• Nie Znaleziono Wyników

IN MULTICOMPONENT FUNCTIONALLY GRADED MULTILAYERED COMPOSITES

N/A
N/A
Protected

Academic year: 2021

Share "IN MULTICOMPONENT FUNCTIONALLY GRADED MULTILAYERED COMPOSITES "

Copied!
13
0
0

Pełen tekst

(1)

Acta Sci. Pol. Architectura 15 (1) 2016, 27–39

DISTRIBUTION OF TEMPERATURE

IN MULTICOMPONENT FUNCTIONALLY GRADED MULTILAYERED COMPOSITES

Monika Wągrowska, Olga Szlachetka

Warsaw University of Life Sciences – SGGW

Abstract.

The object of analysis is a heat conduction problem within the frames of toler- ance modelling in multicomponent, multilayered composites with functional gradation of effective material properties. The equations of proposed model for considered composites are partial differential equations with slowly-varying coef¿ cients. The one-dimensional, stationary problem of heat conduction in direction perpendicular to layers will be ana- lysed.

Kay words:

heat conduction, tolerance modelling, functional gradation

INTRODUCTION

The object of the investigation is a heat conduction problem in a multicomponent, multilayered structure with functional gradation of effective material properties. The problem of heat conduction in multilayered two-component periodic composite and com- posite with functional gradation of effective material properties (FGM) is well known in the literature. We can mention here some papers in which was used a concept of asymp- totic methods, nonstandard analysis, tolerance modelling and G-convergence: Bensous- san et al. [1978], Sanchez-Palencia [1980], Bakhvalov and Panasenko [1984], WoĨniak [1987a, b], Wągrowska [1988], Briane [1990], Matysiak [1991], Jikov et al. [1994], Su- resh and Mortensen [1998], Nagórko and ZieliĔski [1999], LewiĔski and Telega [2000], WoĨniak and Wierzbicki [2000], Wierzbicki and Siedlecka [2004], Nagórko and Piwo- warski [2006], àaciĔski and WoĨniak [2006], Michalak and WoĨniak [2006], Michalak et al. [2007], Michalak and Ostrowski [2007], WoĨniak and Nagórko [2007], Ostrowski [2009a, b], JĊdrysiak and Radzikowska [2007, 2011, 2012],WoĨniak et al. (ed.) [2008,

Corresponding author: Olga Szlachetka, Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Department of Civil Engineering, 159 Nowoursynowska St., 159, 02-776 Warsaw, e-mail: olga_szlachetka@sggw.pl

© Copyright by Wydawnictwo SGGW, Warszawa 2016

(2)

2010], JĊdrysiak [2010], Szlachetka and Wągrowska [2010, 2011], Michalak [2011], Nagórko and WoĨniak [2011], Ostrowski and Michalak [2011, 2015, 2016], Szlachetka [2012], Szlachetka et al. [2012], WoĨniak et al. [2012, 2015].

The heat conduction in multicomponent periodic composites based on the tolerance modelling procedure was presented by WoĨniak [2012, 2013] and applied for example by Wągrowska and WoĨniak [2014], by Szlachetka and Wągrowska [2014a, b, 2015]

and Wągrowska and Szlachetka [2016]. The process of modelling of heat conduction problems for composites with functional gradation of effective material properties will be discussed within the frames of the tolerance modelling. Example will be narrowed down to the one-dimensional, stationary problem.

OBJECT OF ANALYSIS

The object of analysis is a rigid heat conductor which occupies a region

1

2

3

ȍ{ 0,L uȄ Ȅ, { 0,L u 0,L

, in the physical space parameterized by an ortho- gonal Cartesian coordinate system Ox

1x2x3

. It is assumed that conductor is multilayered in the Ox

1

direction. The composite is made of N thin layers with constant thickness Ȝ, where Ȝ = L

1

/N. It has to be emphasized that Ȝ has to be much smaller than the characteri- stic dimension of the composite L, where L = max (L

1

; L

2

; L

3

). Every layer (with constant thickness Ȝ) of the composite is assumed to be made of M different orthotropic, homoge- neous components with known mass densities, speci¿ c heats and thermal conductivities.

These components are sublayers of the layer and number of them is P, P • M.

Let us introduce a midplane of the n-th, n = 1, ..., N, layer which is de¿ ned as

1 1 1 ,

2

n Ȝ

x x {  n Ȝ

n = 1, ..., N in Ox

1x2x3

space.

Moreover let us de¿ ne continuous functions ij

p

(·), p = 1, ..., P, such that ij

1

(x

1

) +... + + ij

p

(x

1

) = 1 for every x

1

 L

1

. The thickness of the p-th (p = 1, ..., P) sublayer in the

n-th, n = 1, ..., N layer is equal to Ȝnp

M

p

x1n Ȝ

. The value of this function on midplane assigned to the layer will be interpreted as the fraction of the -th sublayer in this layer. The scheme of the one of the layer is presented in Figure 1.

O

OP

OP-1

O1n On2 n n

x x

x -12

O

x+12

O

n

1 n

n 1 1 1

Fig. 1. The scheme of one of the layer in multicomponent multilayered composite with functio- nal gradation of effective material properties

(3)

The heat conduction problem in the discussed composite will be described by the Fourier law and the heat balance equation in the forms:

,

,

Į Įȕ

q x t k x wȕș x t

(1)

t , Į

Įȕ

ȕ

,

0

c x wș x t  w k x w ș x t

(2)

where:

x{

x x x1, 2, 3

ȍ;

ș(·,·) – temperature in the region of Ÿ for every

t

>

0 t,*

,

kĮȕ ˜

– components of the thermal conductivity tensor (for orthotropic materials k

Įȕ

(x) for Į  ȕ and k

ĮĮ

(x) Ł k

Į

(x)), c(·) – speci¿ c heat, subscripts and superscripts Į and ȕ are equal to 1, 2 and 3 (summation convention holds),

Į

xĮ, , ȕ

xȕ t t

w w w

w ˜ { w ˜ { w {

w w w

.

The equation (2) which holds for all points of region Ÿ and

 t

0,t

, is a partial differential equation with discontinuous and highly oscillating coef¿ cients k

Įȕ

(·), c(·) which depend only on the x

1

coordinate. The solution of the heat conduction problem for multicomponent, multilayered composites will be considered within the frames of the tolerance modelling method, WoĨniak [2012, 2013]. The most important feature in the process of tolerance modelling is fact that the discontinuous coef¿ cients in equation (2) can be replaced by the slowly-varying coef¿ cients.

MODELLING CONCEPTS

The process of tolerance modelling for composites with functional gradation of effec- tive material properties is based on some basic concepts i.e. slowly-varying function, to- lerance averaging approximation, local layer, local oscillating micro-shape function and global micro-shape function.

Slowly varying functions [WoĨniak et al. (ed.) 2008, 2010]. Two classes of slowly varying functions will be used in the process of tolerance modelling: weakly slowly vary- ing function (WSV) and slowly varying function (SV) [WoĨniak et al. (ed.) 2010].

Let us de¿ neas an arbitrary convex set in the space R

m

, and let

f C1

Ȇ

be an arbi- trary real-valued function. Moreover let us de¿ ne the tolerance parameter d Ł (Ȝ, į

0

, į

1

) as a triplet of real positive numbers and use the notation

j , 1, ..., .

j

j m

x w { w

w

Function

fC1

Ȇ

is weakly slowly varying function

(fWSV Ȇd1

C1

Ȇ )

if the condition

x y dȜ

implies the conditions

f

x f y dį0

and

1

jf jf į

w x  w y d

for j = 1, ..., m and for each

x, y Ȇ2

.

Function

fWSV Ȇ1d

is slowly varying function

(f SV Ȇ )d1

if conditions

0

Ȝwjf x dį

hold for j = 1, ..., m and for every

xȆ

.

Obviously,

WSV Ȇd1

ŠSV Ȇd1

.

(4)

Tolerance averaging approximation. Let us de¿ ne

ǻ , 2 2

§ Ȝ Ȝ· { ¨ ¸

© ¹

and local interval

ǻ ,

2 2

Ȝ Ȝ

x §x x ·

{¨©   ¸¹

for every

,

2 2

Ȝ Ȝ

x«¬ª L º»¼

. Let

fxL2

0,L

then:

ǻ

1

x x

f x f z dz

{ Ȝ ³

(5)

Let

fxL2

ǻ

x

and

FWSV1d

0,L

. The tolerance averaging approximation of the product of functions f

x

(·) F(·) and functions

fx

˜ w1F

˜

at point x will be de¿ ned as [WoĨniak et al. (ed.) 2010]:

1 1

T

T

fF f F

f F f F

{

w { w

x x x

x x x

(6)

Local layer. The local layer LL(x

1

) with the midplane x

1

= const is a Cartesian product of local interval

ǻloc

1 1 , 1

2 2

Ȝ Ȝ

x §x x ·

{¨©   ¸¹

for every

1 ,

2 2

Ȝ Ȝ

x ª«¬ L º»¼

and region

Ȅ

on

Ox2x3

plane

{

0,L2

u

0,L3

)

: LL(x

1

) Ł ¨

loc

(x

1

)×Ȅ. Let us introduce a local coordi- nate y, y '

loc

(x

1

), for each local layer. The local coordinate is perpendicular to the lay- ers. The fragment of cross-section through a local layer is presented in Figure 2.

Local oscillating micro-shape function [WoĨniak 2012]. The local oscillating mi- cro-shape shape function Ȗ

x1

(·) referred to the local interval

ǻloc

1 1 , 1

2 2

Ȝ Ȝ

x §x x ·

{¨©   ¸¹

O

O

P x

O

P-1 x

O

1 x

O

2 x

x y

x -

12

O

1

x

1+12

O

1

1 1

1 1

Fig. 2. The cross-section through a local layer

(5)

for arbitrary but ¿ xed

1 ,

2 2

Ȝ Ȝ

x ª«¬ L º»¼

is function which depends only on y coordinate.

This function is piecewise linear and takes the following values on the interfaces between sublayers:

1

1 1

0 1

1 1

1 , 1, 2, ...,

p

x x

p p

p

K x

Ȗ Ȗ Ȝ x p P

K x



§ ·

¨ ¸



M

¨©  ¸¹

(7)

where:

0

1

1

1 1 11 1

1 1

... P ; m m m.

P

x x

K x K k k

K K

§ ·

{¨¨©  ¸¸¹ {

M M

Moreover the local oscillating micro-shape function satis¿ es the condition

1 1 0

ȡȖx x

.

Global micro-shape function [WoĨniak 2012]. Global micro-shape function Ȗ(·) which is de¿ ned for all points x

1

,

x1

 [0, L] satis¿ es the following conditions:

0 1

1 1

1

1 , 1, 2, ..., , 1, 2, ...,

is piecewise linear between interfaces 0

n

n n n

p p p n

p

K x

Ȗ Ȗ Ȝ x p P n N

K x Ȗ

ȡȖ



§ ·

¨ ¸

 ¨¨  ¸¸

© ¹

˜

M

(8)

where:

Ȗnp

, p = 1, 2, ..., P, are values of function Ȗ(·) on the interfaces between sublayers in the n-th layer, and

1

1

1 1

0 11 1

1 1

... ; .

n n

n P

m m m

P

x x

K x K k k

K K

§ ·

¨ ¸

{¨¨©  ¸¸¹ {

M M

MODELLING PROCEDURE AND MODELLING EQUATIONS

Let temperature assigned to the local layer LL(x

1

) with the midplane x

1

= const for all values of x

1

 [0, L] and time t (0, t

*

) be denoted as ș

x1

(y, x

2

, x

3

, t), where y ¨

loc

(x

1

), (x

2

, x

3

)  Ȅ, x

1

 , L), t (0, t

*

). The process of tolerance modelling is based on two assumptions.

The ¿ rst assumption called micro-macro decomposition. The temperature ¿ eld

șx1

(y, x

2

, x

3

, t) can be approximated by the ¿ eld

șx1

y x x t1, 2, 3,

[WoĨniak et al. (ed.) 2010]:

1

1 , 2, 3, , 2, 3, x , 2, 3,

șx y x x t - y x x t Ȗ y ȥ y x x t

(9)

(6)

where:

- ˜

,x x t2, 3,

and

ȥ

˜,x x t2, 3,

, called macro-temperature and amplitude À uctua- tion of temperature which are arbitrary weakly slowly varying functions of argument x

1

for all

x x2, 3

Ȅ

and

t

0,t*

.

Before introducing the second assumption de¿ ne the residual ¿ eld of

șx1

˜

in the region Ÿ for t [0, t

*

] [WoĨniak et al. 2015]:

1

2 2

3 2

1 1 1 1 1 1 2 1 1 3 1 1 1

x x x x x x x x t x

r ˜ { w k wș ˜ k w ș ˜ k w ș ˜  wc ș ˜

(10) The second assumption. The second assumption is:

1 1

0 0

x T x T

r

Ȗ r

(11)

where

˜T

is de¿ ned by equations (6).

After implementation both assumptions the system of equations for unknown func- tions -

˜ , ȥ ˜ (

-

˜,x x2, 3

,ȥ ˜,x x2, 3

WSVd1

0,L1

takes the form:

1 2 2

1 1 1 1 2

3 3 1

1 3 1 1 1 1

2 2 2

1 2 2 3 2

1 1 1 1 2 1 3

2 2

1 1

1 1 1 1 1 1

, ,

, , , 0

, , ,

, , , 0

t

t

k x t k x t

k x t c x t k Ȗ x ȥ t

k Ȗ x ȥ t k Ȗ x ȥ t k Ȗ x ȥ t

k Ȗ x ȥ t k Ȗ x t c Ȗ x ȥ t

w w  w 

 w  w  w w

w w  w  w 

 w  w w  w

- -

- -

-

x x

x x x

x x x

x x x

Equations (12) with the decomposition of approximative temperature ¿ led

șx1

˜

as:

, , 1 ,

ș x t

-

x t Ȗ x ȥ x t

(13)

and boundary and initial conditions are general model equations of heat conduction for orthotropic multicomponent multilayered functionally graded composites.

It has to be emphasized that the coef¿ cients in system of equations (12) are slowly varying functions of the argument

x1

0,L

.

If -

˜,x x t2, 3,

SVd1

0,L



x x t2, 3,

 uȄ

0,t*

and

ȥ

˜ SVd1

ȍ,t*

equations (12) take the form:

(12)

(7)

1 2 2 3 3

1 1 1 1 2 1 3

1 1 1 1 1

1 2 1

1 1 1 1 1

, , ,

, , 0

, , 0

t

k x t k x t k x t

c x t k Ȗ x ȥ t

k Ȗ x ȥ t k Ȗ x t

w w  w  w 

 w  w w

w  w w

- - -

-

-

x x x

x x

x x

(14)

which with decomposition (13) and boundary and initial conditions are the local homo- genization model (LHM).

Furthermore if the considerations are limited only for stationary and one-dimensional problems equations (14) take the form:

1 1

1 1

1 1 1 1

2

1 1

1 1

1 1 1

0 0

d k x d d k d Ȗ x ȥ

dx dx dx dx

d d d

k Ȗ x ȥ k Ȗ x

dx dx dx

§ ·

§ ·

 ¨ ¸

¨ ¸ ¨ ¸

© ¹ © ¹

§ ·



¨ ¸

© ¹

-

-

x x

x x

(15)

From equation (15

2

) it follows that:

1 1

1 2 1

1 1

1

k d Ȗ x ȥ dx

k d Ȗ x

dx

 w

§ ·

¨ ¸

© ¹

-

x x

(16)

Substituting equation (16) to (15

1

) equation for

- ˜

takes the form:

0

1

1

1 1

d K x d x 0

dx dx

§ ·

¨ ¸

©

-

¹

(17)

where:

2

1 1 1

1 1 1 1

0 1 1 1 2

1 1

1 1

... P

P

k d Ȗ x

dx x x

K x k x

k k

k d Ȗ x

dx



§ ·

¨ ¸

¨ ¸ § ·

© ¹

{  {¨¨   ¸¸

© ¹

§ ·

¨ ¸

© ¹

M M

(18)

(8)

Equation (17) with denotation (16) and (18) and decomposition of the approximate temperature (13) and boundary conditions are the base equations for one dimensional and stationary problems.

EXAMPLE

The distribution of approximate temperature ¿ eld

ș

˜

for special multicomponent multilayered functionally graded composite is presented in this section.

Let us assume that the composite, which occupies the region Ÿ { (0, L) × R

2

where

L = 20 cm, is composed of N = 20 layers with constant thicknesses Ȝ = 1 cm. Each layer

consists of three sublayers made of three different isotropic materials. The material frac- tions in sublayers are depend on functions ij

1

(·), ij

2

(·) and ij

3

(·). To this end x {x

1

. The above functions take the form:

1 0.2, 0.2, 2

x L 0.8x 3

x 1 L 0.8x.

L L

   

M M M

It can be observed that the thickness of ¿ rst sublayer is constant in every layer and is equal to Ȝ

1

= 0.2 m. The thicknesses of the second and the third sublayer in several layers are not constant. It is important to notice that every two adjacent layers can be treated as indistinguishable.

The coef¿ cients of thermal conductivity related to the corresponding sublayers are equal to K

1

= 1.7 W·(m·K)

–1

, K

2

= 0.042 W·(m·K)

–1

, K

3

= 20 W·(m·K)

–1

.

The boundary conditions on the macro-temperature are: -

0

-

0 0 C$

,

20 L 20 C$

- - . The distribution of the temperature ¿ eld - determined from equ-

˜

ation (17) is shown in Figure 3.

It can be observed that the distribution of macro-temperature - is not linear func-

˜

tion as is in periodic multicomponent multilayered composites [Wągrowska and Szla- chetka 2016].

0 5 10 15 20

0 5 10 15 20

xcm

C

Fig. 3. Distributions of the macro-temperature ¿ elds

-

˜ for x (0, 20)

(9)

The distribution of the temperature ¿ elds

ș

˜

for x (0, 20), x (2, 3), x (5, 6),

x (15, 16) are shown in Figures 4, 5, 6 and 7.

0 5 10 15 20

0 5 10 15 20

xcm

Θ C

Fig. 4. Distribution of the approximated temperature ¿ eld ș

˜ for x

0, 20

2.0 2.2 2.4 2.6 2.8 3.0

3.5 4.0 4.5 5.0 5.5

xcm

Θ C

Fig. 5. Distribution of the approximated temperature ¿ eld ș

˜ in the third layer

(10)

CONCLUSIONS

The process of heat conduction for multicomponent multilayered composites with functional gradation of effective material properties can be described by equations with smooth and slowly varying coef¿ cients. The local homogenization model equations (LHM) for one-dimension stationary problems are reduced to equation for macro-tempe- rature - and À uctuation amplitude

˜ ȥ

˜

which have the same form like an asymptotic model equation.

5.0 5.2 5.4 5.6 5.8 6.0

8.0 8.5 9.0 9.5 10.0

xcm

Θ C

Fig. 6. Distribution of the approximated temperature ¿ eld ș

˜ in the sixth layer

15.0 15.2 15.4 15.6 15.8 16.0 17.6

17.8 18.0 18.2 18.4

xcm

Θ C

Fig. 7. Distribution of the approximated temperature ¿ eld ș

˜ in the sixteenth layer

(11)

REFERENCES

Bakhvalov, N.S., Panasenko, G.P. (1984). Homogenization: Averaging processes in periodic me- dia. Nauka, Moscow [in Russian]; (1989) Kluwer, Dordrecht – Boston – London [in English].

Bensoussan, A., Lions, J.L., Papanicolaou, G. (1978). Asymptotic analysis for periodic structures.

North-Holland, Amsterdam.

Briane, M. (1990). Homogeneisation de materiaux ¿ bres et multi-couches (PHD thesis). Universite Paris 6, Pierre et Marie Curie, France.

JĊdrysiak, J. (2010). Termomechanika laminatów, páyt i powáok o funkcyjnej gradacji wáasnoĞci.

Wydawnictwo Pà, àódĨ.

JĊdrysiak, J., Radzikowska, A. (2007). On the modelling of heat conduction in a nono-periodically laminated layer. J. Theor. Appl. Mech., 45 (2), 239–257.

JĊdrysiak, J., Radzikowska, A. (2011). Some problems of heat conduction for transversally gra- ded laminates with non-uniform distribution of laminas. Arch. Civ. Mech. Eng., 11 (1), 75–87.

JĊdrysiak, J., Radzikowska, A. (2012). Tolerance averaging of heat conduction in transversally graded laminates. Meccanica (AIMETA), 47 (1), 95–107.

Jikov, V.V., Kozlov, C.M., Oleinik, O.A. (1994). Homogenization of differential operators and in- tegral functionals. Springer Verlag, Berlin – Heidelberg.

LewiĔski, T., Telega, J. (2000). Plates, laminates and shells. World Scienti¿ c Publishing Company, Singapore.

àaciĔski, à., WoĨniak, Cz. (2006). Boundary-layer phenomena in the laminated rigid heat conduc- tion. J. Thermal Stresses, 29, 665–682.

Matysiak, S.J. (1991). On certain problems of heat conduction in periodic composites. J. Appl.

Math. Mech. (ZAMM) 71, 524–528. doi: 10.1002/zamm.19910711218).

Michalak, B. (2011). Teromechanika ciaá z pewną niejednorodną mikrostrukturą. Technika toleran- cyjnej aproksymacji. Wydawnictwo Pà, àódĨ.

Michalak, B., Ostrowski, P. (2007). Modelling and analysis of the heat conduction in a certain functionally graded material. In: Mechanics of Solids and Structures. Ed. V. Pauk. Kielce Technical University Press, Kielce, 23–35.

Michalak, B., WoĨniak, M. (2006). On the heat conduction in certain functionally graded compo- sites. In: Selected Topics in the Mechanics of Inhomogeneous Media. Ed. Cz. WoĨniak, R. ĝwitka, M. Kuczma. University of Zielona Góra Press, Zielona Góra, 229–238.

Michalak, B., WoĨniak, Cz., WoĨniak, M. (2007). Modelling and analysis of certain functionally graded heat conductor. Arch. Appl. Mech., 77, 823–834.

Nagórko, W., Piwowarski, M. (2006). On the heat conduction in periodically nonhomogeneous solids. In: Selected Topics in the Mechanics of Inhomogeneous Media. Ed. Cz. WoĨniak, R. ĝwitka, M. Kuczma. University of Zielona Góra Press, Zielona Góra, 241–254.

Nagórko, W., WoĨniak, Cz. (2011). Mathematical modelling of heat conduction in certain functio- nally graded composites. PAMM 11, 253–254.

Nagórko, W., ZieliĔski, J. (1999). On heat conduction modelling in plates formed by periodically nonhomogeneous layers. Visnyk Livi Univ. Ser. Mech.-Math., 55, 100–105.

Ostrowski, P. (2009a). On the heat transfer in a two-phase hollow cylinder with piecewise continu- ous boundary conditions. PAMM, 9, 259–260.

Ostrowski, P. (2009b). Zagadnienie przewodnictwa ciepáa w laminatach z funkcyjną gradacją wáa- snoĞci. PhD Thesis. Wydz. BAiIS Pà, àódĨ.

Ostrowski, P., Michalak, B. (2011). Non-stationary heat transfer in a hollow cylinder with functio- nally graded material properties. J. Ther. Appl. Mech., 49 (2), 385–397.

Ostrowski, P., Michalak, B. (2015). The combined asymptotic–tolerance model of heat conduction in a skeletal micro-heterogeneous hollow cylinder. Composite Structures, 134, 343–352.

(12)

Ostrowski, P., Michalak, B. (2016). A contribution to the modelling of heat conduction for cylin- drical composite conductors with non-uniform distribution of constituents. International Journal of Heat and Mass Transfer, 92, 435–448.

Sanchez-Palencia, E. (1980). Non-homogeneous media and vibration theory. Lecture Notes in Phy- sics, 127, Springer-Verlag, Berlin.

Suresh, S., Mortensen, A. (1998). Fundamentals of functionally graded materials. The University Press, Cambridge.

Szlachetka, O. (2012). Tolerance and asymptotic modelling for functionally graded heat conduc- tors. In: Badania doĞwiadczalne i teoretyczne w budownictwie. Ed. J. Bzówka. Publ.

House of Silesian Univ. Technol., 205–220.

Szlachetka, O., Wągrowska, M. (2010). Efekt warstwy brzegowej w warstwowej przegrodzie o poprzecznej gradacji wáasnoĞci. Acta Sci. Pol. Architectura, 9 (4), 15–23.

Szlachetka, O., Wągrowska, M. (2011). Efekt brzegowy w warstwowej przegrodzie o podáuĪnej gradacji wáasnoĞci. Acta Sci. Pol. Architectura, 10 (3), 27–34.

Szlachetka, O., Wągrowska, M. (2014a). Przewodnictwo ciepáa w wieloskáadnikowych kompo- zytach warstwowych. Konferencja „Aktualne problemy budownictwa”, 26–27 czerwca 2014, Warszawa.

Szlachetka, O., Wągrowska, M. (2014b). Wpáyw struktury periodycznych wieloskáadnikowych kompozytów warstwowych na rozkáad temperatury. VII Sympozjum „Kompozyty, kon- strukcje warstwowe”, 15–18 paĨdziernika 2014, Wrocáaw.

Szlachetka, O., Wągrowska, M. (2015). Przewodnictwo ciepáa w wieloskáadnikowych kompozy- tach wielowarstwowych. Materiaáy Kompozytowe, 2, 27–29.

Szlachetka, O., Wągrowska, M., WoĨniak, Cz. (2012). A two-step asymptotic modelling of the heat conduction in a functionally graded strati¿ ed layer. Acta Sci. Pol. Architectura, 11 (3), 3–9.

Wągrowska, M. (1988). On the homogenization of elastic-plastic periodic composites by the micro- local parameter approach. Acta Mech., 73, 45–65.

Wągrowska, M., Szlachetka, O. (2016). Distribution of temperature in multicomponent multilay- ered composites. In: Continuous media with microstructure, 2. Ed. B. Albers, M. Kucz- ma. Springer Intern. Publishing, Switzerland, 199–214.

Wągrowska, M., WoĨniak, Cz. (2014). A new 2D-model of the heat conduction in multilayered medium-thickness plates. Acta Sci. Pol. Architectura, 13 (1), 3–44.

Wierzbicki, E., Siedlecka, U. (2004). Isotropic models for a heat transfer in periodic composites.

PAMM, 4 (1), 502–503.

WoĨniak, Cz. (1987a). Homogenized thermoelasticity with microlocal parameters. Bull. Polish.

Acad. Tech., 35, 133–141.

WoĨniak, Cz. (1987b). On the linearized problems of thermoelasticity with microlocal paramiters.

Bull. Pol. Ac. Tech., 35, 143–151.

WoĨniak, Cz. (2010). Asymptotic modelling and boundary-layer effect for functionally graded mi- crolayered composites. Acta Sci. Pol. Architectura, 9 (2), 3–9.

WoĨniak, Cz. (2012). Macroscopic models of the heat conduction in periodically strati¿ ed mul- ticomponent composites (1D- models). 6th Sympozjon „Kompozyty. Konstrukcje war- stwowe”, November 2012, Wrocáaw – Srebrna Góra, 8–10.

WoĨniak, Cz. (2013). Uniaxial elastic strain and heat conduction problems in multicomponent pe- riodic composites. Conference “Mechanika oĞrodków niejednorodnych”, 6–9 June 2013, Zielona Góra – àagów.

WoĨniak, Cz., Nagórko, W. (2007). Modelowanie matematyczne materiaáów z funkcjonalną gra- dacją wáasnoĞci efektywnych – wyniki badaĔ i perspektywy rozwoju w Polsce, Acta Sci.

Pol. Architectura, 6 (4), 23–32.

WoĨniak, Cz., Wierzbicki, E. (2000). Averaging techniques in thermomechanics of composite so- lids. Tolerance averaging versus homogenization. Wydawnictwo PCz., CzĊstochowa.

(13)

WoĨniak, Cz., Wągrowska, M., Szlachetka, O. (2012). Asymptotic modelling and design of some microlayered functionally graded heat conductors. Math. Mech., 92 (10), 841–848.

WoĨniak, Cz., Wagrowska, M., Szlachetka, O. (2015). On the tolerance modeling of heat conduction in functionally graded laminated media. J. Appl. Mech. Tech. Phys., 56 (2), 274–281.

WoĨniak, Cz., Michalak, B., JĊdrysiak, J., ed. (2008). Thermomechanics of heterogeneous solids and structures, tolerance averaging approach. Wydawnictwo Pà, àódĨ.

WoĨniak, Cz. i inni, ed. (2010). Mathematical modelling and analysis in continuum mechanics of microstructured media. Wydawnictwo Politechniki ĝląskej, Gliwice.

ROZKàAD TEMPERATURY W WIELOSKàADNIKOWYM

WIELOWARSTWOWYM KOMPOZYCIE O FUNKCYJNEJ GRADACJI WàASNOĝCI EFEKTYWNYCH

Streszczenie. Przedmiotem rozwaĪaĔ jest modelowanie tolerancyjne przewodnictwa ciepáa w wieloskáadnikowych wielowarstwowych kompozytach o funkcyjnej gradacji wáasnoĞci efektywnych. Zaproponowane równania modelu dla analizowanych kompozytów są rów- naniami róĪniczkowymi cząstkowymi z wolnozmiennymi wspóáczynnikami. Wyznaczono rozkáad przybliĪonej temperatury dla jednowymiarowego stacjonarnego zagadnienia prze- wodnictwa ciepáa w kierunku prostopadáym do uwarstwienia.

Sáowa kluczowe: przewodnictwo ciepáa, modelowanie tolerancyjne, kompozyt o funk- cyjnej gradacji wáasnoĞci efektywnych

Accepted for print: 21.03.2016

For citation: Wągrowska, M., Szlachetka, O. (2016). Distribution of temperature in multicompo- nent functionally graded multilayered composites. Acta Sci. Pol. Architectura, 15 (1), 27–39.

Cytaty

Powiązane dokumenty

In the paper the solutions for stationary heat conduction in a two dimensional com- posite with functionally graded heat proper-. ties

The basic concept for modelling of heat conduction in mul- ticomponent composites was presented by Woźniak (2012, 2013) and applied for periodic structures by Wągrowska and

In the paper an alternative form of the tolerance averaged model of heat conduction in the composite conductors with microperiodic palisade-type materi- al structure with

The solution of the problem of heat conduction in a solid sphere can be obtained by respectively changing of the boundary conditions at the inner surface of the sphere

The presence of a limited amount of the liquid phase during the sintering results in significant im- provement in physical and mechanical properties due to formation of

In this literature study you will investigate at a network level the interaction among different modes of transportation (e.g., over water, rail, road) and create concepts for

Figure 1. A schematic drawing of a single-edge notched fracture specimen a) with the corresponding dimensions used in the current study. We used brick-and-mortar unit cells to

In the absence of 3D models, spatial representation of all kinds of legal objects must be mandatory and distinct configurations for the spatial representation of underground networks