• Nie Znaleziono Wyników

Wykłady z układów dynamicznych

N/A
N/A
Protected

Academic year: 2021

Share "Wykłady z układów dynamicznych"

Copied!
73
0
0

Pełen tekst

(1)

Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska

Wykłady

z układów dynamicznych

Janina Kotus

(2)

Spis tre´sci

1. Podstawowe pojecia i twierdzenia r´, owna´n r´o ˙zniczkowych

zwyczajnych 4

1.1 R´ownanie r´o˙zniczkowe zwyczajne rzedu n w przestrzeniach Banacha, 4

1.2 R´ownania liniowe w przestrzeniach Banacha 7

1.3 Interpretacja w przestrzeniach sko´nczenie wymiarowych 9 1.4 Uk lady r´owna´n liniowych o sta lych wsp´o lczynnikach 11

2. Stabilno´s´c punkt´ow r´ownowagi 13

2.1 Stabilno´s´c i asymptotyczna stabilno´s´c 13

2.2 Klasyfikacja punkt´ow r´ownowagi 18

3. Dyfeomorfizmy i potoki 21

3.1 Rozmaito´sci r´o˙zniczkowe 21

3.2 Dzia lanie grup na rozmaito´sciach 23

3.3 Zwiazek mi, edzy potokami a polami wektorowymi, 24

3.4 Punkty krytyczne p´ol wektorowych 27

4. Hiperboliczno´s´c 28

4.1 Punkty hiperboliczne dyfeomerfizm´ow i potok´ow 28

5. Linearyzacja 30

5.1 Zagadnienie linearyzacji p´ol wektorowych i dyfeomorfizm´ow 30 5.2 Twierdzenie Grobmana-Hartmana dla dyfeomorfizm´ow w IRn 35 5.3 Twierdzenie Grobmana-Hartmana dla dyfeomorfizm´ow

zdefiniowanych na rozmaito´sciach 40

5.4 Twierdzenie Grobmana-Hartmana dla p´ol wektorowych 40

(3)

6. Lokalne rozmaito´sci stabilne i niestabilne 41 6.1 Twierdzenie Hadamarda-Perrona dla dyfeomorfizm´ow

zdefiniowanych na rozmaito´sciach 41

6.2 Globalne rozmaito´sci stabilne i niestabilne 43

7. W lasno´sci typowe w przestrzeni Diffr i Cr(TM) 44 7.1 Lokalna strukturalna stabilno´s´c punkt´ow hiperbolicznych 45 8. Zachowanie sie potoku w otoczeniu orbity zamkni, etej, 46

8.1 Przekszta lcenie Poincar’ego 47

8.2 Hiperboliczne orbity zamnkniete, 48

8.3 Lokalne strukturalna stabilno´s´c hiperbolicznych orbit zamknietych., 49

8.4 Zbiory graniczne 50

9. Punkty nieb ladz, ace, 52

10. Pola wektorowe i dyfeomorfizmy Morse’a-Smale’a 53

11. Strukturalna stabilno´s´c dyfeomorfizm´ow i p´ol wektorowych I 54 11.1 Warunki konieczne do strukturalnej stabilno´sci 55 11.2 Warunki dostateczne do strukturalnej stabilno´sci 56

12. Zbiory minimalne 57

13. Zbiory hiperboliczne 59

13.1 Solenoid 59

13.2 Podkowa Smale’a 64

14. Strukturalna stabilno´s´c dyfeomorfizm´ow i p´ol wektorowych II 66

14.1 Warunki dostateczne 67

14.2 Warunki konieczne 68

15. Podkowa Smale’a dla przekszta lcenia H´enona 68

(4)

1 Podstawowe pojecia i twierdzenia r´, owna´n r´o ˙zniczkowych zwyczajnych

1.1 ownanie r´o ˙zniczkowe zwyczajne rzedu n w w przestrzeniach, Banacha

Oznaczenia

B- przestrze´n Banacha,

Bn= B × . . . × B, n ≥ 1, n ∈ IN

IR - zbi´or liczb rzeczywistych, I ⊂ R- przedzia l U ⊂ Bn+1 -zbi´or otwarty

F : K = I × U :→ IR - dana funkcja

Definicja 1.1. Wyra˙zenie postaci

F (t, y(t), y0(t), y00(t), . . . , y(n)(t)) = 0 ∀t ∈ I (1.1) nazywamy r´ownaniem r´o˙zniczkowym zwyczajnym n-tego rzedu, gdzie y = y(t), nieznana funkcja zwana rozwiazaniem r´, ownania (1.1).

Uwaga 1.2. R´ownanie postaci (1.1) nazywamy r´ownaniem nierozwik lanym wzgledem, pochodnej.

Definicja 1.3. Jesli r´ownanie (1.1) mo˙zna zapisa´c w postaci

y(n)= f (t, y(t), y0(t), y00(t), . . . , y(n−1)(t)) = 0 ∀t ∈ I, (1.2) gdzie

f : I × D ⊂ IR × Bn → B

to r´ownanie (1.2) przedstawia r´ownanie r´o˙zniczkowe zwyczajne rzedu n w postaci, normalmej.

Definicja 1.4. Rozwiazaniem r´, ownania ro´zniczkowego (1.1) nazywamy ka˙zda funkcj, e, y : I → B, taka ˙ze

(5)

1. y ∈ Dn(I) (y jest funkcja n-krotnie r´, ozniczkowalna),

2. ∀t ∈ I F (t, y(t), y0(t), y00(t), . . . , y(n)(t)) = 0 czyli r´ownanie (1.1) jest spe lnione to˙zsamo´sciowo 3. ∀t ∈ I (t, y(t), y0(t), y00(t), . . . , y(n)(t)) ∈ K

Lemat 1.5 (o r´ownowa ˙zno´sci). Niech D ⊂ IR × B, (t0, y0) ∈ D, f ∈ C(D, B) ZC y0 = f (t, y), y0(t0) = y0

RC y = y0+Rt

t0f (s, y(s))ds,

gdzie RC to r´ownanie ca lkowe Voltery II rodzaju. Wtedy ka˙zde rozwiazanie ZC jest rozwi, azaniem, RC i odwrotnie.

Definicja 1.6. Rozwiazaniem zupe lnym (wysyconym) nazywamy takie rozwi, azanie r´, ownania o˙zniczkowego, kt´orego, kt´orego ka˙zde przed lu˙zenie pokrywa sie z tym rozwi, azaniem.,

Definicja 1.7. Niech f : I × B → B, I = [a, b]. M´owimy, ˙ze f spe lnia warunek Lipschitza ze wzgledu na drug, a zmienn, a ze sta l, a L > 0 (ozn. f ∈ Lip, 2(L)) , gdy

∀y1, y2 ∈ B, ∀t ∈ I, ||f (t, y1) − f (t, y2)|| ≤ L||y1− y2||

Twierdzenie 1.8 (Twiedzenie Picarda-Lind¨olefa). Niech I = [a, b], B-przestrze´n Banacha, B(u0, r)-kula w przestrzeni B,

f ∈ C(I × B(u0, r), B), f ∈ Lip2(L), (t0, y0) ∈ I × B (dowolny punkt).

Wtedy istnieje dok ladnie jedno rozwiazanie zupe lne rozwiazania zagadnienia,

 y0 = f (t, y)

y(t0) = y0 (1.3)

okre´slone na [α, β] ⊂ I.

Uwaga 1.9. Podamy przyk lady ilustrujace istot, e za lo˙ze´, n podanych wy˙zej twierdze´n

(6)

• Przyk lad r´ownania kt´ore nie posiada rozwiazania, y0 = f (t) f = χQ= 0 t /∈ Q

1 t ∈ Q prawa strona r´ownania nie jest funkcja ci, ag l, a.,

• Zagadnienie Cauchy’ego, kt´ore nie ma jednoznaczno´sci rozwiazania,

 y0 = 3y2/3 y(0) = 0

Rozwiazaniami tego r´ownania sa np.(a) funkcje y(t) ≡ 0 dla t ∈ IR, (b) y(t) = t, 3 dla t ∈ IR, oraz

y(t) = 0 t ≤ 0 t3 t ≥ 0 Funkcja y2/3 nie spe lnia warunku Lipschitza.

• Ciag lo´, c prawej strony r´ownania w przestrzeni Banacha niesko´nczenie wy- miarowej nie gwarantuje istnienia rozwiazania - przyk lad Dieudonn´, e

• Ciag lo´s´, c prawej strony r´ownania w przestrzeni Banacha sko´nczenie wymiarowej gwarantuje istnienia rozwiazania,

- Twierdzenie Peano

i) I wersja Niech I = [a, b], J = [c, d], f ∈ C(I × J, IR). Wtedy dla dowolnego (t0, y0) ∈ I × (c, d) istnieje zupe lne rozwiazanie zagadnienia,

 y0 = f (t, y) y(t0) = y0 okre´slone na [α, β] ⊂ [a, b]

ii) II wersja Niech I = [a, b], f : I × IR → IR bedzie funkcj, a ci, agl, a i ograniczon, a., Wtedy dla dowolnego (t0, y0) ∈ I × (c, d) istnieje zupe lne rozwiazanie zagadnienia,

 y0 = f (t, y) y(t0) = y0

okre´slone na I

(7)

1.2 ownania liniowe w przestrzeniach Banacha

Oznaczenia

B- przestrze´n Banacha

L(B) - przestrze´n operator´ow liniowych i ciag lych z B do B jest algebr, a Banacha, Niech A ∈ C(I, L(B)), I = [0, a) lub I = [0, +∞). Rozpatrzmy r´ownanie

 x0 = A(t)x + g(t)

x(t0) = x0 (1.4)

gdzie t0 ∈ I, x ∈ B, g ∈ C(I, B). Wtedy r´ownanie (1.4) spe lnia za lo˙zenia twierdzenia Picarda - Lind¨olefa, wiec posiada rozwi, azanie zupe lne okre´slone na I,

Definicja 1.10. R´ownanie (1.4) nazywamy r´ownaniem liniowym niejednorod- nym na przestrzeni Banacha B. Je´sli za´s g(t) ≡ 0 dla t ∈ I to r´ownanie (1.4) nazywamy ownaniem liniowym jednorodnym i zapisujemy x0 = A(t)x.

Definujemy funkcje ˜, A : L(B) → L(B) nastepuj, aco, A(U ) = A(U ),˜

gdzie A ∈ L(B) ustalony operator. Wtedy ˜A jest funkcja liniow, a,

A(aU˜ 1+ bU2) := A(aU1+ bU2) = aA(U1) + bA(U2) = a ˜A(U1) + b ˜A(U2) i ciag l, a,,

|| ˜A(U )||L(B) = ||A(U )||L(B) ≤ ||A||L(U )||U ||L(B) ( ˜A jest funkcja ograniczon, a, zatem jest ci, ag la) czyli,

A ∈ L(L(B)).˜

Dana jest rodzina operator´ow A : I → L(B). Wprowadzamy funkcje, A : I → L(L(B))˜

dla U ∈ L(B) A(t)U := A(t)U (bylo udowodnione, ˙ze ˜˜ A jest ciag ly),

(8)

Definicja 1.11. Dana jest rodzina operator´ow A : I → L(B). rozpatrujemy r´ownanie

 U0 = ˜A(U )

U (0) = E (1.5)

gdzie ˜A(U ) = A(t)U . Korzystajac z (1.4) dowodzi si, e, ˙ze r´, ownanie (1.5) posiada rozwiazanie, zupe lne postaci U : I → L(B) ( jest to rodzina operator´ow)

• Operatory U (t) posiadaja operatory odwrotne w L(B).,

• Odwzorowania t → U (t) oraz t → U−1(t) sa ci, ag le (nawet r´, ozniczkowalne)

• Odwzorowania (t, x) → U (t)x oraz (x, t) → U−1(t)x ze zbioru I × B → B sa ci, ag le,

Definicja 1.12. Wprowadzamy operator R : I2 → L(B) zdefiniowany wzorem R(t, t0) = U (t)U−1(t0)

W lasno´sci operatora R

1. Dla ka˙zdej ustalonej pary (t, t0) ∈ I2 operator R(t, t0) jest liniowy i ciagly, 2. Oprator R jest ciag ly wzgl, edem t i t, 0

3. R(t0, t0) = E

4. R(t1, t2)R(t2, t3) = R(t1, t3) 5. [R(t, s)]−1 = R(s, t)

6. ||R(t, t0)||L(B) ≤ e

Rt

t0||A(s)||L(B)ds

, t ≥ t0 7. Rozwiazanie zagadnienia,

y0 = A(t)y, y(t0) = y0 jest postaci

y(t) = R(t, t0)y0, t ∈ I Operator R(t, s) przesuwa rozwiazania od s do t.,

(9)

8. Rozwiazanie zagadnienia niejednorodnego,

y0 = A(t)y + g(t), y(t0) = y0 ma posta´c

y(t) = R(t, t0)y0+ Z t

t0

R(t, s)g(s)ds, t ∈ I Przy czym je´sli operator A nie zale˙zy od t czyli jest sta ly, to

R(t, t0) = U (t)U−1(t0) = U (t − t0), t ≥ t0

1.3 Interpretacja otrzymanych fakt´ow w przestrzeniach sko´nczenie wymiarowych

1. x0 = A(t)x + b(t), b ∈ C(I, IRn), A ∈ C(I, L(IRn))

Operator liniowy z IRn do IRn mo˙zna uto˙zsamia´c z macierza. Zatem A(t)x = M (t)x, gdzie A(t) = [akl(t)]n×n-macierz kwadratowa. Wtedy

x0k =

n

X

l=1

akl(t)xl+ bk(t)

2. Dla r´ownania jednorodnego otrzymali´smy jako rozwiazanie operator rodzin, e operator´, ow U : I → L(B). Zatem istnieje macierz ˜X(t), kt´ora spe lnie r´ownanie

d

dtX(t) = A(t) ˜˜ X(t), X(0) = E˜

gdzie E macierz jednostkowa. ˜X(t)-macierz fundamentalna podstawowa

W lasno´sci ˜X(t) X(t)- r´˜ o˙zniczkowalna

X(t) posiada macierz odwrotn˜ a ˜, X(t)−1

(10)

X(t) ˜˜ X(s) = ˜X(t + s) X(−t) = ˜˜ X(t)−1

Uwaga 1.13. Je´sli I zastapimy przez IR, to jednoparametrowa rodzina macierzy fun-, damentalnych (za parametr przyjmujemy czas t) tworzy grupe ze wzgl, edu na sk ladanie, czyli mno˙zenie macierzy tzn.

(a) IR 3 t → ˜X(t)

(b) IR × IR 3 (t, s) → ˜X(t) ˜X(s) = ˜X(t + s) (c) zachodzi w lasno´sc laczno´, sci

IR × IR × u 3 (t, s, u) → ( ˜X(t) ˜X(s)) ˜X(u) = ˜X(t + s) ˜X(u) = ˜X(t + s + u) = X(t) ˜˜ X(s + u) = ˜X(t)( ˜X(s) ˜X(u))

(d) istnieje element neutralny tzn. ∃ ˜X(0) = E taki, ˙ze ∀t ∈ IR X(t) ˜˜ X(0) = ˜X(0) ˜X(t) = ˜X(t)

(e) istnieje element odwrotny tzn. ∀ ˜X(t) ∃ ˜X(t)−1 taki ˙ze ˜X(t) ˜X(t)−1 = ˜X(t − t) = X(0) = E˜

3. R(t, t0) - macierz oraz R(t, t0) = ˜X(t) ˜X(t0)−1, X(0)˜ −1 = E

4. Ka˙zde rozwiazanie zagadnienia jednorodnego opisane jest wzorem, y(t) = R(t, t0)y0 = ˜X(t) ˜X(t0)−1y0

Je´sli A = const to y(t) = ˜X(t − t0)y0 dla t > t0

5. Ka˙zda kolumna macierzy ˜X(t) jest rozwiazaniem r´, ownania, a wektory tworzace kolumny, sa liniowo niezale˙zne bo ˜, X(t) jest nieosobliwa.

(11)

Twierdzenie 1.14 (Liouville’a). Je´sli macierz X(t) jest rozwiazaniem r´, ownania y0 = A(t)y

to

detX(t) = detX(t0)e

Rt

t0trA(s)ds

gdzie trA(t) = Pn

k=1akk(t).

Wniosek 1.15. Je´sli dla pewnego t0 zachodzi, ˙ze detX(t0) 6= 0, to detX(t) 6= 0 dla

∀t ∈ I

6. Zagadnienie niejednorodne

y0 = A(t)y + b(t), y(t0) = y0

Niech X(t) macierz fundamentalna r´owniania jednorodnego y0 = A(t)y Wtedy rozwiazanie, zagadnienia niejednorodnego jest postaci

y(t) = X(t)X(t0)−1y0+ X(t) Z t

t=t0

X(s)−1b(s)ds

1.4 Uk lady r´owna´n liniowych o sta lych wsp´o lczynnikach

Niech

y ∈ IRn, A = [aij]n×n, ai,j ∈ IR Rozwiazania r´, ownania liniowego o sta lych wsp´o lczynikach

 y0 = Ay

y(0) = y0 (1.6)

maja posta´, c

y(t) = eAty0 gdzie

eAt= I + t

1!A + t2

2!A2+ t3

3!A3+ . . .

(12)

Wielomianem charakterystycznym macierzy A nazywamy wielomian wA(λ) = det(A − λI),

gdzie I oznacza macierz jednostkowa stopnia n.,

ownaniem charakterystycznym macierzy A nazywamy r´ownaie wA(λ) = det(A − λI) = 0

czyli

det

a11− λ a12 . . . a1n a21 a22− λ . . . a2n

... ... ... ... an1 an1 . . . ann− λ

= 0

Za´s jego pierwiastki (rzeczywiste i zespolone) nazywamy warto´sciami w lasnymi macierzy A.

Ka˙zdy niezerowy wektor ~v (o rzeczywistych lub zespolonych) wsp´o lrzednych nazywamy, wektorem w lasnym macierzy A odpowiadajacej warto´sci w lasnej λ tej macierzy, je´sli,

A~v = λ~v (co mo˙zna zapisa´c nastepuj, aco),

a11− λ a12 . . . a1n a21 a22− λ . . . a2n

... ... ... ... an1 an1 . . . ann− λ

×

v1 v2 ... vn

=

0 0 ... 0

Niech λ bedzie k-krotn, a warto´sci, a wl, asn, a macierzy A. Ka˙zdy niezerowy wektor ~, v nazy- wamy uog´olnionym wektorem w lasnym macierzy A odpowiadajacym warto´sci w lasnej λ, je˙zeli, spe lnia r´ownanie

(A − λI)k~v = ~0.

Dla ka˙zdej k krotnej warto´sci w lasnej macierzy A istnieje dok ladnie k liniowo niezale˙znych uog´olnionych wektor´ow w lasnych. Zbi´or tych wektor´ow nazywamy seria wektor´, ow w lasnych odpowiadajacych warto´sci w lasnej.,

Metoda Eulera wyznaczania uk ladu fundamentalnego r´ownania (1.6)

(13)

1) Je˙zeli λ jest rzeczywista jednokrotn, a warto´sci, a w lasn, a macierzy A, a ~, v odpowiadajacym, jej wektorem w lasnym, to funkcja

eλt~v jest rozwiazaniem uk ladu (1.6).,

2) Je˙zeli λ = α + iβ, λ = α − iβ, β > 0 sa zespolonymi i jednokrotnymi warto´sciami, w lasnymi macierzy A, a ~v wektorem w lasnym odpowiadajacym warto´sci λ = α + iβ, to, funkcje

Re(eλt~v) Im(eλt~v) sa rozwi, azaniami uk ladu (1.6),

3) Je˙zeli λ jest k-krotna rzeczywist, a warto´sci, a w lasn, a macierzy A, to ka˙zda z k funkcji, wektorowych

eλtB~v1, eλtB~v2, . . . , eλtB~vk,

gdzie ~v1, ~v2, . . . , ~vktworza seri, e uog´, olnionych wektor´ow w lasnych odpowiadajacych warto´sci, λ, za´s B jest macierza okre´slona wzorem,

B = I + t(A − λI) + t2

2!(A − λI)2+ . . . tk−1

(k − 1)!(A − λI)k−1 jest rozwiazaniem uk ladu (1.6).,

2 Stabilno´c punkt´ow r´ownowagi

2.1 Stabilno´c i asymptotyczna stabilno´c

Definicja 2.1. Autonomicznym uk ladem r´owna´n r´o˙zniczkowych nazywamy uk lad owna´n postaci

y10 = f1(y1, . . . , yn) y20 = f2(y1, . . . , yn)

... ... y0n = fn(y1, . . . , yn)

(2.1)

Uwaga 2.2. Uk lad r´owna´n r´o˙zniczkowych jest autonomiczny, je˙zeli jego prawe strony nie sa jawnie zale˙zne od zmiennej niezale˙znej t czyli od czasu. Czasami taki uk lad nazywamy, tak˙ze stacjonarnym. W notacji wektorowej autonomiczny uk lad r´owna´n r´o˙zniczkowych mo˙zna zapisa´c w postaci

~

y0 = ~f (~y).

(14)

Definicja 2.3. Punkt y = (y1, y2, . . . , yn) nazywamy puktem r´ownowagi uk ladu (2.1) je˙zeli

f1(y1, . . . , yn) = 0 f2(y1, . . . , yn) = 0

...

fn(y1, . . . , yn) = 0

(2.2)

Ka˙zdy punkt r´ownowagi wyznacza rozwiazanie sta le,

y1(t) ≡ y1, y2(t) ≡ y2, . . . , yn(t) ≡ yn, t ∈ IR.

Definicja 2.4. Punkt r´ownowagi y = (y1, y2, . . . , yn) uk ladu (2.1) nazywamy stabilnym, je˙zeli dla dowolnego  > 0 istnieje δ > 0 taka, ˙ze ka˙zde rozwiazanie y(t) = (y, 1(t), y2(t), . . . , yn(t)) tego uk ladu z warunkiem poczatkowym,

y1(0) = y10, y2(t) = y02, . . . , yn(t) = y0n) spe lniajacym warunek,

||y(0) − y|| = q

(y10− y1)2+ (y20− y2)2+ . . . + (yn0 − yn)2 < δ (2.3) istnieje na [0, ∞) i spe lnia tam warunek

||y(t) − y|| =p

(y1(t) − y1)2 + (y2(t) − y2)2+ . . . + (yn(t) − yn)2 <  W przeciwnym przypadku punkt r´ownowagi nazywamy niestabilnym.

Definicja 2.5. Punkt r´ownowagi y = (y1, y2, . . . , yn) uk ladu (2.1) nazywamy asympto- tycznie stabilnym, je˙zeli jest stabilny i je˙zeli istnieje δ0 > 0, takie, ˙ze ka˙zdego rozwiazanie, y(t) = (y1(t), y2(t), . . . , yn(t)) z warunkiem poczatkowym,

(y1(0) = y01, y2(t) = y20, . . . , yn(t) = yn0) spe lniajacym warunek,

||y(0) − y|| = q

(y10− y1)2+ (y20− y2)2+ . . . + (yn0 − yn)2 < δ. (2.4) spe lnia te˙z warunki

lim y1(t) = y1, lim y2(t) = y2, lim yn(t) = yn (2.5)

(15)

Przyk lady Wyznaczy´c i zbada´c stabilno´s´c punkt´ow r´ownowagi. Dla punkt´ow stabilnych zbada´c ich asymptotyczna stabilno´s´, c.

(a) Niech

y0+ y = 1.

Latwo zauwa˙zy´c, ˙ze jedynym punktem r´ownowagi jest y = 1. Dowolne rozwiazanie, ownania spe lniajace warunek pocz, atkowy y(0) = y, 0 jest postaci

y(t) = 1 − (1 − y0)e−t.

Niech  > 0 bedzie dowolnie ma le. Mamy znale´, c taka liczb, e δ > 0, ˙ze dla ka˙zdego, t ≥ 0 bedzie spe lniona nier´, owno´s´c |y(t) − 1| < , o ile tylko |y0− 1| < δ. Poniewa˙z dla t ≥ 0 mamy

|y(t) − 1| = |1 − (1 − y0)e−t− 1| ≤ |1 − y0|,

wiec ˙z, adana nier´, owno´s´c bedzie spe lniona gdy przyjmiemy, ˙ze δ = . Zatem punkt, ownowagi jest stabilny. Ponadto mamy,

t→+∞lim y(t) = lim

t→∞[1 − (1 − y0)e−t] = 1 = y, co oznacza, ˙ze punkt r´ownowagi jest asymptotycznie stabilny.

(b) R´ownanie

y0 = 1 − y2

ma dwa punkty r´ownowagi y1 = 1, y2 = −1. Dowolne rozwiazanie spe lniaj, ace warunek, poczatkowy y(0) = y, 0 ma posta´c

y(t) = (y0− 1) + (1 + y0)e2t

−(y0− 1) + (1 + y0)e2t.

Zbadamy stabilno´s´c punktu r´ownowagi y1 = 1. Niech  > 0 bedzie dowolnie ma le., Poniewa˙z

|y(t) − 1| =

(y0− 1) + (1 + y0)e2t

−(y0− 1) + (1 + y0)e2t − 1

= 2|y0 − 1|

| − (y0 − 1) + (1 + y0)e2t| Dla t = 0 otrzymamy

2|y0− 1|

| − (y0− 1) + (1 + y0)| = 2|y0− 1|

2 = |y0− 1|

(16)

Dla t > 0 dostaniemy

2|y0− 1|

| − (y0− 1) + (1 + y0)e2t| < |y0− 1|

Zatem dla t ≥ 0 otrzymamy |y(t) − 1| ≤ |y0 − 1|. Zatem wystarczy przyj,c δ = .

Czyli y1 = 1 jest stabilnym punktem r´ownowagi. Ponadto dla dowolnego warunku poczatkowego y, 0 > −1 mamy

t→∞lim y(t) = lim

t→∞

(y0− 1) + (1 + y0)e2t

−(y0− 1) + (1 + y0)e2t = 1.

Tak wiec stabilno´s´, c badanego punktu r´ownowagi jest asymptotyczna. Poniewa˙z

t→−∞lim y(t) = lim

t→∞

(y0− 1) + (1 + y0)e2t

−(y0− 1) + (1 + y0)e2t = −1.

to drugi punkt r´ownowagi y2 = −1 jest niestabilny.

(c) Niech

 x0 = 2y y0 = −2x

Dla rozwa˙zanego uk ladu r´owna´n jedynym punktem r´ownowagi jest punkt (x, y) = (0, 0). Ponadto rozwiazanie tego uk ladu spe lniaj, ace warunki pocz, atkowe x(0) = x, 0, y(0) = y0, ma posta´c

 x(t) = x0cos 2t + y0sin 2t y(t) = −x0sin 2t + y0cos 2t

Dane jest ma le  > 0. Szukane jest δ takie, ˙ze px20+ y20 < δ. Dla dowolnego t ≥ 0 mamy

px2(t) + y2(t) =p

(x0cos 2t + y0sin 2t)2+ (−x0sin 2t + y0cos 2t)2 = q

x20+ y02 wiec wystarczy przyjac δ = . Zatem pocz, atek uk ladu wsp´, o lrzednych jest stabilnym, punktem r´ownowagi. Nie jest natomiaast asymtotycznie stabilny, gdy˙z nie istnieja gra- nice

→∞limx(t) = lim

→∞(x0cos 2t + y0sin 2t)

→∞limy(t) = lim

→∞(−x0sin 2t + y0cos 2t).

(17)

(d) Niech

 x0 = −3x + 4y y0 = x − 3y

Dla rozwa˙zanego uk ladu r´owna´n jedynym punktem r´ownowagi jest punkt (x, y) = (0, 0). Ponadto rozwiazanie tego uk ladu spe lniaj, ace warunki pocz, atkowe x(0) = x, 0, y(0) = y0, ma posta´c

 x(t) = 12(2y0+ x0)e−t 12(2y0− x0)e−5t y(t) = 14(2y0+ x0)e−t+14(2y0− x0)e−5t

Dane jest ma le  > 0. Szukane jest δ takie, ˙zepx20+ y02 < δ Dla dowolnego t ≥ 0 mamy x(t)2+ y(t)2 = 1

4 5(2y0+ x0)e−2t+ 5(2y0− x0)e−10t− 6(2y0+ x0)(2y0− x0)e−6t (2.6) Latwo pokaza´c ˙ze prawa strona 2.6 jest funkcja malej, ac, a zmiennej t dla t ≥ 0. Zatem,

x(t)2+ y(t)2 ≤ x(0)2+ y(0)2 = x20+ y02

dla t ≥ 0. Wystarczy znowu przyjac δ = . Pokazali´smy, ˙ze pocz, atek uk ladu wsp´, o lrzednych, jest stabilnym punktem r´ownowagi. Ponadto

t→∞lim x(t) = lim

t→∞

 1

2(2y0− x0)e−t 1

2(2y0− x0)e−5t



= 0

t→∞lim y(t) = lim

t→∞

 1

4(2y0+ x0)e−t +1

4(2y0− x0)e−5t



= 0 Poczatek uk ladu wsp´, o lrzednych jest aymptotycznie stabilny.,

(18)

2.2 Klasyfikacja punkt´ow r´ownowagi

Podamy klasyfikacje punkt´, ow r´ownowagi na p laszczy´znie prostych uk lad´ow liniowych ( tzn.

takich dla kt´orych macierz uk ladu jest nieosobliwa).

Warto´sci w lasne Nazwa Stabilno´c

Rzeczywiste r´o˙zne λ1, λ2

λ1 > 0, λ2 > 0 weze l, niestabilny

λ1 < 0, λ2 < 0 weze l, asymptotycznie stabilny

λ1λ2 < 0 siod lo niestabilny

Rzeczywiste r´owne λ = λ1 = λ2

λ > 0, 1 wektor w lasny weze l zdegenerowany, niestabilny

λ < 0, 1 wektor w lasny weze l zdegenerowany, asymptotycznie stabilny λ > 0, 2 wektory w lasne weze l gwia´, zdzisty niestabilny

λ < 0, 2 wektory w lasne weze l gwia´, zdzisty asymptotycznie stabilny zespolone λ1 = α + iβ, λ2 = α − iβ

gdzie β 6= 0

α > 0 ognisko niestabilny

α < 0 ognisko asymptotycznie stabilny

α = 0 centrum stabilny

Podamy teraz przyk lady r´owna´n ilustrujace podan, a wy˙zej klasyfikacje., 1. Weze l niestabilny,

 x0 = 5x + 4y y0 = x + 2y 2. Weze l asymptotycznie stabilny,

 x0 = −2x + 3y y0 = x − 3y

(19)

3. Siod lo niestabilne

 x0 = 4x − 3y y0 = 5x − 4y 4. Weze l zdegenerowany niestabilny,

 x0 = 3x − 4y y0 = x − y 5. Weze l zdegenerowany asymptotycznie stabilny,

 x0 = x − 4y y0 = 4x − 7y 6. Weze l gwia´, zdzisty niestabilny

 x0 = x y0 = y 7. Weze l gwia´, zdzisty asymptotycznie stabilny

 x0 = −x y0 = −y 8. Ognisko niestabilne

 x0 = x − y y0 = x + y 9. Ognisko asymptotycznie stabilne

 x0 = x − 5y y0 = x − 3y 10. Centrum

 x0 = x + 2y y0 = −5x − y

Zajmiemy sie teraz przypadkiem tr´, ojwymiarowym. Rozpatrzmy uk lad r´owna´n postaci X0 = AX.

Za lo´zmy, ˙ze A ma jednokrotne warto´sci w lasne. Wtedy uk lad rozpada sie na produkt jed- nowymiarowego i dwuwymiarowego uk ladu. Wielomian charakterystyczny jest stopnia 3 ma zatem 3 r´o˙zne pierwiastki rzeczywiste λ1, λ2, λ3 lub jeden rzeczywisty λ1 i dwa zespolone sprze˙zone λ, 2, λ3 = λ2. Mo˙zliwe sa zatem nast, epuj, ace przypadki.,

(20)

1. λ1 < λ2 < λ3 < 0 (kontrakcja wzd lu˙z trzech kierunk´ow odpowiadajacych warto´sciom, λ1, λ2, λ3

2. λ1 < λ2 < 0 < λ3 (kontrakcja wzd lu˙z dw´och kierunk´ow odpowiadajacych warto´sciom, λ1, λ2 i rozciaganie wzdlu˙z trzeciego λ, 3)

3. Reλ1,2 < λ3 < 0 (kontrakcja wzd lu˙z kierunku odpowiadajacego warto´sci λ, 3 oraz silniej- sza kontrakcja wraz z obrotem w p laszczy´znie odpowiadajacej warto´sciom λ, 1, λ2

4. λ3 < 0Reλ1,2 < 0 (kontrakcja wzd lu˙z kierunku odpowiadajacego warto´sci λ, 3 oraz s labsza kontrakcja wraz z obrotem w p laszczy´znie odpowiadajacej warto´sciom λ, 1, λ2

5. Re < λ1,2 < 0 < λ3 (rozciaganie wzd lu˙z kierunku odpowiadaj, acego warto´sci λ, 3 oraz kontrakcja wraz z obrotem w p laszczy´znie odpowiadajacej warto´sciom λ, 1, λ2

6. 0 < λ1 < λ2 < λ3 (rozciaganie wzd lu˙z trzech kierunk´, ow odpowiadajacych warto´sciom, λ1, λ2, λ3

7. λ1 < 0 < λ2 > λ3 (rozciaganie wzd lu˙z dw´, och kierunk´ow odpowiadajacych warto´sciom, λ1, λ2 i kontrakcja wzdlu˙z trzeciego λ3)

8. 0 < λ3 < Reλ1,2 (rozciaganie wzd lu˙z kierunku odpowiadaj, acego warto´sci λ, 3 oraz silniej- sza rozciaganie wraz z obrotem w p laszczy´, znie odpowiadajacej warto´sciom λ, 1, λ2

9. 0 < Reλ1,2 < Reλ3 (rozciaganie wzd lu˙z kierunku odpowiadaj, acego warto´sci λ, 3 oraz slabsze rozciaganie z obrotem w p laszczy´, znie odpowiadajacej warto´sciom λ, 1, λ2

Ta klasyfikacja nie obejmuje tak˙ze przypadk´ow zdegenerowanych gdy np. λ1 ∈ IR, λ2 = λ3 ∈ CI oraz l1 = Reλ2 = Reλ3.

Cytaty

Powiązane dokumenty

Znale´ z´ c stabilizatory wierzcho lk´ ow, krawe , dzi i ´ scian obu tych bry l.. 43 Przypu´ s´ cmy, ˙ze grupa G dzia la tranzytywnie na

7 Udowodni´ c, ˙ze niezerowy pier´ scien sko´ nczony jest cia lem wtedy i tylko wtedy, gdy nie zawiera w la´ sciwych dzielnikow zera.. 8 Wykaza´ c, ˙ze je˙zeli R jest dziedzina ,

Wykaza´ c, ˙ze je´ sli endomorfizm samosprze , ˙zony przestrzeni C n jest nilpotentny, to jest zerowy.... Wielomian ten ma ca

Twierdzenie 4.11 przes¸ adza, ˙ze za lo˙zenie ograniczenia normy drugiej formy podstawowej przez liczb¸e mniejsz¸ a od a implikuje istnienie kanonicznego homeo- morfizmu

Dla podanych a, b, c podać takie d, aby istniał czworokąt wy- pukły o bokach długości (z zachowaniem kolejności) a, b, c, d, w który można wpisać okrąg.. Dla podanych a, b,

Funkcja analityczna przyjmuje w dowolnie ma lym nak lutym otoczeniu punktu istotnie osobli- wego ka˙zd a warto´ , s´ c z wyj atkiem co najwy˙zej jednej w niesko´ , nczenie

Kodowanie wielomianowe jest

Je´sli ka˙zdy sko´ nczony podzbi´ or zbioru Γ jest spe lnialny, zbi´ or Γ te˙z jest spe lnialny. Twierdzenie