• Nie Znaleziono Wyników

Slamming clustering on fast ships: From impact dynamics to global response analysis

N/A
N/A
Protected

Academic year: 2021

Share "Slamming clustering on fast ships: From impact dynamics to global response analysis"

Copied!
13
0
0

Pełen tekst

(1)

Ocean Engineering 62 (2013) 1 1 0 - 1 2 2

ELSEVIER

C o n t e n t s lists a v a i l a b l e at S c i V e r s e S c i e n c e D i r e c t

Ocean Engineering

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / o c e a n e n g

Slamming clustering on fast ships: From impact dynamics to global

response analysis

Daniele Dessi*, Elena Ciappi

CNR-INSEAN, Via di Vallerano 139, 00128 Rome, Italy

A R T I C L E I N F O

Article history:

Received 2 November 2011 Accepted 23 December 2012 Available online 28 February 2013 Keywords:

Slamming statistics Impact i d e n t i f i c a t i o n

W h i p p i n g induced bending m o m e n t Scaled physical models

A B S T R A C T

In this paper the statistical properties of the slamming impact process are analyzed w i t h the help o f experimental data acquired in the t o w i n g tank on a high speed ferry model. The physical model is a segmented-hull w i t h a flexible backbone-beam equipped, among other devices, w i t h sensors to measure the wetness of h u l l sections and strain gauges to estimate the induced vertical bending m o m e n t This setup allows us to analyze the slamming process not only on the basis of the detected slamming events but also on the basis of the w h i p p i n g response produced by the impacts. IVIoreover, due to the particular model selected for the present analysis, characterized by a V-shaped hull, bottom as well as bow flare slamming contributions are investigated. One of the major findings is the evidence that the impact statistics are largely affected by the grouping of slams into clusters thus violating the hypothesis of mutual independence between successive impacts that is at the basis of most of the statistical models. The dependence o f t h e w h i p p i n g response on the impact velocity is also investigated. Finally, the definition o f a new criterion for slamming identification based on the evaluation of the w h i p p i n g bending moment is discussed

© 2013 Elsevier Ltd. A l l rights reserved.

1. Introduction

A s l a m m i n g e v e n t has g e n e r a l l y t w o d i s t i n c t e f f e c t s i n t h e t i m e - d o m a i n : a n i n s t a n t a n e o u s increase o f t h e f o r c e d l o a d i n g d u r i n g t h e w a t e r - e n t r y a n d w a t e r - e x i t phases, a n d a t r a n s i e n t v i b r a t i o n o f t h e s t r u c t u r e , also k n o w n as w h i p p i n g , t h a t s u p e r -i m p o s e s -i n e r t -i a l l o a d cycles w -i t h decreas-ing -i n t e n s -i t y o n t h e w a v e l o a d i n g . M o d e l - s c a l e a n d f u l l - s c a l e m e a s u r e m e n t s h a v e s h o w n t h a t t h e i m p u l s i v e l y i n d u c e d stresses a m i d s h i p due t o s l a m m i n g can be o f t h e same o r d e r o f m a g n i t u d e as t h o s e d u e t o t h e c o n d n u o u s w a v e l o a d i n g (e.g., see Ramos e t al. ( 2 0 0 0 ) ) . For t h i s reason, c l a s s i f i c a t i o n societies have considered the c o m b i n a t i o n o f s l a m m i n g - i n d u c e d loads w i t h t h e c o n t i n u o u s w a v e l o a d i n g as one o f the c r i t i c a l aspects i n establishing t h e ship design c r i t e r i a o r rules. The c o n s e q u e n t need t o assess t h e ship safety w i t h respect t o g i v e n e n v i r o n m e n t a l a n d o p e r a t i o n a l c o n d i t i o n s has led t o t h e search f o r t h e direct staristical c o r r e l a t i o n b e t w e e n a set o f para-meters, u s u a l l y d e s c r i b i n g t h e sea state a n d the ship course a n d speed, w i t h t h e r e l e v a n t response variables, e.g., t h e m a x i m u m stresses or t h e stress cycle d i a g r a m (see Junker, 2 0 0 9 ; Gao a n d M o a n , 2 0 0 8 ) . H o w e v e r , less a t t e n t i o n t h a n i n the past has been recently p a i d t o e x p l o r e t h e physical m e c h a n i s m s u n d e r i y i n g these

• C o r r e s p o n d i n g author. T e t : -F39 0650299254; fax; - f 3 9 065070619. E-mail address: daniele.dessi@cnr.it (D. Dessi).

0029-8018/$ - see f r o n t matter © 2013 Elsevier L t d . All rights reserved. http;//dx.doi.org/10.1016/j.oceaneng.2012.12.051

c o r r e l a t i o n models. One o f t h e m o s t challenging, d u e t o possible h y d r o e l a s t i c c o u p l i n g a n d n o n l i n e a r i t i e s d e m a n d i n g f o r t i m e d o m a i n analysis, is t h e c o n n e c t i o n b e t w e e n s l a m m i n g a n d w h i p -p i n g , t h a t m a y still u n v e i l -p h e n o m e n a w o r t h f u r t h e r r e v i e w i n g o f t h e g l o b a l sea-state t o stress r e l a t i o n . T h e present p a p e r r e n e w s this insight, b y i n v e s t i g a t i n g the s l a m m i n g b e h a v i o r o f a fast f e r r y .

T h e i d e n t i f i c a t i o n o f w a t e r i m p a c t s , as w e l l as t h e e v a l u a t i o n o f t h e i r i n t e n s i t y , has c o n s t i t u t e d t h e p r e r e q u i s i t e f o r p r o b a b i l i s t i c t h e o r i e s o f t h e s l a m m i n g o c c u r r e n c e . Thus O c h i ( 1 9 6 4 ) p a v e d t h e w a y t o s l a m m i n g statistics b y s t a t i n g t w o c o n d i t i o n s f o r s l a m -m i n g t o o c c u r t h a t w e r e : ( i ) r e l a t i v e -m o t i o n -m u s t exceed t h e s e c t i o n a l d r a f t ; ( i i ) r e l a t i v e v e l o c i t y a t t h e i n s t a n t o f r e - e n t r y m u s t exceed a c e r t a i n m a g n i t u d e . These c o n d i t i o n s s u c c e s s f u l l y d e l i m -i t e d t h e t y p e o f w a t e r - e n t r y p h e n o m e n a f o r w h -i c h a p r o b a b -i l -i s t -i c analysis o f t h e s l a m m i n g i n d u c e d response w a s c a r r i e d o u t i n several papers, b e g i n n i n g w i t h t h e p r o b a b i l i t y d i s t r i b u t i o n s f o r t h e i m p a c t pressure a n d s l a m m i n g i n t e r a r r i v a l times t h a t w e r e o b t a i n e d b y f i t t i n g e x p e r i m e n t a l d a t a b y O c h i h i m s e l f ( 1 9 6 4 ) . F o l l o w i n g t h i s n o v e l a p p r o a c h , O c h i a n d M o t t e r ( 1 9 7 1 , 1 9 7 3 ) a n d M a n s o u r a n d L o z o w ( 1 9 8 2 ) a n d , f r o m t h e e x p e r i m e n t a l side. W h e a t o n a n d et al. ( 1 9 7 0 ) p o i n t e d o u t t h e r e l e v a n c e o f t h e s l a m m i n g i n d u c e d stresses alone as w e l l as t h e i r c r i t i c a l c o m b i -n a t i o -n w i t h t h e s t e a d y - s t a t e ( s t i l l - w a t e r ) , l o w - f r e q u e -n c y ( w a v e s p e c t r u m e x c i t a t i o n ) o r r e s o n a n t stresses ( s p r i n g i n g ) . F o l l o w i n g t h e a s s u m p t i o n t h a t t h e s l a m m i n g p h e n o m e n o n is s t a t i s t i c a l l y r e g a r d e d as a Poisson process, O c h i a n d M o t t e r ( 1 9 7 3 )

(2)

D. Dessi, E. Ciappi / Ocean Engineering 62 (2013) 110-122 111 e s t i m a t e d t i i e t i m e i n t e r v a l b e t w e e n successive s l a m i m p a c t s a n d s u g g e s t e d a t r u n c a t e d e x p o n e n t i a l p r o b a b i l i t y d i s t r i b u t i o n o f t h e i m p a c t pressure. T h e y e s t i m a t e d c o n s e r v a t i v e l y t h e s l a m m i n g i n d u c e d m o m e n t a m i d s h i p b y c a l c u l a t i n g t h e d y n a m i c response o f t h e s h i p - b e a m t h a t w a s supposed t o be loaded b y s e c t i o n a l i m p a c t forces g e n e r a t e d b y e x t r e m e s l a m m i n g pressures. M a n s o u r a n d L o z o w ( 1 9 8 2 ) r e f i n e d t h i s p r o b a b i l i s t i c m o d e l by a s s u m i n g f o r t h e s l a m m i n g i m p a c t s a Poisson pulse process w i t h i n d e p e n d e n t a m p l i t u d e s a n d i n t e r a r r i v a l t i m e s . Ferro a n d M a n s o u r ( 1 9 8 5 ) f o c u s e d o n t h e p r o b a b i l i s t i c c o m b i -n a t i o -n o f s l a m m i -n g a -n d l o w - f r e q u e -n c y stresses f o r w h i c h t h e y p r o p o s e d a m a t h e m a t i c a l m o d e l , a n d e s t i m a t e d t h e e x t r e m e v a l u e d i s t r i b u t i o n o f t h e c o m b i n e d w a v e - i n d u c e d a n d s l a m m i n g r e s p o n s e w i t h t h e T u r k s t r a ' s ( 1 9 7 0 ) r u l e .

Successively, some o f t h e basic a s s u m p t i o n s t h a t h a d served as s i m p l i f y i n g g u i d e l i n e s f o r a l l t h e p r e v i o u s studies w e r e r e v i e w e d a n d e v e n r e m o v e d i n o r d e r to achieve s a r i s f a c t o r y m o d e l i n g o f t h e s l a m m i n g occurrence. The seakeeping tests d e s c r i b e d l a t e r i n t h i s p a p e r w i l l f o l l o w t h i s d i r e c t i o n . N i k o l a i d i s a n d K a p l a n ( 1 9 9 2 ) c r i t i c i z e d t h e a s s u m p t i o n t h a t t h e t i m e s o f o c c u r r e n c e o f s l a m m i n g i m p a c t s are i n d e p e n d e n t , because o f t h e p e r i o d i c n a t u r e of. r e l a t i v e m o t i o n . T h e y f o u n d , as i m p l i c i t l y p o i n t e d o u t b y O c h i a n d M o t t e r , t h a t t h e rimes o f o c c u r r e n c e o f t h e s l a m m i n g or o f t h e w a v e i n d u c e d stress peaks are h i g h l y c o r r e l a t e d . Jiao ( 1 9 9 6 ) p r o c e e d e d f u r t h e r i n t h i s w a y a n d d e r i v e d t h e e x t r e m e p r o b a b i l i t y d i s t r i b u t i o n s f o r t h e c o m -b i n e d stresses, a c c o u n t i n g f o r t h e process n o n - s t a t i o n a r i t y a n d t h e m u t u a l d e p e n d e n c e b e t w e e n t h e s l a m m i n g a n d t h e w a v e -i n d u c e d stresses. A p r o b a b i l i s t i c m o d e l , capable t a k i n g i n t o a c c o u n t t h e presence o f clusters o f s l a m m i n g events, w a s f i n a l l y p r o p o s e d by H a n s e n ( 1 9 9 4 ) . H a n s e n drops t h e h y p o t h e s i s o f a Poisson p u l s e - t r a i n process, t h a t w a s c o n s i d e r e d t o be a s y m p t o t i c a l l y c o r r e c t o n l y as l o n g as the d r a f t approaches i n f i n i t y . He m o d e l e d t h e s l a m m i n g p h e n o m e n o n as a Slepian process, t h a t is a n o n -Gaussian a n d n o n - s t a t i o n a r y process. This p r o v i d e s a c o m p l e t e d e s c r i p r i o n o f t h e o r i g i n a l a n d ergodic Gaussian process a f t e r a n a r b i t r a r y u p c r o s s i n g i n t o a c r i t i c a l i n t e r v a l w h e r e a c l u s t e r i z a t i o n o f s l a m m i n g events occur. T h o u g h r e m o v i n g t h e h y p o t h e s i s o f m u t u a l i m p a c t i n d e p e n -d e n c e is w i -d e l y accepte-d i n -d e v e l o p i n g s t a t i s t i c a l m o -d e l s o f s l a m m i n g , t h e r e is s r i l l need f o r extensive e x p e r i m e n t a l v a l i d a -t i o n o f r e c e n -t l y i n -t r o d u c e d -theories. Evidence o f c l u s -t e r i n g o f s l a m s i n f u l l scale data w a s r e p o r t e d b y Fu e t a l . ( 2 0 0 9 ) w h i c h i n v e s t i g a t e d t h e o c c u r r e n c e o f w e t d e c k s l a m m i n g i n t h e case o f a h i g h s p e e d c a t a m a r a n . H o w e v e r , s a t i s f a c t o r y a v a i l a b i l i t y o f f u l l -scale m e a s u r e m e n t s i n e x t r e m e c o n d i t i o n s is o f t e n s u b j e c t e d t o o p e r a t i o n a l c o n s t r a i n t s . Recent a d v a n c e m e n t i n m e a s u r e m e n t t e c h n i q u e s a l l o w s us t o achieve a clearer p i c t u r e o f t h e w h o l e p h e n o m e n o n a t m o d e l scale, b e y o n d a m e r e c o u n t i n g o f t h e i m p a c t s , as w i l l be s h o w n i n t h e p r e s e n t paper. I n t h i s perspec-t i v e , perspec-t h e use o f an elasperspec-tic s e g m e n perspec-t e d m o d e l f o r perspec-t h e seakeeping tests p r o v i d e s a d d i t i o n a l chances f o r t h e m o n i t o r i n g o f t h e response i n t e r m s o f accelerations or b e n d i n g m o m e n t s a l o n g t h e s h i p .

I n t h i s paper, t h e seakeeping tests a c c o u n t i n g f o r t h e vessel s l a m m i n g b e h a v i o r at h i g h speeds c l e a r l y o f f e r e d t w o c h a l l e n g i n g aspects d e m a n d i n g a d e e p e r i n s i g h t : t h e p r e v a l e n t g r o u p i n g o f s l a m m i n g e v e n t s i n clusters - n o t j u s t a r e m o t e chance b u t a l m o s t t h e r u l e - a n d t h e presence o f w e d g e - s h a p e d sections i n t h e i m p a c t i n g b o w t h a t m a k e s t h e d i s t i n c t i o n b e t w e e n b o t t o m a n d f l a r e s l a m m i n g events less e v i d e n t . C l u s t e r i n g o f i m p a c t s s h o w s e x p e r i m e n t a l l y t h a t t h e i m p a c t v e l o c i t y loses p a r t i a l l y its e f f e c t i v e n e s s i n a c c o u n t i n g f o r t h e g l o b a l s l a m m i n g e x c i t a t i o n , l i k e t h e v e r t i c a l b e n d i n g m o m e n t s o r t h e s e c t i o n a l stresses, t h o u g h r e t a i n i n g i t s v a l i d i t y f o r t h e local

analysis. This l a c k o f c o r r e l a t i o n suggests a need t o r e v i e w t h e i m p a c t d y n a m i c s a n d t o i n t e r p r e t t h e e n e r g y d i s t r i b u t i o n w i t h i n a s l a m m i n g cluster. C o n c e r n i n g t h e d i s t i n c t i o n b e t w e e n b o t t o m a n d f l a r e s l a m -m i n g , t h e r e l e v a n t w h i p p i n g r e c o r d e d a f t e r b o w - f l a r e s l a -m -m i n g events c o n f i r m s t h e o b s e r v a t i o n t h a t t h e absence o f a f l a t b o t t o m f o r w e d g e - s h a p e d h u l l s reduces t h e d i f f e r e n c e i n t h e f o r c e i n t e n s i t y b e t w e e n v i o l e n t w a t e r - e n t r y p h e n o m e n a w i t h a n d w i t h o u t b o w e m e r g e n c e . This e v i d e n c e has m o t i v a t e d t h e i n c l u -s i o n o f the-se e v e n t -s i n t o t h e p r e -s e n t i n v e -s t i g a t i o n , d u e t o t h e i r relevance e s p e c i a l l y f o r t h e s l a m m i n g i n d u c e d g l o b a l response.

The use o f a n e l a s t i c a l l y scaled p h y s i c a l m o d e l a l l o w s us t o associate t h e peak v a l u e o f t h e t r a n s i e n t b e n d i n g m o m e n t response t o t h e s l a m m i n g l o a d r e s p o n s i b l e f o r t h i s v i b r a t i o n . Indeed, i f t h e r e l a t i v e v e r t i c a l v e l o c i t y o f t h e i m p a c t i n g s h i p s e c t i o n can g i v e a n a p p r o x i m a t e b u t acceptable e s t i m a t i o n o f t h e pressure a c t i n g o n t h e w e t t e d h u l l panels, i t is s h o w n t o be less c o r r e l a t e d t o t h e w h i p p i n g t r a n s i e n t l o a d i n g . T h i s o b s e r v a -t i o n leads -t o a r e v i s i o n o f -t h e p r o c e d u r e f o r -the i d e n -t i f i c a -t i o n o f t h e s l a m m i n g e v e n t s as w e l l as t h e e v a l u a t i o n o f t h e i r s t r e n g t h i f g l o b a l effects are t a k e n i n t o a c c o u n t . Thus, a n o v e l p r o c e d u r e f o c u s e d a n d based o n t h e g l o b a l s h i p response w i l l be p r o p o s e d a n d discussed i n t h e p a p e r a n d t h e n c o m p a r e d w i t h t h e w e l l -k n o w n Ochi c o n d i t i o n s . The c o m p a r i s o n w i l l cover b o t h t h e case o f b o w - f l a r e s l a m m i n g a n d t h e case o f b o t t o m i m p a c t s w i t h a v e r t i c a l e n t r y speed n o t s a t i s f y i n g t h e O c h i t h r e s h o l d .

The paper is d i v i d e d i n t o several sections. I n Section 2 t h e e x p e r i m e n t a l set-up is presented. The i m p l e m e n t a t i o n o f t h e Ochi conditions as a c r i t e r i o n t o i d e n t i f y s l a m m i n g events f r o m t h e collected e x p e r i m e n t a l d a t a is discussed i n Section 3, a n d a s i m i l a r c r i t e r i o n t o i d e n t i f y also t h e occurrence o f b o w - f l a r e i m p a c t s is i n t r o d u c e d . In Section 4, the a p p l i c a t i o n o f the Ochi's c r i t e r i o n f o r t h e s l a m m i n g analysis o f t h e scaled-model seakeeping tests is presented, h i g h l i g h t i n g the existence o f i m p a c t clusters; m o r e o v e r , clustering o f slams is s h o w n t o be responsible f o r deviations f r o m statistical p r e d i c t i o n s o b t a i n e d w i t h the Poisson m o d e l . I n Section 5, t h e transient b e n d i n g response peak, obtained f r o m strain-gage data, is d e f i n e d a n d chosen t o be i n d i c a t i v e o f t h e g l o b a l response i n d u c e d by s l a m m i n g ; therefore, these values are related t o t h e i m p a c t velocity t o analyze t h e s l a m m i n g - w h i p p i n g c o r r e l a t i o n . The inclusion o f b o w - f l a r e i m p a c t s i n the present analysis is carried o u t i n Section 6. I n Section 7 a procedure t o i d e n t i f y t h e s l a m m i n g impacts o n the basis o f t h e i n t e n s i t y o f the global response, t h u s o v e r c o m i n g t h e d i s t i n c t i o n b e t w e e n b o t t o m i m p a c t a n d b o w - f l a r e slams, is o u t i i n e d and m a y c o n s t i t u t e a s t a r t i n g p o i n t t o d e f i n e n e w criteria f o r s l a m m i n g i d e n t i f i c a t i o n .

2. Experimental set-up

The m o d e l e x p e r i m e n t s w e r e c a r r i e d o u t at t h e INSEAN t o w i n g t a n k basin. The b a s i n ( 2 2 0 m l o n g ) is e q u i p p e d w i t h a s i n g l e - f l a p w a v e - m a k e r capable o f g e n e r a t i n g r e g u l a r a n d i r r e g u l a r w a v e p a t t e r n s . A s e g m e n t e d m o d e l o f t h e f a s t f e r r y MDV300Q w a s c o n s t r u c t e d a c c o r d i n g t o t h e b a c k b o n e - m o d e l i n g t e c h n i q u e . T h e p r i n c i p a l m o d e l c h a r a c t e r i s r i c s are l i s t e d i n T a b l e 1, a n d i n Fig. 1 a s c h e m a t i c v i e w o f t h e e x p e r i m e n t a l s e t - u p is s h o w n . The v e r t i c a l b e n d i n g b e h a v i o r o f t h e s h i p w a s r e p r o d u c e d b y s h a p i n g p r o p e r l y t h e e l a s t i c b e a m t h a t f o r m e d t h e b a c k b o n e o f t h e s e g m e n t e d m o d e l . The elastic b e a m w a s m a d e o f a n a l u m i -n i u m a l l o y w i t h 2 0 e l e m e -n t s o f c o -n s t a -n t l e -n g t h a -n d v a r i a b l e transverse s e c t i o n , as r e p r e s e n t e d i n Fig. 2. I n o r d e r t o shape t h e b e a m secrions o f t h e b a c k b o n e , t h e b e n d i n g s t i f f n e s s a n d shear area d i s t r i b u t i o n s , o b t a i n e d b y c o l l a p s i n g t h e s t r u c t u r a l 3 D FE m o d e l o f t h e f u l l - s c a l e s h i p i n t o a n e q u i v a l e n t T i m o s h e n k o b e a m , w e r e used as r e f e r e n c e data. The m o d e l scale w a s 1:30, t h a t

(3)

112 D, Dessi, E. Ciappi / Ocean Engineering 62 (2013) 110-122 i m p l i e s a c c o r d i n g t o Froude scaling a m o d e l f r e q u e n c y o f t h e t w o -n o d e b e -n d i -n g m o d e i -n a i r equal t o 11.1 Hz. This r e f e r e -n c e v a l u e w a s c l o s e l y a p p r o x i m a t e d i n d r y - v i b r a t i o n tests o f t h e s e g m e n t e d m o d e l C^<';;,>,y^ 10.8 H z ) . T h i s s a t i s f a c t o r y r e s u l t w a s c o n f i r m e d b y C o p p o t e l l i et a l . ( 2 0 0 8 ) f o r t h e c o r r e s p o n d i n g w e t m o d e e s t i m a t e d w i t h v i b r a t i o n tests u s i n g w a v e e x c i t a t i o n ( / ' ^ j t 7.4 Hz w i t h r e s p e c t a r e f e r -ence f r e q u e n c y o f 7.3 H z ) . The m o d a l c o r r e s p o n d e n c e , u p o n w h i c h t h e h y d r o e l a s t i c s c a l i n g w a s based, i n v o l v e d a m o d e l d e s i g n w i t h a s l i g h t l y r e d u c e d c u r v e o f t h e s e c t i o n a l i n e r t i a ( i n o r d e r t o c o u n t e r b a l a n c e t h e l o w e r v a l u e a t t a i n e d b y t h e shear d e f o r m a b i l i t y ) a n d an o p t i m i z e d b a l l a s t p o s i t i o n . T h e ballasts w e r e placed b y a n o p t i m i z i n g a l g o r i t h m i n t h e n e i g h b o r h o o d o f t h e r e a r n o d e o f t h e f i r s t ( t w o - n o d e s ) b e n d i n g m o d e , i n o r d e r n o t t o decrease t o o m u c h its f r e q u e n c y a n d so t o keep i t close t o its r e f e r e n c e (scaled) v a l u e . The h u l l w a s d i v i d e d i n t o s i x s e g m e n t s , each o n e c o n n e c t e d t o t h e elastic b e a m w i t h a v e r t i c a l steel leg; t h e r e f o r e , a n a d e q u a t e s p a t i a l s a m p l i n g o f t h e t r u e f l u i d l o a d i n g a l o n g t h e h u l l w a s a c h i e v e d . The l o n g i t u d i n a l p o s i t i o n s o f t h e h u l l c u t s w e r e chosen i n o r d e r t o l o a d t h e legs i n a s i m i l a r w a y d u r i n g t h e s e a k e e p i n g tests (see Table 2 ) . These s e g m e n t s w e r e m a d e o f f i b e r - g l a s s , a n d t h e gaps b e t w e e n a d j a c e n t s e g m e n t s w e r e m a d e w a t e r - t i g h t b y u s i n g r u b b e r straps. The s e g m e n t s are n u m b e r e d f r o m t h e b o w ( N o . 1) t o t h e s t e r n ( N o . 6), as s h o w n i n Fig. 1. As a r i g i d - b o d y , t h e p h y s i c a l m o d e l w a s f r e e t o heave, t o p i t c h a n d , p a r t i a l l y , t o surge.

I n every test t h e f o l l o w i n g physical q u a n t i t i e s w e r e measured: ( i ) t h e absolute w a v e height, ( i i ) the d r a f t at t w o specific sections o n t h e h u l l , ( i i i ) the r i g i d - b o d y degrees o f f r e e d o m (dofs), ( i v ) the vertical force o n each segment and ( v ) the vertical b e n d i n g m o m e n t o n several b e a m sections. The i n c o m i n g , absolute w a v e h e i g h t was

Table 1

General characteristics o f the scaled model.

Scale ). 1 : 30

Length between perpendiculars ( m ) f-pp 4.280

Beam ( m ) B 0.6

Draft (mean) ( m ) d 0.137

Mass (displacement) ( k g ) M 144.74

Longitudinal position of center of gravity ( m ) XG 1.621

Vertical position of center of gravity ( m ) ZG 0.259

M o m e n t o f inertia about center of gravity ( k g m ^ ) Jyy 201.93

measured b y using t w o f i n g e r probes placed at f i x e d positions w i t h respect to the t o w i n g t a n k (see Figs. 1 and 3 ) . These positions, one i n f r o n t o f the m o d e l (FPQ), the o t h e r o n the m o d e l l e f t side (FP2), w e r e chosen so t h a t the i n c i d e n t w a v e was n o t y e t a f f e c t e d b y t h e presence o f the h u l l . The local d r a f t was d i r e c t l y m e a s u r e d a t t w o h u l l sections WP2 a n d WP3 (corresponding to the m i d d l e o f the segments 2 and 3 ) b y u s i n g capacitive w i r e probes, s h o w n i n Fig. 3. The heave, p i t c h a n d surge dofs w e r e measured w i t h a n o p t i c a l system, based o n cameras placed o n the carriage a n d o n f o u r LEDs g l u e d o n a plate carried o n b o a r d the m o d e l . The optical s y s t e m i n d i c a t e d d i r e c t l y t h e sensed m o t i o n w i t h respect to t h e m o d e l center o f g r a v i t y C. The legs connecting t h e segments to t h e elastic

Table 2

Mass and length at w a t e r line o f the segments.

Segment 1 2 3 4 5 6 Mass (kg) Length at W . L ( m ) 9.250 11.050 0.682 0.615 12.050 12.600 14.400 15.550 0.779 0.820 0.820 0.567

Fig. 3. Finger probes for absolute wave elevation ( o n the left) and wire-probes f o r local d r a f t measurement onboard ( o n the right).

r u b b e r strip

wire w a v e p r o b e Fff,

strain g a u g e b a c k b o n e

f i n g e r w a v e p r o b e

Fig. 1. Schematic representation o f the segmented-hull and the wave probes layout.

II

III

D11 D10 3 D 2 D 1 D I , i r (—_

P

u u 2 1

(4)

D. Dessi, E. Ciappi / Ocean Engineering 62 (2013) 110-122 113

Fig. 4. Strain-gages placed on the beam top-face.

b e a m had e m b e d d e d load cells to measure t h e vertical force. The use o f these l o a d cells needed some care. T h e f i r s t r e q u i r e m e n t t o f u l f i l l was t h a t t h e i r d e f o r m a t i o n under load induces s m a l l relative displacements o f one segment w i t h respect t o the o t h e r i n o r d e r t o avoid contact b e t w e e n t h e m . A second r e q u i r e m e n t w a s t h a t the f l u i d m o m e n t should n o t a f f e c t s i g n i f i c a n t l y the v e r t i c a l force m e a s u r e m e n t , at least w i t h m e d i u m and l o n g waves ( w i t h respect t o the s e g m e n t lengths), and d u r i n g the s l a m m i n g tests. Thus, the elastic d e f o r m a t i o n and m e a s u r e m e n t p e r f o r m a n c e o f t h e load-cells w e r e i n i t i a l l y tested r e p r o d u c i n g the above c o n d i t i o n s i n a c o n -t r o l l e d e n v i r o n m e n -t . The b e n d i n g m o m e n -t a c -t i n g u p o n -the b e a m was measured i n 12 points by using s t r a i n gauges g l u e d o n t h e t o p face o f the b e a m (see Fig. 4 ) . The c a l i b r a t i o n o f t h e s t r a i n gauges was p e r f o r m e d l o a d i n g statically t h e b e a m a n d c o m p a r i n g t h e t h e o r e -tical b e n d i n g m o m e n t s w i t h t h e voltage values. The a c q u i s i t i o n system based o n a N a t i o n a l I n s t r u m e n t s SCXl m o d u l e recorded globally 28 signals at a 5 0 0 H z s a m p l i n g rate whereas t h e w i r e probes had t o be s a m p l e d at 5 0 Hz due t o l i m i t a t i o n o f t h e i r o w n a c q u i s i t i o n cards. The highest s a m p l i n g rate a t w h i c h m o s t o f the signals w e r e recorded was selected to represent accurately t h e s l a m events (see Dessi and M a r i a n i , 2 0 0 8 ) . The w a t e r - e n t r y phase f o r the scaled f a s t - f e r r y m o d e l lasts generally about 0.2-0.3 s and t h e r e f o r e a b o u t 100 p o i n t s are used f o r d e s c r i b i n g t h e rising side o f a s l a m m i n g i m p u l s e . I t i m p l i e s t h a t i n the w o r s t case the e r r o r relative t o the peak value o f t h e curves is a b o u t 1% o f the o v e r a l l v a r i a t i o n (peak t o peak) o f t h e considered variable. The e r r o r is larger i n the case o f t h e signals acquired f r o m t h e w i r e probes b u t these data are considered j u s t f o r c o m p a r i s o n . A t r i g g e r w a s used t o synchronize b o t h the a c q u i s i t i o n systems a n d t h e w i r e signals w h i c h w e r e t o be n u m e r i c a l l y re-sampled u s i n g splines.

3. The kinematic criterion: application to experimental data

and related issues

3.J. Applicability ofthe Ochi-MoCCer criterion

The c r i t e r i o n f o r t h e o c c u r r e n c e o f s h i p s l a m m i n g has b e e n d e b a t e d f o r t w o decades since t h e p u b l i c a t i o n o f t h e o r i g i n a l Ochi p a p e r ( 1 9 6 4 ) . F o l l o w i n g O c h i , t h e necessary a n d s u f f i c i e n t c o n d i -t i o n s f o r -t h e o c c u r r e n c e o f a s l a m m i n g e v e n -t are: • t h e r e l a t i v e m o t i o n Wr at a r e f e r e n c e s e c r i o n m u s t be e q u a l t o t h e s e c t i o n a l d r a f t d a t i n s t a n t o f s l a m m i n g T J ; • t h e r e l a t i v e v e l o c i t y Wr at t h e same s e c t i o n m u s t be less t h a n o r e q u a l t o a g i v e n negative t h r e s h o l d -VBS, i.e., VVr|„^ = rf<-VB5, (1) w h e r e t h e s u b s c r i p t BS indicates t h a t t h i s t h r e s h o l d is r e l a t i v e t o b o t t o m s l a m m i n g . T h e c r i t e r i o n i n t r o d u c e d b y O c h i w a s e s t a b -l i s h e d c o n s i d e r i n g t h e m e a s u r e d pressure o n t h e k e e -l p -l a t e o f t h e MARINER, t h a t w a s t h e n c o r r e l a t e d w i t h t h e e x p e r i m e n t a l l y e s t i m a t e d i m p a c t v e l o c i t y . T h e t h r e s h o l d v e l o c i t y w a s d e f i n e d as t h e v a l u e b e l o w w h i c h n o i m p a c t pressure w a s o b s e r v e d a n d , f o r a d i f f e r e n t s h i p , t h i s v a l u e s h o u l d be m o d i f i e d a c c o r d i n g t o Froude s c a l i n g l a w regardless o f t h e shape o f t h e s e c t i o n close t o t h e b o t t o m , i.e., b e l o w 1 / l O t / i o f t h e n o m i n a l d r a f t . L o o k i n g at t h e o r i g i n a l p r e s s u r e / v e l o c i t y d i a g r a m t h a t i n s p i r e d Ochi's s t a t e m e n t , i t seems t h a t t h e v e l o c i t y t h r e s h o l d s i m p l y r e p r e s e n t s t h e l o w e r l i m i t o f v a l i d i t y o f t h e r e l a t i o n s h i p p = l / 2 p v v ? C p , (2) w h e r e Cp is t h e p r e s s u r e c o e f f i c i e n t , vvr is t h e r e l a t i v e v e r t i c a l v e l o c i t y a n d p is t h e fluid d e n s i t y . I n fact, e x p e r i m e n t a l p o i n t s a p p e a r t o d e v i a t e f r o m t h e regression l i n e o n l y as t h e y a p p r o a c h t h e area o f less i n t e n s e w a t e r i m p a c t s . A s i m i l a r a p p r o a c h f o r t h e choice o f t h e t h r e s h o l d v a l u e w a s t h e one i n t r o d u c e d b y C o n o l l y ( 1 9 7 4 ) a decade l a t e r . He f o c u s e d o n t h e d e f i n i t i o n o f a t h r e s h o l d as t h e l o w e r l i m i t o f s l a m m i n g p r e s s u r e peaks m e a s u r e d a l o n g t h e h u l l b o t t o m . F r o m t h i s , a l i m i t v e r t i c a l v e l o c i t y c a n be o b t a i n e d as w e l l . I t is w o r t h w h i l e t o recall t h a t O c h i a n d M o t t e r ( 1 9 7 3 ) s h i f t e d t h e i r a t t e n t i o n also t o t h e d e f l n i t i o n o f a s h i p f o r w a r d speed l i m i t based o n t h e c o n s i d e r a t i o n o f several s l a m m i n g - i n d u c e d e f f e c t s . I n p a r t i c u l a r , t h e y p o i n t e d o u t t h e l i n k b e t w e e n s l a m m i n g e v e n t s a n d the d a m a g e t h a t m i g h t o c c u r i n t h e b o t t o m k e e l plates, aspects t h a t h a v e since b e e n i n v e s t i g a t e d m o r e d e e p l y succes-s i v e l y . F r o m t h e analysucces-sisucces-s o f m a x i m u m succes-stresucces-ssucces-sesucces-s a n d / o r p l a t e d e f l e c t i o n , t h e y d e v e l o p e d a r u l e a l t e r n a t i v e f o r t h e v o l u n t a r y speed r e d u c t i o n o f t h e c a p t a i n t o select i f s l a m m i n g is t o b e a c c e p t a b l e f o r t h e s h i p . T h e O c h i c r i t e r i o n , a s s i i m e d as t h e basic r e f e r e n c e i n t h i s paper, is e s s e n t i a l l y b u i l t o n clear b u t s i m p l i f l e d k i n e m a t i c c o n s i d e r a t i o n s e s t a b l i s h e d o n t h e basis o f e x p e r i m e n t a l p r e s s u r e o b s e r v a t i o n s . D e s p i t e its u s e f u l n e s s , i t rises s o m e q u e s t i o n s a b o u t its p r a c t i c a l a p p l i c a t i o n a n d its p h y s i c a l m e a n i n g , t h a t are discussed i n t h e f o l l o w i n g sections.

3.2. Measurement of water entry kinematics

T h e e x p e r i m e n t a l p r o c e d u r e c a r r i e d o u t t o e v a l u a t e t h e O c h i p h y s i c a l c o n d i t i o n s necessary t o d i s c r i m i n a t e t h e s l a m m i n g o c c u r r e n c e is flrst i l l u s t r a t e d . T h e r e l a t i v e m o t i o n Wr(x,t) is c a l c u l a t e d as f o l l o w s : Wr{x,t} = Wc(t)+xOit}-h(x,t). (3) w h e r e h(x,t) is t h e a b s o l u t e w a v e e l e v a t i o n m e a s u r e d w i t h t h e w a v e flnger-probe, wdt) a n d 0(t) are t h e r e c o r d e d heave a n d p i t c h , r e s p e c t i v e l y , a n d x i n d i c a t e s t h e abscissa o f t h e c o n s i d e r e d s e c t i o n ( w i t h r e s p e c t t o t h e m o d e l c e n t e r o f g r a v i t y G).

D e s p i t e its s i m p l i c i t y , i n some cases t h i s p r o c e d u r e m a y b e f a u l t y , l e a d i n g t o possible inaccuracies i n s l a m m i n g i d e n t i f i c a t i o n t h a t need t o be c o n s i d e r e d . I f t h e w a v e s u r f a c e b e l o w t h e i m p a c t i n g b o t t o m is a f f e c t e d b y t h e s h i p r a d i a t e d w a v e field, Eq. ( 3 ) is n o l o n g e r v a l i d d u e t o these u n a c c o u n t e d d i s t u r b a n c e s a n d j u s t p r o v i d e s a n a p p r o x i m a t i o n o f t h e real s i t u a t i o n . F u r t h e r -m o r e , i t -m a y also o c c u r t h a t t h e finger-probe -m e a s u r e -m e n t p o i n t is r e a c h e d b y t h e w a v e s g e n e r a t e d b y t h e h u l l , so t h a t t h e u n d i s t u r b e d w a v e e l e v a t i o n can n o t be m e a s u r e d i n t h a t p o s i t i o n .

(5)

114 D. Dessi, E. Ciappi / Ocean Engineering 62 (2013) 110-122 T h e r e f o r e , a s e c o n d m e a s u r e m e n t t e c h n i q u e , b a s e d o n t h e d i r e c t m e a s u r e m e n t o f t h e l o c a l d r a f t d(x,t), w a s e x p l o i t e d i n t h i s e x p e r i m e n t a l p r o g r a m t o c h e c k i f t h e c a l c u l a t i o n o f t h e r e l a t i v e m o t i o n y i e l d s a g o o d e s t i m a t i o n o f t h e i m p a c t t i m e a n d v e l o c i t y . As a n t i c i p a t e d i n S e c t i o n 2 , t w o w i r e p r o b e s w e r e i n s t a l l e d o n b o a r d i n t h e m i d d l e o f t h e second a n d t h i r d s e g m e n t s ( n u m -b e r e d f r o m t h e -b o w ) , w h e r e t h e h u l l w a s l i k e l y t o e x p e r i e n c e s l a m m i n g . I n d e e d , t h i s e x p e r i m e n t a l t e c h n i q u e a l s o d e m a n d s s u i t a b l e p r o c e s s i n g o f t h e r e c o r d e d signals. B e y o n d t h e s e n s o r c a l i b r a t i o n t h a t a l l o w s us t o t r a n s f o r m t h e v o l t a g e o u t p u t i n t o t h e w i r e w e t t e d l e n g t h , t w o o t h e r r e l e v a n t issues n e e d t o be c o n s i d e r e d : t h e first c o n c e r n s t h e o r t h o g o n a l p r o j e c t i o n o f t h e w e t t e d l e n g t h o v e r t h e v e r t i c a l p l a n e o f t h e s h i p t o o b t a i n t h e s e c t i o n a l d r a f t , w h e r e a s t h e s e c o n d relates t o t h e l a c k o f s m o o t h n e s s t h a t t h e r e c o r d e d signals m a y e x h i b i t . T h e m a i n findings o f t h i s a n a l y s i s are s u m m a r i z e d b y t h e c o m p a r i s o n s h o w n i n Fig. 5 r e l a t i v e t o r e g u l a r w a v e tests.. To e n h a n c e t h e c o m p a r a b i l i t y , t h e r e c o r d e d l o c a l d r a f t is s h i f t e d d o w n w a r d b y a n a m o u n t e q u a l t o t h e n o m i n a l d r a f t , p r o v i d i n g t h e s o - c a l l e d r e l a t i v e d r a f t d r ( x , f ) = d ( x , t ) - d , t h a t is p l o t t e d t o g e t h e r w i t h t h e ( u n d i s t u r b e d ) r e l a t i v e w a v e e l e v a t i o n C(x,t) = -Wr(x,t) ( i n Fig. 6 , t h e m e a n i n g o f dr is c l a r i f i e d ) . As e x p e c t e d , t h e r e l a t i v e w a v e e l e v a t i o n ( d a s h e d l i n e i n Fig. 5 ) has a r a t h e r d i f f e r e n t b e h a v i o r w i t h r e s p e c t t o t h e r e l a t i v e d r a f t ( s o l i d l i n e ) , s i n c e t h e l a s t one a c c o u n t s a l s o f o r w a t e r , u p r i s e g e n e r a t e d b y s l a m m i n g e v e n t s a n d n e a r - f i e l d e f f e c t s d u r i n g t h e e x i t phase. H o w e v e r , i t is i n t e r e s t i n g t o n o t e t h a t t h e t i m e d e r i v a t i v e o f t h e r e l a t i v e w a v e e l e v a t i o n , a t i m p a c t t i m e ( m a r k e d w i t h a v e r t i c a l l i n e ) , p r o v i d e s r a t h e r t h e s a m e e s t i m a t i o n o f t h e i m p a c t v e r t i c a l v e l o c i t y . T h i s e x p e r i m e n t a l e v i d e n c e i n d i c a t e s t h a t b e f o r e t h e i m p a c t t i m e t h e 0.6

Relative Draft (Wire Probes) Draft Derivative (Wire Probes)

Rel. Wave Elevation (Abs. Wave - RB Displ.) o-— Rel. Wave Elev. Derivative (Abs. Wave - RB Displ.)

Nominal Water Exit/ Entry Threshold

w a t e r s u r f a c e u n d e r t h e i m p a c t i n g b o w is w e l l r e p r e s e n t e d b y t h e u n d i s t u r b e d w a v e e l e v a t i o n , because t h e h i g h f o r w a r d speed o f t h e s h i p m a k e s n e g l i g i b l e t h e d i s t u r b a n c e s p r o d u c e d b y t h e d i f f r a c t e d a n d r a d i a t e d w a v e fields. T h e s a m e r e m a r k a p p l i e s also t o t h e flnger-probe p o s i t i o n . T h e r e f o r e , f o r t h e p u r p o s e o f t h e p r e s e n t i n v e s t i g a t i o n , t h e e x p e r i m e n t a l l y e v a l u a t e d r e l a t i v e m o t i o n can be a s s u m e d t o i m p l e m e n t t h e O c h i c r i t e r i o n .

3.3. Extension ofthe Octii-Motter criterion to tlie bow-flare slamming case The h u l l i m m e r s i o n can be e f f i c i e n t l y a n d a c c u r a t e l y d e t e r -m i n e d b y t h e w i r e p r o b e -m e a s u r e -m e n t a n d p r o v i d e s a g e n e r a l w a y t o d e t e r m i n e t h e w e t n e s s o f t h e s h i p b o t t o m . H o w e v e r , since t h e s h i p f o r w a r d speed is s u f f i c i e n t l y h i g h i n the p r e s e n t e x p e r i -m e n t a l analysis, i t is r e a s o n a b l e t o set Wr(x,t) = -C(x,t) -dr(x,t) a n d t h e r e l a t i v e m o t i o n can s a t i s f a c t o r i l y describe the w a t e r -e n t r y o f t h -e b o w . T h -e a d v a n t a g -e o f t h i s choic-e li-es also i n t h -e p o s s i b i l i t y to e x t e n d t h i s analysis i n t i m e i n s t a n t s a f t e r t o t h e i m p a c t occurrence.

T h e m i n i m u m e n t r y v e l o c i t y , u s u a l l y r e a c h e d a r o u n d t h e m i d d l e o f the e n t r y phase, is r e l e v a n t i n t h e p r e s e n t analysis because i t is a s s u m e d i n t h e f o l l o w i n g t o be s y m p t o m a t i c o f t h e i n t e n s i t y o f b o w - f l a r e s l a m m i n g events.^ T h e k i n e m a t i c c o n d i t i o n f o r b o w - f l a r e s l a m m i n g is t h e n d e f i n e d as M i n [ W r ] < - V p s . ^ ( 4 ) w h e r e Vfs is a n e w ( p o s i t i v e ) t h r e s h o l d g r e a t e r or a t least e q u a l t o t h e O c h i t h r e s h o l d VBS, since f o r b o t t o m s l a m m i n g cases Mm[Wr]<Wr\^^^^ h o l d s s t r i c t l y , as t h e e x p e r i m e n t a l e v i d e n c e s h o w s . Since t h e m i n i m u m v e l o c i t y is d e t e r m i n e d i n a w a y c o n s i s t e n t w i t h t h e d e t e r m i n a t i o n o f t h e i m p a c t v e l o c i t y , a n e x p e r i m e n t a l c o r r e l a t i o n b e t w e e n t h e i m p a c t v e l o c i t y a n d t h e m i n i m u m w a t e r - e n t r y v e l o c i t y m a k e s sense, a n d i n p a r t i c u l a r M i n [ W r ] 1.5 vvrljy^ ^ t h u s s u g g e s t i n g t h a t w e s h o u l d select V K = 3 / 2 VBS. O n t h e o t h e r h a n d , t h e use o f t h e t i m e d e r i v a t i v e o f t h e l o c a l d r a f t i n Eq. ( 4 ) ( i n s t e a d o f W r ) m a y lead t o r e s u l t s h e a v i l y a f f e c t e d b y t h e h u l l s h a p e d u e t o t h e flow a c c e l e r a t i o n as i t rises a l o n g t h e s e c t i o n sides. T h i s f e a t u r e w o u l d be n o t d e s i r a b l e w h e n c o m p a r i n g b o t t o m s l a m m i n g a n d flare s l a m m i n g e v e n t s .

4. Cluster analysis

It is w o r t h r e c a l l i n g t h a t t h e g e n e r i c s l a m m i n g process Z c a n be r e p r e s e n t e d , as a l r e a d y p r o p o s e d b y M a n s o u r a n d L o z o w ( 1 9 8 2 ) a n d Ferro a n d M a n s o u r ( 1 9 8 5 ) , b y a pulse process as

Fig. 5. Evaluation o f the d r a f t obtained by direct w i r e - p r o b e measurement and by reconstruction f r o m rigid-body and absolute wave elevation measurement (x position at the m i d d l e o f segment 2).

' /

W a t e r s u r f a c e , / N'" A b s o l u t e w a v e Relative d r a f t e l e v a t i o n /; c/,/x,t) ^ Local d r a f t d f x j j M e a n v^ater s u r f a c e -7' W . L . N o m i n a l d r a f t d ( 5 ) w h e r e t h e s u p e r s c r i p t r d e n o t e s a s p e c i f l c t o w i n g t a n k r u n ( i n t h e p r e s e n t case, r = l 1 1 ) , N"^' is t h e Poisson c o u n t i n g process ( p e r t a i n i n g to r u n r ) , 5 ( - ) is t h e D i r a c delta f u n c t i o n , y^P a n d x^p are t h e i n t e n s i t y a n d t h e i m p a c t t i m e , r e s p e c t i v e l y , a s s o c i a t e d w i t h t h e i t h s l a m m i n g e v e n t o c c u r r e d d u r i n g r u n r ( t h e s u b s c r i p t s is d r o p p e d f o r sake o f conciseness i n t h e i m p a c t t i m e x w h e n e v e r i t does n o t g e n e r a t e a m b i g u i t y ) . To c l a r i f y t h e p h y s i c a l m e a n i n g o f Eq. ( 5 ) , i n t h e t o p o f Fig. 7 t h e process Z ' ^ ' is s y n t h e t i c a l l y r e p r e s e n t e d as a sequence o f v e r t i c a l s e g m e n t s i n d i c a t i n g t h e i m p a c t v e l o c i t y , n a m e d as V j f ^ , at t h e c o r r e s p o n d e n t i m p a c t t i m e s TJ^*. The i m p a c t t i m e s T P ' are o b t a i n e d f r o m t h e t i m e -h i s t o r y o f t -h e v e r t i c a l r e l a t i v e v e l o c i t y Wr(t) ( s l a m m i n g events are

Fig. 6. Physical meaning o f variables related to wave elevation.

' The absence of the bow-emergence prevents to i d e n t i f y a particular t i m e at w h i c h the water-entry velocity has to be evaluated.

(6)

D. Dessi, E. Ciappi/Ocean Engineering 62 (2013) 110-122 115 m a r k e d w i t h circles i n t h e m i d d l e c u r v e ) , w h e r e a s t h e i m p a c t v e l o c i t i e s can be e v a l u a t e d f r o m t h e t i m e - h i s t o r y o f t h e v e r t i c a l r e l a t i v e v e l o c i t y vvr(t), p l o t t e d at t h e b o t t o m o f Fig. 7. W i t h r e s p e c t t o Ferro a n d M a n s o u r ( 1 9 8 5 ) , t h e s l a m m i n g i n t e n s i t i e s x f \ r e p r e s e n t e d by t h e s l a m m i n g i m p a c t v e l o c i t i e s , w i l l be s h o w n n o t t o be i n d e p e n d e n t a n d e q u a l l y d i s t r i b u t e d r a n d o m variables.

The Ochi k i n e m a t i c c r i t e r i o n was t h e n a p p l i e d t o t h e e x p e r i -m e n t a l data collected i n t h e 11 t o w i n g - t a n k -m n s t o i d e n t i f y the r e l e v a n t statistics. The tests w e r e c a r r i e d o u t i n i r r e g u l a r sea a c c o r d i n g t o a J o n s w a p s p e c t r u m w i t h H 1 / 3 = 5 m a n d T] = 7 . 5 s a t f u l l - s c a l e ( H , / 3 ~ 0.016 m a n d T, ~ 1.30s a t m o d e l scale). The m e a s u r e d sea s p e c t r u m is s h o w n i n Fig. 8 a n d c o m p a r e d w i t h the t h e o r e t i c a l s p e c t r u m o f the w a v e m a k e r . Each v a l i d a c q u i s i t i o n lasted a b o u t 3 0 s, a n d overall t i m e at m o d e l scale o f a b o u t 3 6 0 s is e q u i v a l e n t t o nearly 3 0 m i n at f u l l - s c a l e . I n Fig. 9 t h e i m p a c t t i m e z'P f o r each i d e n t i f i e d s l a m s a t i s f y i n g the Ochi c o n d i t i o n s (see Eq. ( 1 ) ) is d r a w n as a p o i n t w i t h the abscissa i n d i c a t i n g t h e c o r r e -s p o n d i n g t o w i n g - t a n k r u n . Thu-s, a l i g n e d dot-s o n v e r t i c a l line-s i n d i c a t e s l a m m i n g i m p a c t s o f t h e same test. The s l a m m i n g i m p a c t s s h o w t h e t e n d e n c y t o appear g r o u p e d i n t o s h o r t sequences, n a m e d as s l a m clusters (one o f t h e m is c i r c l e d ) . This e x p e r i m e n t a l o b s e r v a t i o n ' c o n t r a d i c t s t h e h y p o t h e s i s o f i m p a c t i n d e p e n d e n c e u p o n w h i c h several early theories o f s l a m m i n g statistics w e r e b u i l t o n . The sequence o f repeated s l a m m i n g events seems o n l y p a r t i a l l y r e l a t e d t o g r o u p i n g o f waves w i t h r e l e v a n t heights. I n Fig. 10 the r e l a t i v e w a v e e l e v a t i o n ( c o n t i n u o u s l i n e ) is p l o t t e d t o g e t h e r w i t h

20 25 30 Time [s]

Fig. 7. S l a m m i n g process Z'^' obtained f r o m the seakeeping tests ( t o w i n g - t a n k r u n r-2). Dashed lines indicate the relative m o t i o n and velocity thresholds of the Ochi

criterion, respectively. 0.0015 0.001 • • Q. 0.0005 0.5 1 Frequency [Hz]

Fig. 8. Measured and theoretical sea spectrum.

1.5 40 35 30 25 20 E-15 l o t 5 0

0

I 1 I I -0 1 2 3 4 5 6 7 Run 9 10 11 12

Fig. 9. Impact times f o r each r u n recorded d u r i n g t o w i n g - t a n k tests.

25 30 Time [s]

Fig. 10. Encountered w a v e elevation (line and points) and relative m o t i o n

(solid line).

t h e absolute w a v e e l e v a t i o n o f t h e e n c o u n t e r e d w a v e s ( l i n e and p o i n t s ) relative to t h e same s h i p section. There is n o t a s t r i c t c o r r e l a t i o n b e t w e e n t h e e l e v a t i o n o f t h e w a v e s a n d t h e r e l a t i v e w a v e e l e v a t i o n ( o r r e l a t i v e m o t i o n ) o c c u r r i n g s h o r t l y a f t e r t h e w a v e crest has passed. M o r e o v e r , i t m a y also h a p p e n t h a t t h e second h i g h w a v e crest f o l l o w i n g a n d a n t i c i p a t i n g a w a t e r i m p a c t (see g r o u p e d slams at T 4 - T 5 a n d at T S - T ? ) e x h i b i t s an e l e v a t i o n l o w e r t h a n t h e f i r s t crest. A c c o r d i n g to O c h i ( 1 9 6 4 ) , the p r o b a b i l i t y o f s l a m m i n g e v e n t s ( s a t i s f y i n g t h e O c h i c o n d i t i o n s ) s h o u l d c o m p l y t h e f o l l o w i n g e x p o n e n t i a l l a w : Pr{Slam) = e^e (6) w h e r e a = - d /(lal;) a n d /( = V ^ s / ( 2 < ) . w i t h < a n d t h e v a r i a n c e o f t h e r e l a t i v e m o t i o n a n d r e l a t i v e m o t i o n v e l o c i t y a t t h e c o n s i d e r e d s h i p s e c t i o n f o r a l l t h e r u n s . T h e n u m b e r o f i m p a c t s p e r u n i t time, d e f i n e d as /. = N^/T w i t h Ns the o v e r a l l n u m b e r o f o b s e r v e d s l a m m i n g e v e n t s i n t h e t i m e i n t e r v a l T, can be e v a l u a t e d as (7) w h e r e /. is also t e r m e d u n c o n d i t i o n a l m e a n s l a m m i n g rate. I n Table 3 t h e p r e d i c t e d a n d e x p e r i m e n t a l value o f t h e m e a n s l a m m i n g r a t e are r e p o r t e d , s h o w i n g t h a t Ochi t h e o r y s i g n i f i -c a n t l y u n d e r e s t i m a t e s t h e n u m b e r o f e x p e -c t e d s l a m m i n g e v e n t s . A m e a s u r e o f t h e t e n d e n c y o f t h e slams t o a p p e a r i n c l u s t e r s can be e v a l u a t e d w i t h d i f f e r e n t s t a t i s t i c a l indices. T h e f i r s t one c o n c e r n s t h e e s t i m a t i o n o f t h e t i m e i n t e r v a l A T J b e t w e e n

(7)

116 D. Dessi, E. Ciappi / Ocean Engineenng 62 (2013) 110-122

Table 3

Predicted and experimental number of s l a m m i n g impacts per unit t i m e (unconditional mean slam-m i n g rate at slam-model scale).

Type o f estimation / .

Predicted (Eq. ( 7 ) ) 0.094

Experimental 0.300

•a 2

Theoretical (Poisson Law)

, = = Mixed (Poisson Law with exp. slamming rate) Experimental

,1ltir

:flïïf-:mn-n

-.-n

',fl-,- , , n

0 A To 2 4 6 8 T i m e b e t w e e n s l a m s [s]

Fig. 11. Comparison between theoretical (solid and dashed lines) and experi-mental (bars) probability density functions relative to the t i m e interval between successive slams (at model scale).

successive i m p a c t s , t h a t f o r a Poisson process is g i v e n b y t h e f o l l o w i n g p r o b a b i l i t y d e n s i t y f u n c t i o n ( p d f ) (8) w h e r e Tpicch is t h e n a t u r a l p i t c h i n g p e r i o d . T h e c o m p a r i s o n b e t w e e n t h e t h e o r e t i c a l a n d e x p e r i m e n t a l t i m e i n t e r v a l s b e t w e e n successive s l a m s is s h o w n i n Fig. 1 1 . I t is w o r t h n o t i n g t h a t m o s t o f t h e o b s e r v e d t i m e i n t e r v a l s f a l l i n a n a r r o w b a n d c e n t e r e d o n t h e v a l u e d e n o t e d as A T Q , w h i c h is c l o s e l y r e l a t e d to t h e n a t u r a l p i t c h i n g p e r i o d , i.e., A T Q ~ Tpitch = 1 s at m o d e l scale, a n d also t o t h e f r e q u e n c y o f t h e e n c o u n t e r e d sea s p e c t r u m peak, since A T O 1 / / ^ ' ' " ' ' " = 0 . 8 4 s. As also a p p a r e n t i n Fig. 9, t h e s l a m m i n g e v e n t s i n s i d e t h e c l u s t e r sequences are o f t e n s e p a r a t e d i n t i m e b y n e a r m u l t i p l e s o f A T Q . T h i s e x p e r i m e n t a l e v i d e n c e c o n t r a d i c t s t h e e x p e c t a t i o n o f a s m o o t h p r o b a b i l i t y d i s t r i b u t i o n o v e r t h e v a l u e s A T > A T O , as s h o u l d h o l d i n t h e case o f i n d e p e n d e n t l y o c c u r r i n g i m p a c t s . B o t h t h e s o l i d a n d t h e d a s h e d l i n e s r e p r e s e n t t h e values g i v e n b y Eq. ( 8 ) , b u t u s i n g d i f f e r e n t u n c o n d i t i o n a l s l a m m i n g rates 2: f o r t h e s o l i d l i n e t h e v a l u e o f X is p r o v i d e d b y Eq. ( 7 ) , w h e r e a s f o r t h e d a s h e d l i n e t h e e x p e r i m e n t a l v a l u e o f / r e p o r t e d i n T a b l e 3 is used. I t is e v i d e n t t h a t t h e p o o r p r e d i c t i o n g i v e n b y Eq. ( 8 ) is a c o n s e q u e n c e o f a t o o l o w e s t i m a t i o n o f t h e u n c o n d i t i o n a l m e a n s l a m m i n g r a t e . A second analysis c o n c e r n s t h e e x p e c t e d n u m b e r o f i m p a c t s i n a g i v e n t i m e w i n d o w A f . Its average v a l u e is f o r m a l l y d e f i n e d as Hj = A t • / . IVIoreover, t h e p r o b a b i l i t y t h a t ris = k e v e n t s w i l l o c c u r i n A t is e v a l u a t e d f o r a Poisson process b y t h e f o l l o w i n g p r o b a b i l i t y f u n c t i o n d i v i d e d i n t o L c o n s e c u t i v e t i m e i n t e r v a l s o f l e n g t h A t = Tr/L T h u s , A t d e n o t e s t h e c o n s t a n t l e n g t h o f t h e e l e m e n t a r y t i m e w i n d o w t o be used f o r s l a m m i n g c o u n t i n g . I n each i t h t i m e i n t e r v a l , i t m a y h a p p e n t h a t one b r m o r e s l a m m i n g events, say k{i) events, are o b s e r v e d . T h e n , l e t us d e n o t e w i t h m(/<) t h e n u m b e r o f t i m e s t h a t k e v e n t s o c c u r i n a single o b s e r v a t i o n w i n d o w ( f o r i n s t a n c e , m ( 3 ) = 2 m e a n s t h a t t w i c e t h r e e d i s t i n c t s l a m m i n g e v e n t s o c c u r r e d i n d i s t i n c t o b s e r v a t i o n t i m e w i n d o w s ) . T h i s a l l o w s us to m a k e a h i s t o g r a m a p p r o x i m a t i n g , a f t e r n o r m a l i z a t i o n , t h e e x p e r i m e n t a l p d f t h a t a c c o u n t s f o r the p r o b a b i l i t y t h a t k s l a m -m i n g e v e n t s are o b s e r v e d i n a t i -m e w i n d o w o f l e n g t h A t . T h e c h o i c e o f A f i n d e e d a f f e c t s t h i s analysis. T h e s h o r t e s t u s e f u l o b s e r v a t i o n w i n d o w f o r t h e analysis c a n be i d e n t i f i e d w i t h r e s p e c t t o t h e m i n i m u m A T , say A T „ „ n , c o n s i d e r e d i n t h e e x p e r i -m e n t a l data o f Fig. 11. Since n o -m o r e t h a n one e v e n t can o c c u r i n a n o b s e r v a t i o n t i m e w i n d o w s u c h as A f < A T , , , , , , , i t is t r i v i a l t o set A f > A T „ „ „ . O n t h e o t h e r h a n d , as l o n g as A t - ^ T r , t h e o v e r a l l a c q u i s i t i o n t i m e , a l l t h e events w i l l be t r i v i a l l y i n c l u d e d i n t h i s rime w i n d o w . T h e r e f o r e , f o r sake o f conciseness, w e w i l l f o c u s o n m u l t i p l e s o f a basic i n t e r v a l n e a r l y e q u a l to t h e p i t c h i n g p e r i o d Tpicch, t h u s l e a d i n g t o A f ~ l . l s , 2.2 s, 3.3 s, 4 . 4 s , 5.5 s. T h i s ensures h i g h l i g h t i n g o f t h e p o t e n t i a l i m p a c t c l u s t e r i z a t i o n . I n Fig. 12 t h e p d f o b t a i n e d b o t h e x p e r i m e n t a l l y ( u s i n g t h e h i s t o g r a m m e t h o d ) a n d t h e o r e t i c a l l y ( p r o v i d e d b y t h e Poisson m o d e l ) are d e p i c t e d t o g e t h e r f o r t h e c h o s e n d i f f e r e n t t i m e w i n d o w s . For A f = l . l ^Tpitch< i t begins t o be e v i d e n t t h a t t h e Poisson m o d e l u n d e r p r e d i c t s t h e p o s s i b i l i t y t h a t m o r e t h a n o n e e v e n t m a y o c c u r i n t h e g i v e n time w i n d o w . T h i s lack o f a g r e e m e n t is a c o n s e -q u e n c e o f t h e c l u s t e r i n g e f f e c t n o t a c c o u n t e d f o r b y t h e Poisson m o d e l . T h i s r e m a r k is also c o n f i r m e d i n t h e c o m p a r i s o n f o r A t = 2.2 =;2rp,tch. As l o n g as A t is increased, t h e p e a k i n t h e o b s e r v e d s l a m m i n g d i s t r i b u t i o n is m o v e d f o r w a r d t o h i g h e r s l a m m i n g rates a n d , w h e n A f is decreased, t h e r e is a r e d u c e d p r o b a b i l i t y t h a t a n y e v e n t s are r e c o r d e d at a l l i n t h e same t i m e w i n d o w .

5. Correlation between impact dynamics and global effects

5.1. Impact severity: local analysis

I t is w e l l k n o w n t h a t t h e r e is a r e l a t i o n s h i p b e t w e e n t h e n u m b e r o f s l a m s p e r u n i t rime a n d t h e i r s t r e n g t h , r o u g h l y o b e y i n g t o t h e p r i n c i p l e t h a t m o r e slams are o b s e r v e d , m o r e i n t e n s e t h e y are s u p p o s e d t o be. For instance, F e r r o a n d M a n s o u r ( 1 9 8 5 ) s t a t e d t h a t

/<f"" = 2;.c24^

1 +

vi

(10) w h e r e iJ.f'^'"^ is t h e m e a n v a l u e o f t h e s l a m m i n g e x c i t a t i o n , c is t h e c o n s t a n t r e l a t i n g t h e square o f the i m p a c t v e l o c i t y t o t h e pressure.^ I f t h e s q u a r e o f t h e e n t r y v e l o c i t y is a s s u m e d as t h e r e f e r e n c e s l a m m i n g e x c i t a t i o n , t h u s s e t t i n g Xi = Wf i n Eq. ( 5 ) a n d c = l i n Eq. ( 1 0 ) , i t s m e a n v a l u e c a n be e x p e r i m e n t a l l y e v a l u a t e d as " ^ 1 = 1

(11)

Pr{k,At]=^-^^e-'^'\ (9) Its e x p e r i m e n t a l c o u n t e r p a r t can be d e f i n e d a n d e v a l u a t e d as e x p l a i n e d as f o l l o w s . The a c q u i s i t i o n t i m e f o r each r u n , Tr, is f i r s t I n T a b l e 4 t h e p r e d i c t e d a n d e x p e r i m e n t a l m e a n s l a m m i n g e x c i t a t i o n are c o m p a r e d t o each o t h e r . I t is a p p a r e n t t h a t ,

(8)

D. Dessi. E. Ciappi / Ocean Engineering 62 (2013) 110-122 117 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 e. 1 r 0.8 0.6 0.4 0.2 0 •D a 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 o • Experimental G T h e o r y (Poisson Distribution) At = 1.1s 1 2 3 4 5 N u m b e r of slams / At

Experimental

- O 0 Theory (Poisson Distribution)

At = 2.2s 1 0 1 2 3 4 5 6 N u m b e r o f s l a m s / A t I I Experimental e T h e o r y (Poisson D i s t r i b u t i o n ) At = 3.3s 1 2 3 4 5 N u m b e r o f s l a m s / A t • Experimental • T h e o r y (Poisson D i s t r i b u t i o n ) At = 4.4s 1 2 3 4 5 N u m b e r o f slams / At I I E x p e r i m e n t a l o T h e o r y (Poisson D i s t r i b u t i o n ) At = 5.5s 0 1 2 3 4 5 6 N u m b e r o f slams / At

Fig. 12. Comparison between theoretical and experimental probability density func-tions relative to the number of slam impacts observed in given time windows (at model scale).

Table 4

Predicted and experimental mean s l a m m i n g excitation (at model scale).

Type of estimation /'z Predicted 0.440 Experimental 1.595 Experimental Poisson 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.1 Impact v e l o c i t y [m/s]

Fig. 13. Comparison between theoretical and experimental p r o b a b i l i t y density functions relative to the impact velocity.

T h i s d i s c r e p a n c y is f u r t h e r e v i d e n t i f t h e p d f o f t h e e n t r y v e l o c i t y is t a k e n i n t o account. A c c o r d i n g t o O c h i , i t is expressed as

2a}, ( 1 2 )

I n Fig. 13 t h e p r e d i c t e d (Eq. ( 1 2 ) ) a n d e x p e r i m e n t a l p d f s are s h o w n . First, w e see t h a t t h e e x p e r i m e n t a l c u r v e s h o w s a p e a k b e y o n d t h e i m p a c t v e l o c i t y t h r e s h o l d , w h e r e a s t h e t h e o r e t i c a l c u r v e decreases m o n o t o n i c a l l y . IVIoreover, e x p e r i m e n t s s h o w t h a t i m p a c t s are l i k e l y to o c c u r also a t h i g h v e l o c i t i e s at w h i c h O c h i t h e o r y p r e d i c t s less o r even n e g l i g i b l e s l a m m i n g events.

As a f i n a l r e m a r k o n t h e discrepancies b e t w e e n p r e d i c t i o n s a n d e x p e r i m e n t s , i t is w o r t h w h i l e t o stress t h a t t h e c o m b i n a t i o n o f h i g h e r s l a m m i n g rates w i t h l a r g e r i m p a c t p r e s s u r e s is r e s p o n sible f o r r e l e v a n t local effects t h a t , u n f o r t u n a t e l y , are u n d e r -e s t i m a t -e d by Ochi t h -e o r y a n d succ-essiv-e i m p r o v -e m -e n t s . To h i g h l i g h t t h i s aspect, i t is necessary t o evaluate h o w t h e i n t e n s i t y o f these s l a m m i n g events, p r o p o r t i o n a l t o W f , is d i s t r i b u t e d i n t i m e . For t h i s p u r p o s e , a s e v e r i t y i n d e x I , d e f i n e d as t h e t i m e average o f t h e s l a m m i n g e x c i t a t i o n , is i n t r o d u c e d , i.e., 1 ( 1 3 ) t h a t , r e c a l l i n g T = Ns//., leads t o a s t r o n g e r d e p e n d e n c e o n t h e m e a n s l a m m i n g r a t e / as s h o w n also b y t h e Ferro a n d M a n s o u r f o r m u l a

Vi

(14) ( 1 5 ) a s s u m i n g t h e e n t r y v e l o c i t y as a n i n d i c a t o r o f t h e e x t e n t o f t h e s l a m m i n g e x c i t a t i o n , t h e e x p e r i m e n t a l v a l u e o f t h e e x c i t a t i o n level is a b o u t f o u r t i m e s t h e p r e d i c t e d one. T h e u n d e r e s t i m a t i o n o f /. (Table 3 ) a n d o f t h e m e a n s l a m m i n g e x c i t a t i o n (Table 4 ) s t r o n g l y a f f e c t s t h e f i n a l v a l u e o f t h e p r e d i c t e d s e v e r i t y i n d e x I a c c o r d i n g t o Ochi t h e o r y .

(9)

D. Dessi, E. Ciappi / Ocean Engineering 62 (2013) 110-122

l i s

5.2. Impact severity: global effects

I t has b e e n s h o w n u p t o t h i s p o i n t t h a t t h e analysis o f s l a m m i n g p h e n o m e n a c h a r a c t e r i z e d b y a r e l e v a n t presence o f i m p a c t c l u s t e r s requires a d i f f e r e n t t h e o r e t i c a l f r a m e w o r k t o d e t e r m i n e t h e i m p a c t statistics a n d , c o n s e q u e n t l y , t h e e v a l u a t i o n o f l o c a l e f f e c t s . This lack o f a c c u r a c y r e l a t i v e t o t h e m o d e l s based o n O c h i t h e o r y is increased i f g l o b a l e f f e c t s are c o n s i d e r e d . I n t h e p a p e r o f Ferro a n d M a n s o u r ( 1 9 8 5 ) , t h e presence o f a t r a n s i e n t response d u e t o s l a m m i n g , i.e., w h i p p i n g , is t a k e n i n t o a c c o u n t b y d e c o m p o s i n g t h e t o t a l s e c t i o n a l l o a d R{t) as t h e s u m o f t w o s t a t i o n a r y stochastic processes. T h u s , a s s u m i n g R(t) = M y ( t ) , t h e v e r t i c a l b e n d i n g m o m e n t M y ( t ) is expressed as My(t) = M f \ t ) + M f \ t ) , ( 1 6 ) w h e r e M'-y''\t) is t h e s u m o f t h e l o w - f r e q u e n c y c o n t r i b u t i o n (LF), d i r e c t l y r e l a t e d v i a t h e D u h a m e l ' s i n t e g r a l t o t h e local w a v e e l e v a t i o n f i ( f ) , and Mf"'\ t h e h i g h - f r e q u e n c y ( H F ) c o n t r i b u t i o n , g i v e n as M f ' \ t ) = r h^'^\t-x)Z(x)dx, ( 1 7 ) w h e r e / i " ^ ' ( t ) is t h e i m p u l s e response f u n c t i o n f o r t h e chosen HF

l o a d . Since Z ( t ) is n o t a z e r o - m e a n process, N l f X t ) has a n o n - z e r o m e a n , g i v e n b y ( c f r . Ferro a n d M a n s o u r , 1 9 8 5 ) ^ ( M = f e H ' ^ ' ( 0 ) , ( 1 8 ) w h e r e H"^\CO) is t h e F o u r i e r t r a n s f o r m o f t h e i m p u l s e response f u n c t i o n . A c c o r d i n g t o Eq. ( 1 8 ) , t h e e v a l u a t i o n o f t h e average o f t h e g l o b a l response IA,^ w i l l s i g n i f i c a n t l y s u f f e r o f t h e a p p r o x i m a t i o n i n t r o d u c e d i n t h e p r e d i c t i o n o f fi^. H o w e v e r , i n t h e p r e s e n t case, i t is w o r t h n o t i n g also t h a t w i t h i n a c l u s t e r t h e t r a n s i e n t o s c i l l a t i o n s m i g h t have n o t been e x t i n g u i s h e d b e f o r e t h e n e x t i m p a c t , m a k i n g t h e p r e d i c t i o n w o r s e . For t h i s reason, t h e c o r r e l a t i o n b e t w e e n t h e i m p a c t k i n e m a t i c s . a n d t h e i n d u c e d response needs t o be i n v e s t i g a t e d i n m o r e d e t a i l b e f o r e t h e averaged q u a n t i t i e s are c o n s i d e r e d . I n p a r t i c u l a r , t h e f i r s t peak o f M'"''\t), o c c u r r i n g i m m e d i a t e l y a f t e r t h e s l a m m i n g e v e n t , can be a s s u m e d t o be r e p r e s e n t a t i v e o f t h e i n t e n s i t y o f t h e s l a m m i n g i n d u c e d response a n d w i l l be c o r r e l a t e d t o t h e i m p a c t v e l o c i t y Wi. The peak o f t h e w h i p p i n g b e n d i n g m o m e n t is f o r m a l l y d e f i n e d as M i = max[M<"'''(t)] w i t h t - t , - = m i n > 0, ( 1 9 ) w h e r e Mf"'\t) is o b t a i n e d t h r o u g h t h e analysis o f e x p e r i m e n t a l d a t a a n d T,- r e p r e s e n t s t h e c o r r e s p o n d i n g i m p a c t t i m e . I n o r d e r t o extract, f r o m t h e b e n d i n g m o m e n t t i m e h i s t o r y M y ( t ) , its HF p a r t M f ' ^ t ) , t h e c o n t i n u o u s w a v e l e t t r a n s f o r m ( C W T ) has b e e n used. The C o n t i n u o u s W a v e l e t T r a n s f o r m T*"'™' o f a generic s i g n a l s ( t ) is d e f i n e d as

p^^"%(tmo = - J = s(t)^ ( ^ ^ ) dt, (20)

w h e r e t h e f u n c t i o n i/'(t) is t e r m e d t h e m o t h e r w a v e l e t . T h e p a r a m e t e r s a a n d c are d e n o t e d as t h e s c a l i n g a n d t h e s h i f t p a r a m e t e r , r e s p e c t i v e l y . The s c a l i n g p a r a m e t e r plays t h e r o l e o f s e t t i n g t h e t i m e scale o r t h e f r e q u e n c y a t w h i c h t h e s i g n a l is a n a l y z e d . A t y p i c a l choice f o r t h e ' m o t h e r w a v e l e t ' is t h e so-called M o r l e t W a v e l e t , w h o s e e x p r e s s i o n is il/{t) = e-'''^é"">'. ( 2 1 ) w i t h coo = 2n. The w a v e l e t t r a n s f o r m o f t h e o v e r a l l V B M a m i d s h i p (s(t) = M y ( t ) i n t h e p r e s e n t case) is s h o w n as a c o n t o u r p l o t i n Fig. 14, w h e r e t h e d i f f e r e n t c o n t o u r s are t h e C W T levels at m o d e l scale f o r t h e t e s t r u n r = 2 . F r o m t h e analysis o f Fig. 14, i t appears

^2 r

t 1 C W T

10 15 20 26 30 35 40 Time [s]

Fig. 14. Continuous wavelet transform of the vertical bending m o m e n t a m i d s h i p (model scale data).

Time [s]

Fig. 15. Slice o f the continuous wavelet transform at ƒ = 6,8 Hz: envelope o f the HF-VBM. t h a t t h e w h i p p i n g C W T peaks lie a t a f r e q u e n c y o f a b o u t 6.6 Hz, s l i g h t l y s m a l l e r t h a n t h e f i r s t v e r t i c a l b e n d i n g m o d e f r e q u e n c y , t h a t w a s e v a l u a t e d t o be a b o u t 7.3 Hz i n c a l m w a t e r w i t h n o -f o r w a r d speed ( C o p p o t e l l i e t al., 2 0 0 8 ) . I t is w o r t h n o t i n g t h a t , since m o r e t h a n 97% o f t h e e n e r g y is u s u a l l y c o n t a i n e d i n t h e f i r s t b e n d i n g m o d e f o r t h i s s h i p ( c f r . M a r i a n i a n d Dessi, 2 0 1 2 ) , i t is r e a s o n a b l e t o d e n o t e t h e c o r r e s p o n d i n g f r e q u e n c y as t h e w h i p -p i n g f r e q u e n c y . T h e r e f o r e , t h e slice o f t h e C W T a t t h e res-ponse peak f r e q u e n c y w a s a s s u m e d t o be r e p r e s e n t a t i v e o f t h e h i g h -f r e q u e n c y V B M response a m p l i t u d e ( H F - V B M -f o r s h o r t i n t h e f o l l o w i n g ) a t m i d s h i p . This c u r v e is p l o t t e d i n Fig. 15 f o r t h e t o w i n g - t a n k r u n r = 2 .

Several H F V B M response peaks M, a p p e a r c l e a r l y d i s t i n g u i s h -able i n Fig. 15 a n d t h e i r c o r r e l a t i o n w i t h the associated s l a m m i n g e v e n t is s h o w n i n Fig. 16, w h e r e t h e H F - V B M ( t h i c k s o l i d l i n e ) is p l o t t e d t o g e t h e r w i t h t h e r e l a t i v e m o t i o n ( t h i c k d a s h e d l i n e ) a n d t h e r e l a t i v e v e l o c i t y at t h e p o s i t i o n W P l ( t h i n s o l i d l i n e ) .

F r o m t h e b o t t o m s l a m m i n g analysis, several e v e n t s are i d e n -t i f i e d a n d a d e l -t a s y m b o l is c h o s e n -t o i n d i c a -t e -t h e e n -t r y -t i m e i n s t a n t T,-. I n t h e same f i g u r e , t h e v e r t i c a l a r r o w s d e n o t e , at these t i m e i n s t a n t s , t h e e n t r y v e l o c i t y e q u a l t o Wj = W r ( T , ) . I t is e v i d e n t t h a t t h e H F - V B M peaks are l i k e l y t o o c c u r a f t e r t h e s l a m m i n g events a n d , f r o m t h e analysis o f t h i s flgure, t h e i r v a l u e s M , a p p e a r to be d e p e n d e n t o n t h e W,. H o w e v e r , t h e r e are also s o m e w a t e r -e x i t -ev-ents (s-e-e f o r instanc-e b -e t w -e -e n 23 s a n d 25 s) w h i c h d o n o t cause a n y a p p r e c i a b l e w h i p p i n g a t a l l o r s o m e s l a m m i n g e v e n t s ( l o o k a r o u n d 26.5 s) w i t h s u b s e q u e n t r e l a t i v e l y s m a l l w h i p p i n g . Also i t m a y h a p p e n t h a t a s i g n i f l c a n t H F - V B M p e a k is n o t r e l a t e d t o a n y w a t e r - e x i t event. F o c u s i n g o n t h e flrst i m p a c t i n t h e s l a m m i n g sequence o r o n i s o l a t e d i m p a c t s , i t appears t h a t t h e

Cytaty

Powiązane dokumenty

Struktura inwentarza krzemiennego pozyskanego w trak­ cie obecnego sezonu badań w pełni potw ierdza spostrze­ żenia z roku ubiegłego (por. 11 ) i wskazuj e na wyraźnie

Given the specification module, the evalua- tion module will evaluate each plan following two parallel steps: (1) the compliance evaluation is to verify the plan against the

This research will focus on the design of the skin of the dwelling as the filter between the inside and the outside and as the face to the public.. This text should clarify the

Autorka wywodzi jednak, że istotne ograniczenie skali degradacji środowiska spo- wodowanej ruchami uchodźców winno być dokonywane przede wszystkim poprzez większą centralizację

Nieruchomym aparatem cyfrowym wykonaj trzy fotografie nie- ba: w okolicach bieguna niebieskiego, zenitu i równika niebieskiego, w celu wyznaczenia zasi ę gu tego

[...] Urząd starosty jest urzędem natury politycznej [...] jest on odpowiedzialny nie tylko za sprawy funkcjonowania powiatowego aparatu administracyjnego, ale także za nasta­

Na jednej ze stałych wystaw tego muzeum, ekspozycji poświęconej dawnym właści- cielom kamienicy, w której się ono znajduje – rodzinie Riabininów, można obejrzeć

Przybyło też kilkanaście osób pochodzenia azjatyckiego (np. z Korei, Indii,