• Nie Znaleziono Wyników

Role of the zone of aeration in the formation of groundwater chemical composition

N/A
N/A
Protected

Academic year: 2022

Share "Role of the zone of aeration in the formation of groundwater chemical composition"

Copied!
9
0
0

Pełen tekst

(1)

Geological Quarterly, Vol. 39, No.3, 1995, p. 439-448

Jerzy J. MAtECKI

Role of the zone of aeration in the formation of groundwater chemical composition

Interpretation of the data collected during this research project indicate that the basic processes leading to the formation of the chemical composition of groundwaters occur mostly in the soil zone. Soil mineralogical composition, organic material content, and the type of plant cover principally decide the type and amount of dissolved components found in shallow groundwater.

Understandi

ng of the evolution of the chemistry of rain water, into soil water, and gro- undwater requires description of the chemical character of the precipitation including the

character of pollution released into the atmosphe re as well as knowledge of the mi- neralogical composition of the soil and bedrock. Acid precipitation enriched in sulphates

and

nitrates infiltrati

ng the

soil are subject to two mechanisms delaying

migration

of pollutants to groundwater: retention by mineral comple xes in soils and biological ac- cumulation

(D.

Malecka et aI. , 1993).

A study

area

was chosen which was

beyond the

influence of industr y and agriculture and where the influence of atmospheric

pollutants

on water chemistry was minimal. By fillin g these requirements, the processes going on in the soil and zone of aeration should be occurring in

a natural state, unmodified by the immediate interference of

man

. Depending

on

the

character of the

interaction of water and soil we can distinguish a series of water

types occurring in the soil: crystalline and inherent waters, retained waters - hygroscopic and osmotic, and free waters - capillary and gravity (E. Myslinska, 1990). Because the problem under study was evaluation of the changes

in the

chemical composition of

infiltration

water,

research concerned only waters displaced by gravity.

The study site was established on the eastern boundary of the Northern Podlasie Low-

land on the Bialystok High. The bedrock geology of this region was strongly influenced by

sedimentation and erosion processes from the Central Polish Glaciation. Characteristic for

(2)

440

2 3

0.6

0.'

, ,I

0

~

t

0

"'

0

1

pz

Jcrzy J. Matecki

0. 0

C'C'~~.."

the entire series of sediments are se- quences of sands, gravels, as well as silts and loesses interbedded with tills. Study included the near surface part of the profile (Fig. I). A practically imper- meable sandy till, occurring at a depth of 1.85 m, forms the base of the zone of saturation of the unconfined aquifer.

Fluctuations in the level of the water table between 1993 and 1994 were not large and oscillated around 1.3 m below the ground surface.

Iml

130

!210.'1 m

2.30

Detailed mineralogical study of the soil was carried out on samples taken from three depth intervals - 00'(l-D.35, 0.35-D.65, and 0.65- 1.85 m. The main components making up the soil in the zones of aeration and saturation were

1.1 " 10~coefficient 01 permeability

Fig. I. Arrangement of ceramic cup Iysimeters (1-3) and piezometcr(Pz) in the lithological profile Numbers in circles: I - sandy topsoil, 2 - silty sand, 3 - clayey sand, 4 - silty sand, 5 - sandy till, 6 - sandy cohesive till

Zcsp61 pr6bnik6w podci~nienjowych (1~3) i piczo-

!nelr (pz) nn tie profilu ]ilologicznego Cyfry w k6lkach: I - gJeba piaszczysta, 2 -

pia~ck gliniasty, 3 - piasek pylasty, 4 - piasek gliniasty, 5 - glina piaszczysta, 6 - glina pia- szczysta zwi~z!a

quartz and organic-clayey substances

,

including kaolinite, montmorillonite, and illite.

Secondary components were orthoclase and albite. Accessory components were apatite, chlorite, muscovite, biotite, hematite, calcite, dolomite, and the following sporadically occurring minerals: pyrope, almandine, tourmaline, richterite, tremolite, zircon, staurolite, epidote, clinozoisite, rutile, cyanite, andalusite, sillimanite, and titanite. The average volume percentages of the secondary (15-16%) and the accessory (1%) minerals were independent of the depth of the sample, while the main components varied with depth. The percentage of quartz grew with depth: from 47% in the first zone, 65% in the second, to 74% in the third one. A reverse, declining tendency was shown by clay minerals, which constituted 37% of the composi

tion

in the first zone, 21 % in the second zone, and 9% in the third zone (M. Manecki

e/ at.,

in press).

The study area was equipped with chemically neutral rain water collectors and ceramic

cup Iysimeters to collect gravitational water in the zone of aeration installed at 0.6, 0.9, and

1.2 m below the ground level, and a piezometer collecting water from the zone of saturation

(Fig. 1). Hydrochemical sampling was carried out in monthly observation cycles in

1993- 1994. The basic physical-chemical characteristics of the water - temperature,

(3)

Role of the zone of aeration in the formation ... 44t

(Fig. 1). Hydrochemical sampling was carried out in monthly observation cycles in 1993-1994. The basic physical-chemical characteristics of the water - temperature, conductivity, pH, and redox potential- were measured in the field at the time of sampling.

A complete chemical analysis covering major and trace components and a series of chemical indicators was carried out in the laboratory, using the following analytical techniques:

Atomic Absorption Spectrometry (AAS), Atomic Emission Spectrometry (ISP), Liquid Chromatography (HPLC), and classical analyses (weighing methods, spectrophotometry, ion-selective electrode (ISE), titration, and fluorometry). High sensitivity of the analytical methods and quality control by analyzing samples using several different methods (ICP, AAS, classical analysis) allowed complete evaluation of the chemical composition of the studied waters.

Chemical processes occurring in a natural water solution infiltrating through the zone of aeration, include among others: dissolution, precipitation, disassociation, hydrolysis, formation of ionic pairs and ionic complexes, redox reactions, etc.

(A.

Macioszczyk, 1987).

Element stability diagrams introduced by 1. D. Hem allow qualitative evaluation of elements dissolved in water, but only on individual elements without

taking

into account the hydrochemical complexity of the entire assemblage (M. Fic, E.

Osm~da-Ernst,

1989).

Hydrogeochemical models were created to remedy this defficiency by solving a set of equations incorporating the thermodynamic equilibrium constants of individual reactions and mass balance of analyzed components. All chemical reactions occurring in ground- waters show a tendency to reach a state of compositional equilibrium with mineral phases in the host rocks driven by changes in thermodynamic potential. The groundwater-soil system is almost never in a state of complete chemical equilibrium due to water movement.

However, to simplify the calculations aiming at numerical description of divergence of a given water from equilibrium with a specific mineral phase in soil, a theoretical assumption was made that soil-solution equilibrium has been reached. The calculated values of ionic strength of solutions - from 0.00058 (average for rain water) to 0.00935 M (average for phreatic groundwater) - allowed application of the Debye-Hueckel formula for all calcu- lations (P. A. Domenico, F. W. Schwartz, 1990). Using geochemical analysis packages PCWAT-4 and PHREEQE, the ionic activity and SI (saturation index) of minerals making up the soil reacting with water samples was determined. SI is defined as:

SI

=

I product of the activities of the reacting ions

og equilibrium constant for formation of the mineral at the given temperature

A negative saturation index suggests a potential for dissolution of a given mineral in the analyzed solution, while a positive SI suggests a potential for precipitation of the specified mineral from the solution (C. A. 1. Appelo, D. Postma, 1993).

The calculated saturation indices of thirteen minerals (quartz. kaolinite, montmorilloni- te, illite, orthoclase, albite, apatite, chlorite, muscovite, biotite, hematite, calcite, dolomite) which had direct contact with the solution showed different values dependent on the depth of sampling (Fig. 2). The most chemically aggressive solution was rain water: Sl's are negative in

the case of 11 minerals, while only biotite

and hematite had positive values.

Atmospheric dust is rich in these two minerals, which may have caused their saturation in

rain water. The saturation indices of all the examined minerals show a tendency to increase

(4)

'"

'"

0.2 0 -0.2

-0.4 Quartz

·0,6

·0.8 -1

_1.2· L1 "C. ~-:----:,::"""--;:o::--=-_,---J fain water 0,6 0,9 1,2 groundwater

soil water (m below Ihe surface)

Orl---,

·2

·4

-6

- s

·10

/

-12' .f

/

Orthoclase

- .---

AJbite ~'

rainwater 0,6 0,9 1,2 groundwater soil water (m below Ihe surface)

4

2 /KaOlinite

0 .,>

... \ ...••...

-2

-4

f~l1lite

Montmorillonite

'"

·6

·S !

i

-10

·12 rainwater 0,6 0,9 1.2 groundwater soil water (m below the surface)

'1 ;;- / : I

·15

I

-20

(I) -25

-30

·35 -40 -45

1 I

/ Chlom.

fain water 0,6 0,9 1,2 groundwater soil waler (m below the surface)

Fig. 2. Saturation index SI; average values from 1993-1994 (n = 94) Wskatnik nasycenia SI; wartogci grednic z lat 1993-1994 (n = 94)

'"

'"

50

40J 0 ~ Biotite

30

2 ° L

/~H'm',".

10 . /

- /

o ,,-

... -... . Muscovite

-1 O~' :;:-::::::::---;;,.-;:----;;,-;;----;r;;--=:c:::::::-:}

fain water 0,6 0,9 1,2 groundwater soil water (m below the surface)

21

Cal",

I

o /?

> _

r.

·2 -4

-6

..

-10

.121

j

I

fain water 0,6 0,9 1,2 groundwater soil water (m below the surface)

~

~

~

,...

;::

"-g

0:

(5)

Role of the zone of aeration in (he formation ... 443

mineral, after some fluctuations between 60 and 90 cm, a relati

vely insignificant tendency

to rise. On the basis of hydrochemical calculations, it can be

concluded that the soil zone

has the deciding influence on mineralization of shallow

ground waters. In this particular

study area, this zone is made up of

more than 50% clay minerals: kaolinite, montmori1lonite,

and illite. Reactions occurring at the interface of the

solution

and the cohesive soil are associated with the clay fraction and depend on many factors, such as chemical charac- teristics of the solution, mineral composition of the clay fraction. amount of organic materi

al

in the soil, availability of grain surface reaction area, fabric and texture of the soil, volume of ion exchange, temperature, etc. (B. Grabowska-Olszewska, 1990). As a very general conclusion, it seems that

dissolution of clay minerals is basic for

the formation of the chemical composition of shallow ground waters. Independent

confirmation

comes from analysis of changes in

the

concentration of particular

hydrochemical

elements depending on the depth of sampling (Fig. 3). Study revealed that factors like dry residue, hardness,

alkalinity. pH, concentration of

chloride, sulphate, calcium, magnesium,

and sodium rose

along with depth. 10% of the substances in groundwater ofthe zone of saturation came from atmospheric dust in rain water, 47% from minerals dissolved in the 0.0 to 0.6 m zone, 25%

in the 0.6-0.9 m zone, 7% in the 0.9-1.2 m zone, and 11 % in the 1.2-1.5 m zone.

It

should be emphasized that not all the analyzed components showed the same dependencies. The concentration of nitrogen compounds, phosphorus, and potassium ion decreased with depth.

In Poland it is practically impossible to find an area with precipitation unaffected by human activity. Elevated

concentrations

of nitrogen in rain water

are

the

result of atmospheric

pollution, most probably with a distant source. Increase in the concentrations of phosphorus and potassium is the result of nearby dry , agricultural pollution. These biophilic elements (N, P, K), indispensable to all living organisms, are caught and stored by plants, which causes a distinct drop

in their concentration

in

the

soil zone.

The

drop

in

potassium concentration is

also

influenced by

ion

exchanges with the clay

fraction of the soil.

Tab I e Functional dependence of the concentration of analyzed element,y, on sampling depth in cro,x

Hydrochemical Dependence Coefficients Correlation

component equation coefficient

a b

Dry residue [mg/dro)l

y=aJ'

3.39 0.47 0.99

Hardness [mvaVdm3

J

y=axb -1.71 0.69 0.99

Alkalinity [mval/dm ] y

=aJ'

-2.81 0.88 0.99

Reactivity [pH] y=wl 1.64 0.08 0.99

Carbonate [mg/dm)] y=wl 1.25 0.87 0.99

Sulphate [mg/dm)} y=axb 1.93 0.36 0.92

Calcium [mg/dm)}

y=aJ'

1.12 0.70 0.99

Magnesium (mg{dmJJ y=axb -1.08 0.63 0.94

Sodium [mg/dmJ]

y=aJ'

0.54 0.48 0.98

Nitrate (mg/dm3}

y=aJ'

1.59 -0.69 -D.96

Nitrite [mg/dm3] y=axb -2.75 -D.48

-D.n

Ammonium [mg/dm3] y=lI.:l 0.68 -0.64 -D.98

Phosphates [mg/dml, y=axb -D.47 -D.6J -D.98

(6)

350 300 250

=a,

200

dry residue 'it

E 150

E

100 50

o fein water 0,6 0,9 1,2 groundwater soil water (m below the surface)

1000,,--- - - - -- - - , HCO;

100

,

~ . ... - ....

SO'!.--.... _. _ _

.. .-.M .. ·· ... -

~

10

. . .

"

cf

----.

I' I

rain water 0,6 0,9 1,2 groundwater soil wllter (m below the surface)

10

tolal nardness ...

_._ ... -_.-...

. .. . .. H ·

,

j /

I

0.1

I Ik ..

1./ 8

alinity

0.01 rein water 0,6 0,9 1,2 groundwater soil water (m below the surface)

l00~ ____ Ga

,.

10

... / %/ .. . ~ .,(/ -"-

I,: '.

.-.- .. -~~ ,. . . ~.- ....

... ; : : . - - Na

,

...

-~.~

.. - ...

/

01"'CC-c7C-COO----~----""c=cc~c:7 . rain waler 0,6 0,9 1,2 groundwater so~ water (m below the surface)

. 20

7.80 7.40 7.00

I

I

/pH

a. 6.60

'"'

E

6.20 5.80 5.40

5.00 rain water 0,6 0,9 1,2 groundwalBr soil water (m below the surface)

IOr'---,

.... ,.~-NO~

~ ...

~ t..,

---

---....

~.---- ....

N.NH.

_-';-

"". PO,.--.. _ -0

"" ,

~

0.1

0.01 N.NO~ ... _.,

··· ... .,.._.H.

o 001 .

~I =-:c=:::-"7;c----;,;;---...,.,"""="",:!

rain wal9f 0,6 0,9 1,2 groundwater soil water (m below the surface)

Fig. 3. Changes in concentration of the chosen indices ilnd dominant ions in the groundwater; average values from 1993-1994 (n = 94) Zmiany st~zenia wybranych wskainik6w i dominujllocych jon6w w wodach gruntowych; warto~ci ~rednie z lat 1993-1994 (n = 94)

t

E ,..

H: ~

(7)

Role of the zone of aeration in the formation ... 445

Potassium ions

are

adsorbed

by clay

minerals that, in

turn,

release

ions

of calcium, magnesium, and sodium (Fig. 3).

The best fit regression curves were used as a mathematical description of the examined dependencies. A clear dependence was accepted if the correlation coefficient of the studied differences exceeded 1 0.91. Dependence functions were with the highest correlation coeffi-

cient were accepted. Student's test and the significance level for the

calculated regression coefficients were used to verify the quality of the approximated numerical values and fitted regression curves. On the basis of94 analyses of water sampled from five depths: 0.0 (rain water), 0.6, 0.9, and

1.2

m (infiltration water),

1.5

m (groundwater), the functional depend- ence was calculated (concentration of analyzed element versus sample depth; Tab. I). The depth levels were constant and were determined by the method of rain water collection and depth of installed ceramic cup Iysimeters. The value of

1.5

m for groundwater of the saturation zone is the depth of the middle part of the piezometer filter. In statistical calculations sampling depth was taken as the independent variable, while element concen- tration served as the dependent variable.

Of fifteen basic hydrochemical elements, thirteen clearly showed correlations with depth (Tab. I). Only in the case of chloride and potassium concentrations did the statistical analysis not show any such dependence. It should be stressed that in all the remaining cases the change in concentration with depth was best described by power-product dependence.

The regression curve supports the previously noted regularity that the dominant changes in concentration occur in the shallowest depth interval.

Interpretation of all the results unequivocally indicates that the basic processes for the formation of the chemical composition of groundwater occur mainly in the

soil zone. Its

mineralogical composition,

organic matter content,

and

type of vegetation principally

determine the type and quantity of dissolved components occurring in shallow ground- water.

malecki@sungeo.biogeo.uw.edu.pl Katedra Ochrony Srodowiska Uniwersytetu Warszawskiego Warszawa, aI. iwirki i Wigury 93 Received: 24.05.1995

REFERENCES

Translated by Thomas Ol,~zewski

APPELO C. A. J., POSTMA D. (1993) - Geochemistry, groundwater and pollution. A. A. Balkema/Rotler~

dam/Brookfield. Printed in the Netherlands.

DOMENICO P. A., SCHW ARTZ F.

w.

(1990) - Physical and chemical hydrogeology. J. Wiley and Sons. USA.

FIC M., OSMEDA~ERNST E. (1989) - Podstawy teoretyczne, rozw6j i przyklady zastosowan modcli i stanu r6wnowagi chemicznej do badari w6d podzicmnych. Materialy sesji naukowej z okazji 25·lecia kola SliTG przy WydzialeGeologii UW. Warszawa.

GRABOWSKA~OLSZEWSKA B. (1990) - Mcrody badari grunt6w spoistych. Wyd. Geo!. Warszawa.

MACIOSZCZYK A. (t 987) - Hydrogeochemia. Wyd. Geol. Wan;zawa.

(8)

446 leay J. Malecki

MALECKA D., MALECKI 1., SKORUPSKI W. (J993)- Ruport 0 staniesrodowiska w rejonie stacji badawczej przy WydzinJc Geologii Uniwersytetu Warszawskiego. VI Konferencja nt.:"Wsp6Iczcsne problemy hydro~

geologii, Wrodaw". Wyd. Sudety. Wrodaw.

MANECKI M., ECKSTEIN Y., MANECKI A., MALECKA D., MALECKI J. (in press) - Modelling the neutralizing processes of acid precipitation in soils and sediments of Poland. Department of Geology, Kent State University, Kent, OH 44242. USA.

MYSLINSKA E. (1990) - Woda w gruntach. In: Metody badan grunt6w spoistych. Wyd. Geel. Warszawa.

Jerzy J. MALECKI

ROLA STREFY AERACJI W FORMOWANIU SKLADU CHEMICZNEGO W6D PODZIEMNYCH

Streszczenie

Rozpoznanie poszczeg61nych ogniw zaleznosci mi~dzy chemizmem w6d opadowych, przesiqkowych i podziemnych wymaga okre~!enia charokteru emitowanych do atmosfery zanieczyszczen. a takt.e znajomo§Ci skladu mineralnego gleb i ich podloza.

Stacj~ badawczq zaioiono na wschodnich krancach Niziny P61nocnopodlaskiej w obn;bie Wysoczyzny Bialostockiej. Decyduj~cy wplyw na budowt; geologiczntl badanego terenu wywarly procesy scdymentacyjne i erozyjnezlodowacenia srodkowopolskiego. Badaniami objt;to przypowierl.:cilniowy odcinck profilu do glCbokosci 1.85 m, zbudowany z piask6w gliniastych j pylastych. Glina piaszczysta, praktycznie nieprzcpuszczalna, stanowi SP!lg strefy saturacji pierwszego, swobodnego poziomu wodono~nego.

Szczeg610we badaniamineralogicznc grunt6w wykonuno diu ~redniej pr6bki z trzech przedzial6w glebokosci:

0-0,35,0,35-0,65 i 0,65-1,85 m. Skladnikami gt6wnymi budujqcymi szkielet gruntowy :-;trefy aeracji i saturacji sq kwarc, mineraly iIaste (kaolinit, montmorillonit i illit) oraz subs!nncja orgnniczna. Sktadniki poboczne 10:

skalenie - ortoklaz i albit, a skladniki akcesoryczne - apatyt, chlory!, muskowit, biotyt, hematyt, kalcyt i dolomit.

Objt;tosciowa zawartosc procentowa skladnik6w pobocznych (15-16%) oraz akcesorycznych (ok. 1%) jest niezaleina od gleboko~ci opr6bowania. R6inice zawartosci w poszczeg61nych przedzialach glebokosci stwier- dzono w ocenie skladnik6w gl6wnych. Procentowa zawartosc kwarcu ro~nie z gleboko~ciq i wynosi: w pierwszej strefie 47%, w drugiej - 65% i w trzeciej - 74%. Odwrotnq, malejQGq tendencje wykazujOl mineraly ilaste, kt6rych zawartosc w strefie pierwszej wynosi 37%, w drugiej - 21 % i w trzeciej - 9%.

Dla okreslenia skladu chemicznego wod poligon badawczy wyposazono w chemicznie obojctne pojemniki do zbierania w6d opadowych, pr6bniki podcisnieniowe zainstalowane na gleboko~ci 0,6, 0,9 i 1,2 m ponizej poziomu terenu, ujmujqce wody przesiqkowe, oraz piezometr ujmuj'lcy wody strefy saturacji. Badania hydrochc- miczne prowadzono w miesiecznych cyklach obserwacyjnych w lalach 1993-1994.

Modele geochemiczne w6d byly twonone przez rozwiqzywanie uklad6w r6wnari uwzgledniajQcych stale r6wnowagi poszczeg6lnych reakcji oraz bilans analizowanych skiadnik6w. Obliczone wartosci sHy jonowej roztwor6w od 0,00058 (~rednia dla w6d opadowych) do 0,00935 M (~rednia dla wod strefy saturacji) pozwoliiy na zastosowanie dla calo~ci obiiczen podstawowej formuiy Debye-Hueckla.

Wskainiki nasycenia wzgledcm 13 minera16w (kwarc, kaolinit, montmorillonit, iJlit, ortoklaz. albil, apatyt, chlory!, muskowit, biotyt, hematyt, kaleyt, dolomit), majqcych bezposredni kontakt 7. roztworcm wodnym, wykazujq zr6inicowane warto~ci zaleznc od glt;boko~ci pobrania pr6bki. Najbardziej agresywnc sq wody opado- we, w przypadku 11 minera16w wartosci SI (saluration index) S1':l ujemne, jedynie 2 mineraiy: biotyt i hematyt majq wartosci dodatnie. Moina to tlumaczyc skladem mineralnym pyl6w atmosferycznych zasobnych w te mineraty, co moglo spowodowac wysycenie nimi w6djuz w atmosferze. Pod:-;tawowQ tendencjq dla wszystkich rozpatrywanych mineral6w jest wzrost wskainika na~ycenia nnalizowanego roztworu wroz z gICboko~ciq. Naleiy podkreslic, ie przebiega on najintensywniej w strefie glebowej. Na pierwszych 60 cm nastepuje skokowe podwytszenie wskainika SI, nastcpnie w zaleinosci od rozpatrywanego mineralu z pcwnym wahnit;ciem w prz.edziale 60-90 cm obserwuje siC stosunkowo nieznacznq tendencje rosnqcq. No podstawie obliczeri hydroche-

(9)

Role of the zone of aeration in the fonnation ... 447

micznych nalety wnioskowa~. i.e decydujllcy wplyw na rnineralizacj~ plytkich w6d podziemnych rna strefn glebowa promu gruntowego. Przyjmujllc za 100% mjncra1izacj~ w6d podzicmnych strefy saturacji, ok. 10%

stanowill substancje rozpuszczane na skutek kontaktu 7. pylami atrnosfcrycznymi w6d opadowych. 47% - substancjc rozpuszczone w strefic najplytszej do 0,6 In ponizej poziornu terenu, 25% - subslancje rozpuszczonc na gl~boko~ci 0,6--0,9 m oraz 7 i II % - na gt~boko~ci odpowiednio 1,2 i 1,5 m.

lnterprelacja uzyskanych wynik6w badan wskazuje, i.e podstawowe procesy dla fonnowania si~ skladu chemicznego pierwszego poziomu w6d podzicmnych 1"achodZllgl6wnie w warstwie glebowej. Jej sklad mineral ny, zawarto~~ substancji organicznej i rodzaj ro~linno~ci decydujq w spos6b ZD.sadniczy 0 rodzaju i ilo~ci rozpuszezo·

nyeh skladnik6w znajdujqcych si~ w plytkich wodach podziemnych.

Cytaty

Powiązane dokumenty

2412 is an account recording money payments extending over three years, from the 14th to the 12th of Tiberius (A.D. 2413 is a list of arrears in money payments. It contains entries

The relative pose estimation schemes described in Section 3 provide an initial estimate of the relative position and attitude of a target spacecraft with respect to the

Nie m ożna tu ap rio ry cz n ie niczego

The monograph presents the methodology for assessing the point (eg. in monito- ring points) and surface (eg. within groundwater basins) chemical status of groundwater

The contributions of individual processes shap- ing the chemical composition of groundwater in the experimental area, as identified by the modelling, are similar to those

sverdrupi (Tozer), that is close to the index species of the sverdrupi Zone of the Upper Dienerian, is reported from the Lower Triassic (Vardebukta Formation)

dziewcząt w odniesieniu do wybranych czynników środowiskowych i społecznych (środowisko zamieszkania, wykształcenie rodziców, rodzaj pracy zawodowej rodzi- ców,

Changes in the chemical composition of ash and the enhancement of energy properties of cereal straw as a result of its multiple water