Earth Sci ences, 104: 81–96.

Pieñkowski, G. 2004. The epicontinental Lower Ju ras sic of Po land.

Pol ish Geo log i cal In sti tute Spe cial Pa pers 12: 1–154.

Por ter, S.J., Selby, D., Suzuki, K., Gröcke, D., 2013. Open ing of a trans-Pangaean ma rine cor ri dor dur ing the Early Ju ras sic: in - sights from os mium iso topes across the Sinemurian– Plien - 458 Grzegorz Pieñkowski, Mi chel an gelo Martini and Mil dred Zepeda-Martínez

(11)

sbachian GSSP, Robin Hood’s Bay, UK. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 375: 50–58.

Posamentier, N.W., Vail, P.R., 1988. Eustatic con trols on clastic de - po si tion II – se quence and sys tems tract mod els. So ci ety of Eco - nomic Pa le on tol o gists and Min er al o gists, Spe cial Pub li ca tion, 42: 125–154.

Postma, D., 1982. Py rite and sid er ite for ma tion in brack ish and fresh wa ter swamp sed i ments. Amer i can Jour nal of Sci ence, 102: 1151–1183.

Reineck, H.E., Wunderlich, F., 1968. Clas si fi ca tion and or i gin of flaser and len tic u lar bed ding. Sedimentology, 11: 99–104.

Rodríquez-Tovar, F.J., Valera, F.P., López, A.P., 2007. Ichnological anal y sis in highresolution se quence stra tig ra phy: the Glossifungites ichnofacies in Tri as sic suc ces sions from the Betic Cor dil lera (south ern Spain). Sed i men tary Ge ol ogy, 198:

293–307.

Sandoval, J., Westernmann, E.G., 1986. The Bajocian (Ju ras sic) Ammonite Fauna of Oaxaca, Mex ico. Jour nal of Pa le on tol ogy, 60: 1220–1271.

Sarjeant, W.A.S., 1975. Plant trace fos sils. In: The Study of Trace Fos sils (ed. R.W. Frey): 163–179. Springer-Verlag, Berlin.

Savrda, C.H., Brown ing, J.V., Krawinkel, H., Hesselbo, S.P., 2001. Firmground ichnofabrics in deep-wa ter se quence stra tig - ra phy, Ter tiary clinoform-toe de pos its, New Jer sey slope.

Palaios, 16: 294–305.

Schieber, J., 1999. Dis tri bu tion and de po si tion of mudstone fa cies in the Up per De vo nian Soneya Group of New York. Journal of Sed i mentary Re search, 69: 909–925.

Seilacher, A., 1967. Bathymetry of trace fos sils. Ma rine Ge ol ogy, 5:

413–428.

Shanley, K.W., McCabe, P.J., 1993. Al lu vial stra tig ra phy in a se - quence strati graphic frame work: a case his tory from the Up per Cre ta ceous of South ern Utah, USA. In ter na tional As so ci a tion of Sedimentology, Spe cial Publicatio, 15: 21–56.

Sharafi, M., Ashuri, M., Mahboubi, A., Moussavi-Harami, R., 2012. Strati graphic ap pli ca tion of Thalassinoides ichnofabric in de lin eat ing se quence strati graphic sur faces (Mid-Cre ta ceous), Kopet-Dagh Ba sin, north east ern Iran. Palaeoworld, 21:

202–216.

Smith, N.D., 1971. Trans verse bars and braid ing in the Lower Platte River, Ne braska. Geo log i cal So ci ety Amer i can Bul le tin, 82:

3407–3420.

Smith, P.L., 1983. The Pliensbachian ammonite Dayiceras dayiceroides and Early Ju ras sic paleogeography. Ca na dian Jour nal of Earth Sci ences, 20: 86–91.

Vail, P.R., Mitchum, R.M.Jr., Todd, R.G. Widmeir, J.M., Thomp - son, S.Iii., Sangree, J.B., Bubb, J.N. And Hatlelid, W.G., 1977. Seis mic stra tig ra phy and global changes of sea-level.

Amer i can As so ci a tion of Pe tro leum Ge ol o gists, Mem oir, 26:

49–212.

Vite-del Ángel, A.O., 2014. Estudio petrológico de la secuencia basal del grupo Tecocoyunca (sensu Jiménez-Rentería, J., 2004) en la cañada de Rosario Nuevo, Mpio. De Tezoatlán, Oax., Bach e lor thesis. Instituto Politécnico Nacional, Escuela Su pe rior de Ingeniería y Arquitectura, Unidad Ticomán.

Wetzel, A., 2008. Re cent bioturbation in the deep South China Sea:

a uniformitarian ichnologic ap proach. Palaios, 23: 601–615.

Wetzel, A., Uchman, A., 1998. Biogenic sed i men tary struc tures in mudstones – an over view. In: Shales and Mudstones I (eds. J.

Schieber, W. Zimmerle and P. Sethi): 351–369. Schweizerbart, Stuttgart.

Zepeda-Martínez, M., Mar tini, M., Solari, L., 2018. A ma jor prov e - nance change in sand stones from the Tezoatlán ba sin, south ern Mex ico, con trolled by Ju ras sic, sinistral nor mal mo tion along the Salado River fault: im pli ca tions for the re con struc tion of Pangea. Jour nal of South Amer i can Earth Sci ence, 86:

447–460.

Cytaty

Powiązane dokumenty

Po zlikwidowa­ niu audycji na falach krótkich w Radio France pozostała jedy­ nie audycja w języku, polskim na fali rozgłośni Lille, przezna­ czona dla polonii

Wydaje się, że metoda analizy preferencji kierunkowych nocnych migrantów oparta o nowe podstawy teoretyczne (wielomodalność zachowania ptaków testowanych w klatkach

Schinzel for carefully reading my first proof of Theorem 1 and giving me some sugges-

Uczeń potrafi poprawnie operować niektórymi prostymi strukturami, potrafi budować zdania niekiedy spójne, zazwyczaj rozumie ogólny sens prostych tekstów i rozmów, czasem potrafi

However, reports concerning the effects of hydrodyna­ mic stress on plant cells are scarce (Tanaka, 1981). In fact they are so scarce that in this literature survey publications on

A, B – Lower nodular limestone complex; intercalations of micritic and bioclastic limestones within grey argillaceous shales, note a single stromatoporoid dome in growth

In the investigated area, the noo-calcareaus, sandy depositS of the Upper Albian and the ma.rly-sandy ones of· the CenomaIiian (excepting the Middle and Upper

The fi rst attempt to develop an integrated transport system in Bratislava was undertaken in 2001. It allowed passengers to buy a ticket for tram with a coupon for railway and