• Nie Znaleziono Wyników

Measurement of the branching ratio $\Gamma (\Lambda_{b}^{0}\rightarrow \psi (2S)\Lambda ^{0})/\Gamma (\Lambda _{b}^{0}\rightarrow J/\psi \Lambda ^{0})$ with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the branching ratio $\Gamma (\Lambda_{b}^{0}\rightarrow \psi (2S)\Lambda ^{0})/\Gamma (\Lambda _{b}^{0}\rightarrow J/\psi \Lambda ^{0})$ with the ATLAS detector"

Copied!
18
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the branching ratio

(

0b

→ ψ( 2S )

0

)/ (

0b

J /ψ

0

) with the ATLAS detector

.ATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received29July2015

Receivedinrevisedform1October2015 Accepted3October2015

Availableonline9October2015 Editor:W.-D.Schlatter

An observation of the 0b→ ψ(2S)0 decay and a comparison of its branching fraction with that of the 0b J/ψ0 decay has been made with the ATLAS detector in proton–proton collisions at

s=8 TeV at theLHCusing anintegratedluminosity of20.6 fb1.The J and ψ(2S) mesonsare reconstructed in their decays to a muon pair, while the 0pπ decay is exploited for the 0 baryonreconstruction.The0b baryonsarereconstructedwithtransversemomentumpT>10 GeV and pseudorapidity|η|<2.1.Themeasuredbranchingratiooftheb0→ ψ(2S)0andb0J/ψ0decays is(0b→ ψ(2S)0)/ (0b J/ψ0)=0.501±0.033(stat)±0.019(syst),lowerthantheexpectation fromthecovariantquarkmodel.

©2015CERNforthebenefitoftheATLASCollaboration.PublishedbyElsevierB.V.Thisisanopen accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The 0b baryon properties have been extensively studied at theLarge HadronCollider (LHC) [1–7]. The decaychannel 0b J/ψ(μ+μ)0(pπ)1 has been primarily used by the LHC ex- perimentsinthesestudies,althoughanumberofother 0b decay channels have been exploited by the LHCb experiment. In par- ticular,a measurement ofthe differential branching fractionand angularanalysisoftheraredecay0bμ+μ0was performed byLHCb [8,9]followingobservationofthisdecayby theCDFex- periment[10]attheTevatroncollider.However, noresultsforthe decaymode 0b→ ψ(2S)0 haveyet been reported, although a measurementofthedecaypropertieswouldbeusefulforverifica- tionoftheoreticalpredictions[11].

The0b→ ψ(2S)0 branchingfractionshould be ofthesame order as that of the decay 0b J/ψ0 as suggested by the branching fraction values of the B0, B+ and B0s meson decays to ψ(2S)/J and either a pseudoscalar (K0, K+, η) or vector (K0, K∗+,φ) meson. The branching ratiosof such B meson de- cays to ψ(2S)X and JX are within the 0.5–0.8 range [12], and are generally reproduced by factorisation calculations [13].

Theonlyavailabletheoreticalcalculationofthebranching ratioof the 0b→ ψ(2S)0 and b0 J/ψ0 decays, performedin the frameworkofthecovariantquarkmodel[14],predicts0.8 withan uncertaintyofapproximately0.1[11].

 E-mailaddress:atlas.publications@cern.ch.

1 Hereafter,chargeconjugationisimplied,unlessexplicitlystatedotherwise.

An observation of the 0b→ ψ(2S)0 decay anda measure- ment of the branching ratio of the b0→ ψ(2S)0 and 0b J/ψ0 decays is reported in this Letter. The J and ψ(2S) mesons are reconstructed in their decays to a muon pair, while the 0pπ decayisexploited forthe0 baryonreconstruc- tion. The 0b baryons are reconstructed withtransverse momen- tumpT>10 GeV andpseudorapidity|η|<2.1.

2. TheATLASdetector,dataandMonteCarlosimulationsamples

AdetaileddescriptionoftheATLASdetectorcanbefoundelse- where[15].Abriefoutlineofthecomponentsmostrelevanttothis analysisisgivenbelow.

The ATLAS inner detector(ID) has full coverage2 in φ, covers the pseudorapidity range |η|<2.5 and operates inside an axial magneticfieldof2 T.Itconsistsofasiliconpixeldetector(Pixel), a silicon microstrip detector (semiconductor tracker, SCT) and a transitionradiation tracker(TRT). The inner-detector barrel (end- cap)partsconsistof3(2×3)Pixellayers,4(2×9)double-layersof single-sidedSCTstripsand73(2×160)layers ofTRTstraws.The ATLAS muon spectrometer (MS) covers the pseudorapidity range

|η|<2.7. It consists of precision tracking chambers, fast trigger detectorsanda largetoroidal magnetsystemgeneratingan aver-

2 TheATLAScoordinatesystemisaCartesianright-handedsystem,withtheco- ordinateoriginatthenominalinteractionpoint.Theanti-clockwisebeamdirection definesthepositivez-axis,withthex-axispointingtothecentreoftheLHCring.

Polar(θ)andazimuthal(φ)anglesaremeasuredwithrespecttothisreferencesys- tem.Thepseudorapidityisdefinedasη= −ln tan(θ/2).

http://dx.doi.org/10.1016/j.physletb.2015.10.009

0370-2693/©2015CERNforthebenefitoftheATLASCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

agefield of0.5 Tinthebarrelregion(|η|<1.05)and1 Tinthe end-capregions(1.05<|η|<2.7).

The ATLAS detector hasa three-leveltrigger system [16]: the hardware-basedLevel-1systemandthetwo-stageHighLevelTrig- ger (HLT). For this measurement, dimuon triggers are used. At Level-1,thedimuontriggers search forpatterns ofMShitscorre- spondingtodimuonspassingvariouspTthresholds.Sincetherate from the low-pT dimuon triggers was too high, prescale factors were applied toreduce their outputrates. The datasample used inthisanalysiswascollectedusingthreedimuontriggerswithpT thresholdsof4 GeVforbothmuons,4 GeVand6 GeVforthetwo muons, and6 GeV forbothmuons. At theHLT, the dimuontrig- gersusedrequiremuonswithoppositechargesanddimuonmass intherange2.5<m(μ+μ)<4.3 GeV.

This analysis uses 20.6 fb1 of proton–proton collision data with a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012. The uncertainty on the integrated luminosity is ±2.8%. It is derived following the same methodol- ogyasthatdetailedin[17].The eventsample isprocessed using the standard offline ATLAS detector calibration and event recon- structioncode.Therearetypicallyafewprimaryvertexcandidates ineach eventdueto multiplecollisions per bunchcrossing.Only eventswith atleastfour reconstructed trackswith pT>0.4 GeV andatleastone reconstructedprimary vertexcandidate arekept forfurtheranalysis.

Tomodelinelasticpp eventscontaining0bJ/ψ(μ+μ)0,

0b→ ψ(μ+μ)0, B0 J/ψ(μ+μ)K0S or B0→ ψ(μ+μ)K0S decays,3 fourlargesamplesofMonteCarlo(MC)simulatedevents arepreparedusingthePYTHIA 8.1[18] MCgenerator.The B0 MC samplesare neededto control reflections from B0 decays tothe

0b signal distributions. The generationis basedon leading-order matrix elements for all 22 QCD processes. Initial- and final- statepartonshoweringisusedtosimulatehigher-orderprocesses.

Generated events with both muons from J or ψ(2S) decays having transverse momenta above 3.5 GeV and pseudorapidities within ±2.5, and, for 0b MC samples, with the 0 transverse momentum above 1 GeVare passed through a full simulation of thedetectorusingtheATLAS simulationframework[19] basedon GEANT4[20,21]andprocessedwiththesamereconstruction pro- gramasusedforthedata.Anemulationofthethreetriggersused forthedatacollectionisapplied totheMC samples.The angular decaydistributions ofthe 0b J/ψ(μ+μ)0(pπ) decayare modelled using the helicity amplitudes measured by ATLAS [2].

For the 0b→ ψ(μ+μ)0(pπ) decay, the helicity amplitudes aresettothepredictedvalues[11].

3. Eventand0bcandidateselection 3.1. Charmoniumcandidateselection

Events are required to contain at least two muons identified bythe MSwithtracks reconstructedintheID. Thereconstructed muonsare requiredto match the muon candidates identified by thetrigger.ThemuontrackparametersaretakenfromtheIDmea- surementalone, since the MS does not significantly improvethe precision in the momentum range relevant for the charmonium measurements presentedhere. Toensureaccurate measurements, each muon trackmust contain at least sixSCT hitsand atleast onePixelhit.Muoncandidatessatisfyingthesecriteriaarerequired tohaveoppositechargesandasuccessfulfittoacommonvertex with χ2/Ndof<10,where χ2isthefitqualitywiththenumberof degreesoffreedom Ndof=1.Eventswithm(μ+μ)valueswithin

3 InthisLetter,ψ(2S)isreferredtoasψwhenitsdecaychannelisindicated.

±200 MeV intervals around the J and ψ(2S) world average masses[12]areusedtosearchfor0pπcandidates.

3.2. 0and ¯0candidateselection

In all events with J or ψ(2S) candidates, pairs of tracks from particles with opposite charge are combined to form 0 candidates. Each track is required to have at least one Pixel or SCT hit. Only pairs successfully fitted to a common vertex with

χ2/Ndof<5 arekept.Thetrackwithlargermomentumisassigned the proton masshypothesis since the protonalways has a larger momentum than the pion for 0 baryons withmomenta larger than0.3 GeV.Tosuppresscombinatorialbackgroundthefollowing requirementsareused:

pT(p)>1.7 GeV.

• |z0(p)|<25 mm, where z0(p)is theproton longitudinalim- pactparameterwithrespecttothedimuonvertex.MCstudies showtherequirementproducesnolossofsignal.

LBLxy(0)> 7 mm, where LBLxy(0) is the transverse decay length4ofthe0 candidatemeasuredfromthebeamline.

Events with m(pπ) values within an interval of ±20 MeV aroundthe0worldaveragemass[12]arekeptforfurtheranaly- sis.

3.3. 0breconstruction

Tracks ofthe selected charmoniumand 0 candidates are si- multaneouslyrefittedwiththedimuonanddihadronmassescon- strained to the world average masses of J (mJ) or ψ(2S) (mψ (2S))and 0 (m0) [12],respectively. Thecombined momen- tumoftherefitted0trackpairisrequiredtopointtothedimuon vertex.TocontrolB0reflectionstothe0bsignaldistributions,aB0 decaytopologyfitisalsoattemptedforeachtrackquadrupletsuc- cessfully fittedto the0b topology,i.e.thepion massisassigned tobothhadrontracksandthedihadronmassisconstrainedtothe worldaveragemassof K0S [12].TosuppresscombinatorialandB0 backgroundsthefollowingrequirementsareused:

χ2(0b)/Ndof<3,where χ2 isthequalityofthefittothe0b topologywithNdof=6.

Lxy(0)>10 mm, where Lxy(0) is the transverse decay length of the refitted 0 vertex measured from the 0b (dimuon)vertex.

pT(0)>2.5 GeV.

pT(π)>0.45 GeV.

τ(0b)>0.35 ps,where τ(0b)=Lxy(0b)·m0

b/pT(0b)isthe

0b properdecaytime, Lxy(0b)isthetransversedecaylength ofthe0b vertexmeasured fromtheprimary vertexandm0 b

is the 0b world averagemass [12].The primary vertexcan- didatewithatleastthreetracksandthesmallestvalueofthe three-dimensionalimpactparameterofthe0bcandidateisse- lectedastheactualprimaryvertex.

P(0b)>P(B0), where P(0b) and P(B0) are the χ2 prob- abilities of the quadruplet fits with 0b and B0 topologies, respectively.

4 Thetransversedecaylengthofaparticle isthetransversedistancebetween theprimaryorproductionvertexandtheparticledecayvertexprojectedalongthe transversemomentumoftheparticle.

(3)

Fig. 1. Theinvariantmassdistributionsm(J/ψ0)(leftplot)andm(J/ψ ¯0)(rightplot)forselectedb0and ¯0bcandidates,respectively.Thesolidhistogramsrepresentthe fitresults(seetext).The0bsignals(dashedlines)andtheB0reflectionsarealsoshown.

Fig. 2. Theinvariantmassdistributionsforthecombinedsampleoftheselectedb0and ¯0bcandidatesobtainedaftertheirfitstothe0bJ/ψ0(leftplot)and B0 JK0S(rightplot)topologies.Thesolidhistogramsrepresentfitresults(seetext).The0bandB0signalsandtheirmutualreflectionsarealsoshown.

Themuon transversemomenta andpseudorapiditiesarerequired tobeintherangeswithhighvaluesofthetriggerandreconstruc- tionacceptances:

pT±) >4 GeV,|η(μ±)| <2.3.

Thekinematicrangeofthe0b measurementisfixedto

pT(0b) >10 GeV,|η(0b)| <2.1.

The invariant mass distribution m(J/ψ0), calculated using trackparametersfromthe0btopologyfits,isshowninFig. 1sep- aratelyforthe selectedb0 and ¯b0 candidates.Clear signalswith similarsizeareseeninthetwodistributionsaroundtheworldav- eragemassofthe 0b baryon.Figs. 2 and 3 showthe m(J/ψ0) andm(ψ(2S)0)distributionsforthecombinedsampleofthe0b and ¯0b candidates. The invariant mass distributions m(JK0S) andm(ψ(2S)K0S)fromthe B0 topology fits arealsoshown. Clear signalsareseeninthem(J/ψ0)andm(ψ(2S)0)distributions5 aroundthe worldaverage massofthe b0 baryon. There arealso signalsinthe m(JKS0)andm(ψ(2S)K0S) distributions nearthe world average mass of the B0 meson [12]. The B0 signals are smallerthanthe0bsignalsduetotheselectionrequirements.

5 StudieswithMCsimulatedeventsshowthatthefractionofreconstructedb0 J/ψ0decayswhichcancontributetothereconstructed0b→ ψ(2S)0signalis

105.

Them(J/ψ0)andm(JK0S)distributionsaresimultaneously fitted to sums of signal and two-component background distri- butions. The signals are described by modified Gaussian func- tions[22].ThemodifiedGaussianfunctionisdefinedas

Gaussmodexp[−0.5·x1+1/(1+0.5·x)],

wherex= |(mm0)/σ|.Thisfunctional form,introduced totake intoaccount the non-Gaussian tailsofresonant signals, describes bothdataandMCsignalswell.Thesignalposition,m0,andwidth,

σ,aswellasthenumberofthesignaleventsarefreeparameters of thefit. The non-resonant backgrounds inthe distributions are described by independent exponential functions. The mutual B0 and0b reflectionsare described by MC templates normalised to thenumbersofB0 andb0hadronsobtainedinthefit.Thereflec- tionnormalisationsarecorrectedforsmalllosses(2–6%)of0band B0 hadronsthat passed the 0b reconstruction butfailed the B0 reconstruction.The correctionsare obtainedusingMC simulation.

A similar fit is performed forthe m(ψ(2S)0) andm(ψ(2S)K0S) distributions.Intheanalysisofthecombined0b and ¯0b samples, theratiooftheMC 0b and ¯0b eventsissettothedataratioob- tainedintheseparate0bJ/ψ0and ¯0bJ/ψ ¯0fits(Fig. 1).

The0b and ¯0bfittedyieldsare3523±89 and3414±92,respec- tively,providingtheratio1.03±0.04(stat).

The results of the fits for the combined b0 and ¯0b samples aresummarisedinTable 1.The0b massvaluesobtainedfromthe fits of the m(J/ψ0) and m(ψ(2S)0) distributions agree with

Cytaty

Powiązane dokumenty

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c