• Nie Znaleziono Wyników

Age is the work of art? : impact of neutrophil and organism age on neutrophil extracellular trap formation

N/A
N/A
Protected

Academic year: 2022

Share "Age is the work of art? : impact of neutrophil and organism age on neutrophil extracellular trap formation"

Copied!
33
0
0

Pełen tekst

(1)

CellandTissueResearch(2018)371:473–

488https://doi.org/10.1007/s00441-017- 2751-4

REVIEW

Ageistheworkofart?

Impactofneutrophilandorganismageonneutrophile xtracellulart rapf ormation

WeronikaO rtmann1&ElzbietaK olaczkowska1

Received:28August2017/Accepted:21November2017/Publishedonline:18December2017

#TheAuthor(s)2017.Thisarticleisanopenaccesspublication

Abstract

NeutrophilextracellulartrapsorNETsarereleasedbyhighlyactivatedneutrophilsinresponsetoinfectiousagents,sterileinflam mation,autoimmunestimuliandcancer.Inthecells,thenuclearenvelopdisintegratesanddecondensationofchromatinoccursthatde pendsonpeptidylargininedeiminase4(PAD4)andneutrophilelastase(NE).Subsequently,proteinsfromneutro-

philgranules(e.g.,NE,lactoferrinandmyeloperoxidase)andthenucleus(histones)bindtodecondensedDNAandthewholestructur eisejectedfromthecell.TheDNAdecoratedwithpotentantimicrobialsandproteasescanacttocontaindisseminationofinfectionandi nsterileinflammationNETswereshowntodegradecytokinesandchemokinesviaserineproteases.Ontheotherhand,overproductio nofNETs,ortheirinadequateremovalandprolongedpresenceinvasculatureortissues,canleadtobystanderdamageoreveni nitiationofdiseases.ConsideringtheprosandconsofNETformation,itisofrelevanceifthestageofneutrophilmaturation(immature, matureandsenescentcells)affectsthecapacitytoproduceNETsasthecellsofdifferentage-

relatedphenotypesdominateingiven(pathological)conditions.Moreover,theimmunesystemofneonatesandelderlyindivid- ualsisweakerthaninadulthood.IsthesamepatternfollowedwhenitcomestoNETs?

TheoverallimportanceofindividualandneutrophilageonthecapacitytoreleaseNETsisreviewedindetailandthesignificanceofthes efactsisdiscussed.

KeywordsNeutrophilextracellulartraps. Immatureneutrophils. Matureneutrophils. Neonates. Elderly.Scenescent

Introduction

Neutrophils,polymorphonuclearcells(PMNs),arethefirstle ukocytestoreachthesiteofinflammationwheretheyper- formtheireffectorfunctions,phagocytosemicrobesandkillthe mintracellularly.Alternatively,neutrophilsfightpathogensex tracellularlyineitheroftwoways:upondischargeofpotentantim icrobialsandproteasesfromtheirgranulesoronreleaseofneutro philextracellulartraps(NETs;KolaczkowskaandKubes201 3).

ThefirstreportonNETsrevealedthatneutrophilsstimu- latedbyagentssuchaslipopolysaccharide(LPS),interleukin8(I L-8)orphorbol12-myristate13-

acetate(PMA)formandreleasestructuressimilartothenetwo rk,hencetheirname

*ElzbietaKolaczkowskaela.k olaczkowska@uj.edu.pl

1

DepartmentofEvolutionaryImmunology,InstituteofZoologyandBio medicalResearch,JagiellonianUniversity,ul.Gronostajowa9,30- 387Krakow,Poland

(2)

(Brinkmannetal.2004).DetailedstudiesofNETsbyelectrons canningandconfocalmicroscopyaswellasproteomicanal- ysesshowedthatNETsarecomposedofthinchromatinfiberst hataredecoratedwithsome30neutrophilproteins,includingn eutrophilelastase(NE),bactericidal/permeability-

increasingprotein(BPI),defensins,cathelicidin(LL- 37),proteinase3andcathepsinGofgranularoriginandnucle arhistones(Brinkmannetal.2004;Urbanetal.2009) (Fig.1).NETscantakedifferentforms,fromabandform,bya cloud-

likestructure,whentheNETisfullyhydrated,toanetwork- likeshape,exceeding10–

15timesthevolumeofthereleasingcell(Brinkmannetal.2004

;BrinkmannandZychlinsky2012).Morerecentstudies,appl yingatomicforcemicroscopytore-

vealtheirnanoscaleproperties,reportedthatNETsarebran chingfilamentnetworkswithasubstantiallyorganizedporo usstructureandwithopeningsinthesizerangeofsmallpathoge ns(Piresetal.2016).Importantly,proteasesattachedtoNETss ecureassemblyofthewholestructureanditsme-

chanicalproperties.Whilesuchastructureincreasestheeffi- ciencyofcatchingpathogens,itcanalsofavorcollateraldam- age(Piresetal.2016).Thelatterobservationdirectlyrelatestop rosandconsofNETformation.

(3)

474 CellTissueRes(2018)371:473–488

Fig.1 B a s icc h a racteristicso f n e u t rophile x t racellulart raps( N ETs):

I)inducingfactors,II)involvedpathways,III)compositionandIV)fateofN ET-

releasingneutrophils.TheimagecapturesNETsformeduponLPSstimul ationofmurineneutrophils(greenarrowsextracellularDNA,reda rrows citrullinatedh iston e H3),sca leb a r50μm.PAMP

pathogen-associatedmolecularp attern,D AMPd amage-associatedmo- lecularpattern,PMAphorbol12-myristate13-acetate,ROSreactiveoxy- genspecies,N O nitricoxide,PAD4peptidylargininedeiminase4,MPOmye loperoxidase,BPIbactericidal/permeability-increasingprotein,LL- 37c athelicidinsc athelicidin

YingandyangofNETs

TherearemultiplereportsonNETsbeingabletocapture ,immobilizeandneutralizepathogens.Themicrobescaughtb yNETincludebothGram-

positive(e.g.,Staphylococcusaureus)andGram-

negativebacteria(e.g.,SalmonellatyphimuriumandShigel laflexneri;Brinkmannetal.2004),fungi(e.g.,Candidaalbicans

;Urbanetal.2006)andviruses(Saitohetal.2012;Jenneetal.201 3).Morecontroversialistheircapacitytokilltrappedpathogens.

AsNETsaredecorat-

edwithantimicrobialproteinsandproteases,theirkillingpo- tentialseemedtobeunavoidableandinfactitwasrepeatedlyrepo rtedtooccur(Brinkmannetal.2004;Urbanetal.2006;Guimarãe s-

Costaetal.2009).However,somestudiesruleditout(Gabrieleta l.2010).ArecentpaperbyMenegazzietal.

(2012)challengedthetechnicalapproachappliedinthema- jorityofthestudies,mostofwhichwereperformedonisolatedneu trophilsandrevealedthattheresultsdependedonthecho- senstrategy;i.e.,incubationwithDNasepriororpost-

additionofbacteriatotheNETformingneutrophils.Overall,the studyconcludedthatNETsentrapbutdonotkillmicrobes(M enegazzietal.2012).Thisisinlinewithsomeinvivostudies showingthat,afterintravascularapplicationofDNase,colon y-formingunits(CFUs)ofS.aureusdonotin-

creasedespitestrongdepositionofNETsinthevasculatureofmic

ewithS.aureussepsis(Kolaczkowskaetal.2015).ButevenifNE Tsindeeddonotkillpathogens,theirrolein

(4)

CellTissueRes(2018)371:473–488 5 capturingandimmobilizingmicrobesshouldnotbeunde

restimatedasNETspreventmicrobialdisseminationthrough outthebody.Thiswas,forexample,showninthecourseof Escherichia colisepsis(McDonald etal.2012).Mor eover,onecanspeculatethatNETscanindirectlycontrib- utetopathogenkilling,asimmobilizedmicrobesareexposedto microenvironmentalimmunefactorspresentinserumortissue saswellascytotoxicleukocytes(macrophagesandNKcells).I naddition,bymeansofproteasesattachedtoNETs,virulencefact orsofpathogenscanbeshedfromtheirsurfacelimitingtheirvirul ency,e.g.,IpaBonS.flexneriisbeingremovedbyNEdecorating thetraps(Brinkmannetal.2004).Anotherim-portant,anti- inflammatoryfunctionofNETscomesfromstud-

iesonsterileinflammation,asduringgout,serineproteasesat tachedtoNETswereshowntodegradepro-

inflammatorycytokinesandchemokinescontributingtother esolutionoftheimmuneresponse(Schaueretal.2014).

TheimportanceofNETsisfurtherstrengthenedbyfourfa cts:(1)theirevolutionaryconservation,(2)releasebymul- tiplepopulationsofleukocytes,(3)releaseoftheNETback- bone(DNA)fromeithernucleusormitochondriaand(4)strat egiesofpathogensdevelopedtoescapefromNETs.Itturnso utthatDNAdecoratedwithantimicrobialsandprote-

asesispreservedinevolution;notonlydoallvertebrates(onlyda taonamphibiansaremissing)releaseextracellulartraps(E Ts;Brinkmannetal.2004;AlghamdiandFoster2005;Paliće tal.2007;Pijanowskietal.2013;Reicheletal.2015)

(5)

butalsoinvertebratespecies(Ng etal.2013;Homaetal.20 16)andevenplants( Wenetal.2009,2017)andsocial am oebae(Zhangetal.2016)doso.Moreover,althoughnotallcells releasingETsareleukocytesorleukocyte-

like,theyallseemtoperformakindofdefensefunction,includin grootbordercellsofplants(Hawesetal.2000)andsentinelcellso fthemulticellularslugstageofthesocialamoebafunctioningas aprimitiveinnateimmunesystem(Chenetal.2007).Thus,itisno tsurprisingthat,invertebrates,asdepictedindetailinmammals, ETformationisuniversalamonginnateimmuneleukocytesan dalsocharacterizesmonocytes(Grangeretal.2017),macropha ges(Chowetal.2010;Liuetal.2014),eo-

sinophils(Yousefietal.2008),basophils(Morshedetal.2014)a ndmastcells(vonKöckritz-

Blickwedeetal.2008).Furthermore,thesourceofDNAcanvar ysinceneutrophilsandeosinophilsnotonlyejectDNAofnuc learbutalsoofmitochondrialorigin(mNETs;Yousefietal.20 08,2009).ThestudiesonneutrophilsrevealedthatDNAofmNE Tsin-

deedcontainsmitochondrial(e.g.,Cyb)andnotnuclear(e.g.,Ga pdh)genes(Yousefietal.2008).Interestingly,mNETsarerelea sedbyvitalneutrophilsandtheyprolongsurvivalofthereleasing cells(Yousefietal.2009).Finally,differentstrategiesofpathoge nstoavoidtrappingbyNETs,ortoescapefromthereleasedchrom atinfibers,havebeendescribed.Streptococcuspneumoniaeand S.aureusaregoodexamplesofbacteriaarmedagainstNETsbutf ungi(Leeetal.2015;Rochaetal.2015;Johnsonetal.2016)and parasites(Guimarães-

Costaetal.2014)havealsodevelopedsuchmechanisms.S.pne umoniaepossessestheabilitytoformpolysaccharidecapsulespro tectingthemfrombindingtoNETs(Warthaetal.2007)andthe irendonucleasesdegradethenetwork(Beiteretal.2006).More over,S.pneumoniaecanchangetheelectricalchargeoftheirmem branetopositive,byincorporationofD-alanineres-

iduesintoLTAs(lipoteichoicacids).Thisstrategyprotectsthem againstpositively-

chargedresiduesonNETantimicrobialsandproteasespreventin gthetrapping(Beiteretal.2006).S.aureusalsoreleasesnucleas esbutnotonlytodesintegrateNETs(Berendsetal.2010),asthey alsodegradeNET-DNAtointer-

mediateproductsthatareconvertedto2′-

deoxyadenosine.Thelatterdeoxyribonucleosideinducesapopt osisofmacrophagesthatotherwisecouldphagocytosepathoge nsimmobilizedinNETs(Thammavongsaetal.2013).

Havingdescribedt h e a d ventageso f N E T r e l e ase,o n e musta lsoa cknowledget hes idee ffectso f t heirf ormationlea dingtoeitherinitiationofbystanderdamageorevendis- eases.N umerousstudieshaver eportedt hatu ncontrolledand/

orexcessivereleaseofNETs,aswellastheirinadequateremoval ,leads,oratleastcontributes,tovariouspathologi-

calconditions,includingrheumatoidarthritis(RA;SurChow dhuryet al.2014;Carmona-Riveraetal.2 017),s ys-

temiclupuserythematosus(SLE;Landeetal.2011;Villanue

vaetal.2011),atherosclerosis(Knightetal.2014;Wangetal.20 17),vasculitis(Kessenbrocketal.2009;

(6)

SöderbergandSegelmark2 016),t hrombosis( Goulde t a l.2 014;M artinoda ndWagner2 014),s epsis( Kolaczkowskaeta l.2015)andcancer(Berger-

Achituvetal.2013;Tohmee ta l.2 016).SLEa nds epsisa rer epresentativee x-

amplesofexcessive/inapropiateNETreleaseandinadequater emoval,respectively.S L E i s m a n ifestedbyb enigns kinle sionstolife-threateningsymptomsresultingfromoverpro- ductionofautoantibodiesandlossoftolerancetotheirownant igens(Crispínetal.2010;Dörneretal.2011).Theauto- antibodies,anti-

neutrophilcytoplasmicantibodies(ANCAs)ared i r e c t e d a g a i n s t P R 3 , M P O,N E a n d t h e a n t i -

n u c l e a r antibodies(ANAs)againstDNAandhistones,all ofwhicharec o mponentso f N ETs( Fauzie t a l .2 004;Yua n d S u2013;Gajic-

Veljicetal.2015).CharacteristicforSLENETsisthepresenceo fLL-37andhumanneutrophilpeptide(HNP).TheDNA/LL- 37/HNPcomplexesactivateplasmacytoidden-

driticcells(pDCs)resultinginincreasedproductionofIFN- α(Landeetal.2011),whichplaysacentralroleinthepathogen- esisofSLEbypromotingimmunesystemactivationthatcon- tributestotissueandorganinflammationanddamage(Crow201 4).Inaddition,NETsofSLEpatientsareinadequatelyde- gradedastheyareprotectedbyDNaseinhibitors(Hakkimetal.2 010)butalsocomplementC1qboundtoNET(Leffleretal.2012) ,whileLL-

37canprotectDNAfromdegradation(Landeetal.2011).Ofimp ortance,duringSLE,numbersofcirculatingimmatureneutroph ilsareelevated(Bennettetal.2003).

Correspondingly,duringsepsis,NETscontributetoby -

standerdamageofendotheliumduetoactivityofhistones (Xuetal.2009;Saffarzadehetal.2012;McDonaldetal.20 17)andNE(Kolaczkowskaetal.2015)ofNETsthatarenottim elyremoved.Also,sepsisischaracterizedbyarapidrecruitme nttobloodofimmatureneutrophils(Mareetal.2015)andn otfullymatureneutrophilsarealso presentintumors wheretheydisplaya pro-

tumorgenicphenotype(Sagivetal.2015).Thesedatasuggest thattheageofneutro-

philsmightnotonlyimpactthephenotypeofneutrophilsbutals otheircontributiontodiseasepathology.

OnhowNETsarecreated

ThirteenyearsintoNETresearchandstillweknowlittleaboutt hemechanismsofNETformation,althoughnumerousstud- ieshavebeenpublishedonthistopic.Nottounderestimatean yofthestudies,onemustkeepinmindthat,toourestima- tion,approximately90%ofstudiesonNETsareperformedonis olatedneutrophilsortissuescollectedpost-

mortem.Thisdoesnotreflectonacomplexinvivomilieuandb ehaviorofneutrophilsandotherleukocytesinsitu,inbloodort

issues.However,themainconcernisthatmostofwhatweknowo nthemechanismsofNETscomefromstudiesinwhichPMAwa suseda solestimulant.PMAisasynteticp horbol12- myristate13-acetate,arobustactivatoroftwoofthethree

(7)

familiesofproteinkinaseC(PKC;LiuandHeckman1998;Neel iandRadic2013)and,assuch,enforcesparticularsig-

nalingpathways.Arecentpaperre-examingkineticsandsig- nalingpathwaysofNETsinducedbyvariousagentsconclud- edthatBPMAstimulationshouldberegardedasmechanisti- callydistinctfromNETformationinducedbynaturaltrigger s^(vanderLindenetal.2017).

VeryearlyinNETresearch,dependenceonreactiveoxy- genspecies(ROS)generatedbytheNADPHoxidasepathwayw asreportedtobeaprerequisitefortheirformation(Fuchsetal.2 007).Thestudiesweresubsequentlystronglysupportedbyobse rvationthatpatientswithchronicgranulomatousdis-

ease(CGD),withimpairedNADPHoxidaseactivity,didnotrele aseNETsbutthatthiscouldberestoredbyatargetedgenetherapy (Bianchietal.2009).Subsequently,theRaf-MEK-

ERKpathwaywasidentifiedasbeinginvolvedinNETfor- mationthroughactivationofNADPHoxidase(Hakkimetal.20 11).ButthennumerousstudiesreportedROS-

independenceofNETformation,whichresultedfrombothinv itro(Gabrieletal.2010;Byrdetal.2013;Pijanowskieta l.2013;Mejíaetal.2015)andi nvivostudies( Chenetal.2012;

Kolaczkowskaetal.2015;Barthetal.2016a)utilizingNAD PHinhibitorsandknockoutmice.Thisdiscrep-

ancyinthedataonROSinvolvementinNETreleaseisdiffi- culttoexplainatthisstage.Itmightberesultingfromtheexp erimentalmilieuorthenatureofNET-

inducingfactorsasnotallagentsactivateNADPHoxidase(Farl eyetal.2012).Thelatterstudyreportsonaninterestingdiscrepa ncy:PMAbutnotplatelet-

activatingfactor(PAF),generatedROSbuttheNADPHoxidase inhibitor(DPI)reducedNETreleasebybothPMAandPAF.The sedataindicatethat,onceagain,resultsfromPMAstudiesshoul dbecarefullyreviewedunlesssup-

portedbydatafromconcominantstudiesapplyingpathogen- orimmuneresponse-

relatedagentstoinduceNETs.However,mostimportantly,thes tudysuggestsaninterestingexplana-

tionofROSinvolvementinNETformationasDPIalsoin- hibitsarangeofflavoenzymesincludingmitochondrialoxi- daseandnitricoxidesynthase(Stue hretal.1991;Liand Trush1998),whichcouldBsubstitute^forphagosomalROS.Th us,insomecircumstances,NETformationmightdependonpha gosomalROS(NADPH-

dependent;e.g.,Fuchsetal.2007)butalsoonmitochondrialRO S(asshowninLoodetal.2016)orNO(asreportedinPateletal.2010 )ornone.Itisalsoofnotethattheonlyfamilyofendogenousinhibit orsofNETsknowntodatedoesnotinhibitROSformationandi nsteadblocksPAD4-

dependentcitrullination(seeBNETformationinneonates^) (Yostetal.2016).

AnothermechanismputativelyinvolvedinNETformationis autophagy.Thisprocessiscriticalfortheturnoverofdam- agedorganellesandproteinsduringhomeostasisbut,duringinf ection,playsaroleinthekillingofphagocytosedpatho-

gensanddown-

regulationofinflammasomeactivation(Birminghametal.20 06;Jabiretal.2014).Themajorityof

(8)

studiesshowinginvolvementofautophagyinNETformationa ppliedpharmacologicalinhibitorsofkeypathwaysormole- culesinvolvedinthisprocessthathowever,werealsoinhibit ingROS(Remijsenetal.2011;McInturffetal.2012;Kennoeta l.2016;Ullahetal.2017).Recently,theinvolve-

mentofautophagyinNETreleasewasstudiedintransgenicmi cewithconditionallydeletedatg5(itsproductiscriticalforauto phagosomeformation)ineitherneutrophilsoreosino- phils(Germicetal.2017).Thestudyruledoutaroleofau- tophagyinNETformation.Asimilarcontroversyconcernsth einvolvementofnecroptosis(aprogrammednecrosis- likecelldeath),whichiswellillustratedbytwocontradictorypa -perspublishedrecentlyhead-to-

head(Aminietal.2016;Desaietal.2016).

However,therearetwoenzyme-

basedmechanismsofNETformationthatwereconfirmedtoop erateindependentlyoftheinvitroorinvivosettingsandthe inducingagents.TheseincludetheinvolvementofNEan dpeptidylargininedeiminase4(PAD4)

(Fig.1).PAD4belongstothegroupofCa2+-

dependentenzymesandislocatedinthenucleusandgranul esofneutrophils(Asagaetal.2001;Nakashimaetal.2002;Kea rneyetal.2005).Theenzymeisinvolvedincata-

lyzingthecitrullinationofhistonesH2/H3/H4,whichis apost-

translationalmodificationconvertingthemethylarginineresi duestocitrullinetoformacarbonylgroup(Hagiwaraetal.

2002;Aritaetal.2006;Györgyetal.2006).Theconversionofpo sitivelychargedmethylargininetoneutralsidechainsofcitr ullineaffectsprotein(histone)-

DNAstabilizationandleadstochromatindecondensationan dNETrelease(Neelietal.2008;Wangetal.2009).Studieso nPAD4knockoutmice(PAD4−/

)showedimpairedabilitytoformNETsincompar-

isontoWTanimalsindependentlyofstimuli,beitLPSorion omycin(Martinodetal.2013).Similarly,thePAD4inhib- itor(Cl-amidine)alsodiminishesNETreleasebothinvitro(Li etal.2010;Kusunokietal.2016)andinvivo(Knightetal.2013 ,2014).However,recently,PMA-inducedNETforma- tionwasreportednottobeconnectedwithhistonedeamina- tion(nocitrullinatedH3histonesweredetectedinPMA- inducedNETs),whichwasexplainedbythefactthatPMAacti vatesthePKCαisoformthatinhibitsPAD4whileitisthePMA- irresponsivePKCζthatactivatesdeamination(Neeliand Radic2013).Nevertheless,therearealsostudiesreportingdep ositionofcitrullinatedhistonesinPMA-

stimulatedNETs,althoughtoa lowerdegreethanuponothe rinducers(Martinodetal.2016;vanderLindenetal.2017).

AnotherenzymerequiredtoformNETsisaserineprote- ase:neutrophilelastase.Theproposedmechanismofitsactioni sspecificdegradationofhistonesthatdestabilizeschromatin(

Papayannopoulosetal.2010).Inaddition,blockadeofNETfor mationwasalsodemonstratedinvivoonNEKOmiceinf ectedwithGram-

negativebacteria(Papayannopoulosetal.2010;Farleyetal.2

012)orGram-

positivebacteria(Kolaczkowskaetal.2015).Also,theuseo fNEinhibitor

(9)

resultedintheinhibitionofC.albicans-inducedNETforma- tion(Papayannopoulosetal.2010).However,Martinodetal.

(2016)showedthatnumerousneutrophilsderivedfromNE−/

−miceejectedNETsuponinvitroionomycinstimulation,while4 0%ofthemdidnot(Martinodetal.2016).Interstingly,dur- ingmousesterilethrombosis,only20%fewerNETswer eproducedbyNEKOneutrophils(Martinodetal.2016).Thisin dicatesthatbothPAD4andNEareinvolvedinNETformationb utmightbemoreorlessredundantdependingonthediseasestatea nd/orstimuli.Forexample,duringS.aureussepsis,NE−/

−neutrophilsdidnotproduceNETswhilesomePAD4−/

−P MNs(c. 20%)did (Kolaczk owskaet al.2015),whereas duringdeepveinthrombosis,80%ofNE−/−neutro-

philsreleasedNETs(Martinodetal.2016)butnosuchstruc- tureswerecastbythePAD4−/

−cells(Martinodetal.2013).Thesefindingsreflectwellonthedi versityofNETtypes.Thetrapsseemtovarynotonlyintheirappea rance,involvedmol-

eculesandpathwaysbutal sointheconsequencesfortheprod ucingcells.ThefirstreportontheexistenceofNETspres entedmanyargumentssupportingthatthetrap-

releasingcellsremainviable(Brinkmannetal.2004)butsubseq uentstudiesreportedontheprocessbeinglethal(Fuchsetal.2007 )andeventuallyatermNETosiswascoined(Steinbergan dGrinstein2007).However,Yippetal.

(2012)showedbymeansofintravitalmicroscopyofS.aureus- inflamedskinthatanuclearneutrophilsthatreleasedNETsrema inaliveandkeepmovingandphagocytosing(Yippetal.2012 ).Thisseemsmoreeconomicalandefficientthanthebeneficia lsuicideandwasdetectedinthemilieuoftheliveorganism.S uccessively,viableNET-formingneutrophilswerealsore- portedininvitrosettings(Yousefietal.2009;Pilsczeketal.2010 ).Mostprobably,thetwomodesrepresentanothersetofparallel mechanismsbywhichNETsarereleased,eitheruponcellruptur e(Fuchsetal.2007)orvesiculartransporttothecellsurface(Pilsc zeketal.2010).

Westilldonotknowhowtounderstandthisvarietyofin volvedmechanismsandwhetherreportedNETsarealwaysBN ETs^,asadequate,multicomponentdetectionisakeybutnotago ldenstandard.Thisissueisevenbecomingatopicofopendiscuss ionswithBhealthycritisism^suchastheoneofNauseefandKub es(2016).

NETsandageofneutrophils

Immatureneutrophilsversusmatureneutrophils Neutrophilsariseandmatureinthebonemarrow.Thematu- rationconsistsofthemitoticstage( myeloblasts,promy elocytesandmyelocytes)andpostmitoticstage(metamyelo cyte,neutrophilbandandmaturesegmentedneu-trophils)

(Borregaard2010;Amulicetal.2012;Lahoz-

Beneytezetal.2016).Neutrophilsecretionfromthebone

(10)

marrowintocirculationiscontrolledbycircadianoscillations(

Casanova-Acebesetal.2013)anddependsontheinterac- tionsbetweentheCXCL12chemokineanditsCXCR4recep- tor(retentionofneutrophilsinthebonemarrow)andtheCXCL 1ligandwiththeCXCR2receptor(releaseofneutro-

philsintoblood)

(Martinetal.2003;Eashetal.2010).Incirculation,neutrop hilageandhumanneutrophilhalf-

lifeislessthan1day,about19h(Lahoz-

Beneytezetal.2016)andabout12hinmice(Pillayetal.2010a).E xpressionofCXCR4increasesonagingcellsandcausesneutro philstoreturntothebonemarrow,wheretheyareremovedbyma crophages(FurzeandRankin2008;Casanova-

Acebesetal.2013)butthecellscanalsoberemovedinthesple enandtheliver(Shietal.2001;Surattetal.2001).Inturn,thisl eadstosecretionfromthebonemarrowofacorrespondinglys mallnumberofma-

turebutnotimmature(Bruegeletal.2004;Nierhausetal.20 13),neutrophilstothecirculation(Semeradetal.2002).Assh ownrecently,theprocessiscontrolledbygutmicrobiota(Zhan getal.2015)andmostprobablyalsobyexosomeswhosenu mbersandcontentchangeduringaging(Prattichizzoeta l.2017).Ifduringtheirlifeneutrophilsarerecruitedtothesite ofinflammation,theirlife-

spanisprolongedandtheirdeathbyapoptosisisdelayed (Simon2003;MilotandFilep2011).Duringinflammation,es peciallythesystemicone,bothmatureandimmatureneutroph ilsarerecruitedfromthebonemarrow(Drifteetal.2013).I nterestingly,arecentstudyshowedthatthefirstneutrophilstoa rriveatthesiteofinflammationareagedneutrophilsandtheyar efollowedbynonagedcells(Uhletal.2016).Thefactthatagedc ellsdisappearfromcirculation,neatlyexplainswhyfreshcells arerecruitedtothebloodfromthebonemarrowinthecourseofin flammation.

Immatureandmatureneutrophilsdifferintheirgeneex- pression,theformerhavinghigherexpressionofgenescon- trollingtheirdifferentiationandgranularproteinsynthesis ,includingNE,MPOandBPI,whereasgenescontrollingche- motaxisorapoptosisaredown-regulatedinimmatureneutro- phils(Martinellietal.2004).Comparisonofhumanimmature(

bonemarrow)andmature(blood)neutrophilsintheircapac- itytoproduceNE TsuponIFN-

α/γprimingandfollowingstimulationwithcomplementfa ctorC5,showedthatonlythematureneutrophilsreleasedthe traps(Martinellietal.2004).Otherstudiesrevealeddiminishe dyetdetectableNETreleasebyimmatureneutrophils.Inthestu dybyTanejaetal.

(2008),circulatingneutrophilsconsistedofc.35%ofimma- turecells(vs.5%inhealthyvolunteers)duringsepsis.Andsi milarresultswereobtainedbyPillayetal.

(2010b).Theimmatureneutrophilshadalowerratioofphago cytosisand

Ca2+signaling(Tanejaetal.2008),antimicrobialrecognition andkillingandROSgeneration(Pillayetal.2010b).Also,inpat ientswithsterileburninjury,immatureneutrophilswerenum

erouslypresentincirculationandthesepatientshadhigherleve lsofcirculatingfreeDNA(cfDNA)andcitH3,

(11)

clinicalmarkersofsystemicformationofNETs(Hampsoneta l.2017).Thiswasespeciallyapparentattimeswhennum- bersofimmatureneutrophilsdominatedincirculation.Howe ver,whenneutrophilswereisolatedfrombloodandexvivo- stimulatedwithPMA,thecells(amixtureofmatureandimmatur eneutrophils)ofpatientswiththermalinjuryreleasedfewerNE Ts(Hampsonetal.2017).

ThereisalsoareportonnormalproductionofNETsbyhum animmatureneutrophilspresentincirculationthatcomesfroms tudiesonbonemarrowtransplantation(Glennetal.2016).

Important,althoughnotdirect,informationonNETproductio nbyimmatureneutrophilscomesfromstudiesondiseasesduri ngwhichtheundevelopedcellsareeitherpresentinbloodortiss ues.OnesuchexampleisSLE,aslupuspa-

tientsdisplayavaryingdegreeofneutrophilmaturation(Denn yetal.2010;Villanuevaetal.2011).Inparticular,twoneutroph ilsubpopulations,low-

densitygranulocytes(LDGs)andhigh-

densityneutrophils,wereidentifiedinthecourseofthedisease.

TheLDGsdonotcarryanyspecificmarkersidentifiedtodate buttheirnuclearmorphology(c.40%cellshavelobular,bando rmyelocyte-

likenucleivs.c.60%withsegmentednuclei)suggeststhatmany ofthesecellsrepresenttheimmaturephenotypeofneutrophils(D ennyetal.2010).Thecellshavehigherexpressionofazurophilic granulegenes,includingthoseencodingNEandMPOande xhibitincreasedspontaneousNETproductionandoverallrel easemoretraps(Villanuevaetal.2011).Asimilarsubsetofneu- trophilswasalsodescribedinthecourseofpsoriasisandpso- riaticLDGsalsotendtoformNETswithoutanystimulation,inc ontrasttocontrolorpsoriasismatureneutrophils(Linetal.2011).

Low-

densityneutrophils,consistingofbothimmatureandmaturene utrophils,havealsobeendescribedincancer(Sagivetal.2015).

Unlikehigh-densityneutrophils,thelow-

densitycellshaveapro-tumorphenotype(i.e.,decreasedche- motaxis,phagocytosisandROSproduction).Thetwopheno- typesoftumor-associatedneutrophils(TANs),i.e.,high- densityandlow-

densityneutrophils,arealsotermedN1andN2,respectively(Fri dlenderetal.2009).TheN2phenotypedominatesintheprese nceofTGF-βbutisdiminishedby IFN-

β(Fridlenderetal.2009;Andzinskietal.2016).Itwasshownthat bloodneutrophilscollectedfrommicewithtumorsinwhichN2p henotypewassuggestedtodominate(IFN-

βKOs),producedfewerNETs,eitherspontaneouslyoruponP MAexvivostimulation(Andzinskietal.2016).These,how- ever,werenotTANsandtheexactphenotypeofcirculatingneut rophilswasnotexamined,neverthelessimmatureneutro- philspresentinacourseofdiseasemightnotalwaysreleasespon taneouslyhigheramountsofNETs.Inaddition,thetumorenviro nmentisuniqueandthuswecanspeculatethatNETreleaseincr easesanti-

tumoralresponseasNETcomponentsmightdamagetumorcell

s.ButNETscouldalsofunctionasscaffoldsoftumorantigens,faci litatingtheirtake-

upbyDCsandmacrophages.Ontheotherhand,NETscantrigge r

(12)

metastasis,e.g.,high-mobilitygroupbox1(HMGB1)re- leasedfromNETsactivatestheTLR9-

dependentpathwayincancercellspromotingtheiradhesion,p roliferation,migrationandinvasion(Berger-

Achituvetal.2013;Tohmeetal.2016).Similarresultscamefro mastudyonimmatureandmaturegranulocytespresentinle ukemicpatients(Lukášováetal.2013).Inthisstudy,onlyd ataonPMA-

inducedNETswerereportedandacutemyeloidleukemia(

ALM)granulocyteswereshownnottoproducethetraps asopposedtogranulocytesisolatedfromperipheralbloodofh ealthydonors(Lukášováetal.2013).Theimmaturecellsexpre ssedhetero-

chromatinprotein1γ(HP1γ)anddimethylatedhistoneH3atly sine9(H3K9me2).Thetwoproteinsinteracttopreservethespr eadingofheterochromatinandHP1γisabsentinmaturegranu locytes.Terminallydifferentiatedmatureneutrophilsarechar acterizedbyatightlycondensedchromatinandgenere- pression,whileimmaturecellsdonot(Lukášováetal.2013).L ukášováetal.

(2013)hypothesizedthatitmightbenecessaryforchromatinto becondensedtofacilitatePAD4actionandforthisNETformat iontobeweakerinimmaturecells.

OnehastobearinmindthatthemajorityofdataonNETform ationbyimmatureneutrophilscomefromillpatients(withse psis,SLE,psoriasisorcancer).Nevertheless,manyofthem,a lthoughnotall,reportonspontaneousreleaseofthetrapsbyi mmatureneutrophils(ifthisaspectwasstudied/reported)andd iminished,oratleastnotfutherincreased,pro-

ductionofNETsuponstimulation(mostlywithPMA) (Fig.2).Inaddition,atleastonestudyreportedonconcomitant lyelevatedmarkersofNETsincirculation.Consideringallthe abovedata,onemighthypothesizethatimmatureneutrophilsp resentinbloodtendtospontaneouslyreleaseNETs,hencethe presenceoftheirmarkersincirculationandthus,whenisolat edandexvivo-

stimulatedtoproducethetraps,failtoformthem.Thisiseither duetoanexhaustedphenotypeofthecellsorthefactthatallneutr ophilswithapotentialtoreleaseNETshavealreadydonesoonc einvasculature.Especially,itisonlyabout25%ofneutrophilst hatreleaseNETs(NauseefandKubes2016).

Agedorsenescentneutrophil s

NotmuchisknownaboutNETproductionbysenescentneu- trophils.Agingneutrophilsup-regulateCXCR4andprogres- sivelyloseCD62L(L-

selectin)expressionthatfacilitatestheirre-

directiontothebonemarrow(Zhangetal.2015).However,the yexhibitenhancedadhesionmolecules(e.g.,Mac-1,ICAM- 1)andTLR4expression(Zhangetal.2015),whichisinlinewi ththeirrapidrecruitmenttothesiteofinflamma-

tion,priortomaturebutnotaged,neutrophils(Uhletal.2016).

Thisagingphenotypeisregulatedbymicrobiotaandislostin

micetreatedwithbroad-rangeantibioticsorgerm- freeanimalsbutrestoredbyapplicationofLPSorfecaltrans- plantation(Zhangetal.2015).TheCD62LloCXCR4hiaged

(13)

neutrophilsaresignificantlynumerousinSelp−/−m i c e(P- selectinKOs)oranti-P-selectin-

treatedanimals(Zhangetal.2015;Uhletal.2016).WhenNETpr oductionwasstudiedinthelattermice,neutrophilsstimulatedex vivowithLPSdra-

maticallyincreasedtrapformation.Thiswasfurthercon- firmedinanendotoxemicmodelbyintravitalimagingofNETsi nlivervasculature(Zhangetal.2015).Therefore,inthecaseofsc enescentneutrophils,theexvivoandinvivodataclearlycorrelat ed,indicatingtheirenhancedcapacitytore-

leaseNETs,whichisinlinewithapro-inflammatorypheno- typeofthesecells(Fig.2).However,nodataonhumanscenesce ntneutrophilsareavailable.

NETsandageofindividuals

Immunesystemmaturesduringfetaldevelopmentandthendec linesasweage.Thesefactshaveimportantimpactsonsuscept ibilitytoinfectionandthechancesofsurvivingit.And,assuc h,itisalsoimportanthowNETreleasechangeswithage.Especi ally,theworldisundergoingashiftindemo-

graphicswithlowbirthratesandagingofpopulations(Bouleand Kovacs2017).Independentlyoftheageofmothers,notonlyfew erbabiesarebeingbornbutalsomanyofthemarebornpreterma ndthereforetheyaremorelikelytobecomeill

ordie,aspreterminfantsaremorevulnerabletoinfectio n(Urquhartetal.2017).Inlinewiththis,theriskofseveres epsisinneonatesincreasesdramaticallywithdecreasingges- tationalage(Sperandioetal.2013).Ontheotherhand,theglob alpopulationisagingandthenumberofindivudualsolderth an65yearswilldoubleby2050(BouleandKovacs2017).Elderl ypeoplearemoresusceptibletoinfectionduetoinflamm- agingorimmunosenescence,i.e.,theage-

relateddysfunctionoftheimmunesystembuttheyalsodevelop chronicinflammatorystates(Boeetal.2017).

NETformationinneonates

Theimmunesystemplaysaveryimportantroleduringpreg- nancy,withthepurposeofprotectingthemotherandthede- velopingfetus(Moretal.2011).Pregnancyisaperiodthatischar acterizedbymodulationoftheimmunesystemassociatedwithb oththecourseandstageofpregnancy,aswellastheexposureto pathogens.Moreover,thepregnancyischaracter-izedbyapro- inflammatoryphase(firsttrimester),theanti-

inflammatoryphase(secondtrimester)andbytheendofthepreg nancyreturnstothepro-

inflammatoryphase(MorandCardenas2010).Pregnantwom enhaveanincreaseinthetotalnumberofleukocytes,whichco rrelateswiththecourseofpregnancy(thehighestlevelisinth ethirdtrimester)ofwhich

Fig.2N europhilmaturation-andage-

dependentchangesinneutrophilextracellulartraps(NETs)formation.Tos trengthenthegraphicalvisual-

ization,potentialtoformNETsismarkedwith–and+,where+<++

<+++;−/

+indicatesthat,forimmatureneutrophilsstimulatedexvivo,somestudiesre portedalackofNETformation(−)whereasothers

(14)

reportedsomeNETreleasealthoughweak(+).Phenotypeofmatur eversusagedneutrophilsisdefinedbyhighorlowexpressionofCXCR 4andCD62L.Immatureneutrophilsweremostlydefinedbytheirnucleus morphology.Referencedataareincludedanddiscussedinthemaintext

(15)

CellTissueRes(2018)371:473–488 480

themostabundantcellsarecirculatingneutrophils(Crockereta l.2000).Theseneutrophilsdisplayadecreasedrespiratoryburst duringthesecondandthirdtrimesters;however,thisactivit yreturnstonormalwithin7 weekspost-

partum(Crockeretal.2000).WithrespecttoNETs,increasedle velsofcfDNA(nucleosome/MPOcomplexes)areobservedin pregnantwomen’sserum,comparedtononpregnantwomen(S urChowdhuryetal.2016).Interestingly,thetendencytoforms uchcomplexesincreasinglyrelatestothedurationofpregnanc y.Nevertheless,thehighestserumcfDNAlevelisobservedinp reeclampsiawomen,asopposedtowomenwithnormalpregnan cyandnonpregnantwomen(Loetal.1999;SurChowdhuryetal.

2016).Moreover,thelevelofbothfetalandmaternalcirculating plasmaDNAfrompreeclampsiawomencorrelateswiththedeg reeofdiseaseseverity(Zhongetal.2001).

Thefetus,whichislocatedintheuterus,developsitsownimm unesystem(Daubyetal.2012).Afterbirth,bothpreterm(<37we eks)andterm(37–42weeks)neonatesarecharacter-

izedbyatolerogenicimmuneresponseduetothereducednum berofimmunecells,includingneutrophilsorlympho- cytes,whichincreaseinthefirstweeksoflife(Walkeretal.2011;

Nguyenetal.2016).Inthedevelopinghumanfetus,asmallnumb erofneutrophilsbegintoappearintheclavicularmarrowafter11 –12weekspost-

conceptionwiththemajorityobservedafter13–

15weeks(Slaytonetal.1998a,b).However,neutropoiesissta rtspriortothisinthefetalliver(aroundweek5;Slaytonetal.19 98a)andyolksac(aroundweek3;Sperandioetal.2013).Neutro philsofamatureindi-

vidualdisplayacapacitytomigratetothesiteofinflammationand effectivelyfightpathogensthroughphagocytosisorde- granulation(KolaczkowskaandKubes2013).Intermneo- nates,thephagocytosisanddegranulationareequallyefficienta sinadultsbutnotinpretermneonates(Bektasetal.1990;Nuppo nenetal.2002).However,bothpretermandtermneo-

natesshowimpairedmigrationofneutrophilstotheinflam- matoryfocus(McEvoyetal.1996;Nussbaumetal.2013).Hen ce,theyoungorganismisnotabletodefenditselfasefficie ntlyastheadultandthereforeneonatesarehighlysus-

ceptibletoinfections,includingsepsis,whichdirectlyaffectinc reasedmorbidityandmortality(Gardner2009;Lawnetal.2010) .Makonietal.

(2016)suggestedthatimpairmentoftheneonatalneutrophilsm aybeduetotheincreasednumberofdevelopmentallyimmature neutrophilsatbirthratherthanoth-

erabnormalitiessuchastheexpressionofsurfaceadhesionmol ecules,whichislowatbirthbutincreasesovertime(Carretal.19 92;Makonietal.2016).Anotherreasoncouldbekeepingd ownimmunitytopreventsideeffectsthatmightresultfro mitsoveractivity.

Furthermore,theformationofNETsinpretermortermin fants/neonateshasbeenreportedtobeweaker(Fig.3).Neutrop hilsisolatedfrominfants/neonatesdisplayedimpairedNETpro ductionafterstimulationwithLPS,PAFandfMLP,

incontrasttoneutrophilscollectedfromadultindividuals(Yos tetal.2009;Lippetal.2017).Th iswasdespitethepresenceoff unctionalreceptorsthatrecognizethesemole-

culesanduncompromisedphagocytosis.Nevertheless,whenb acteria(E.coli,S.au reus)orPMAwereusedt o induceNETs,n eonatalneutrophilsdidnotformNETs(Yostetal.2009).Ont heotherhand,Lippetal.

(2017)reportedthatthecellsofterminfantsreleasesomeNETsi nresponsetoPMAandthoseofpretermbabiesreleasesignific antlyfewerofthesestructures.Importantly,thedefectofN ETformationbyneutrophilsofpretermandtermneonateswas notrescuedbytheROSdonor(glucoseoxidase)

(Yostetal.2009).Also,thestudybyByrdetal.

(2016)showedthatNETsinducedbyneonatesinresponsetoaco mbinationoffibronectin(Fn)withpurifiedfungalβ-

glucanorFnwithC.albicanshyphaeareROS-

independent,althoughinthiscase,NETswereformednormally .Thus,neonateneutrophilsseemtobesensitivetofungalstimu lationbutnotnecessarilythebacterialcompo-

nents(Byrdetal.2016).However,incontrasttoLippetal.

(2017),Marcosetal.

(2009)showedthatneonatalneutrophilscancastNETsuponL PS(aswellasothernumerousTLRagonists)althoughatfirstt hesignalisweaker(Marcosetal.2009).Directcomparisonof thetwostudiesindicatesthatneonateneutrophilsreleaseN ETsbuttheyrequirealongertimefortheirmaximalformation.I nfact,furtherstudiesre-

vealedthateventhemostprematurelyborninfantsgainthecapa citytoreleaseNETbyday3post-

birthandmaximalcapacitytocastNETsisachievedbetweend ay3and14oflife(Yostetal.2016).Thischaracteristicseems alsotobepresentinothermammals,asthesamephenomenonw asob-servedinpigs(Nguyenetal.2016).Also,neutrophilsof21- day-oldmiceproducedfewerNETsthanthecellsof60-day- oldanimals(Barthetal.2016b).

Inthesearchformechanismsofimpaired/delayedNETf ormationbyneonates,afamilyofendogenousinhibitorsofNET swasdiscovered(Yostetal.2016).Thefamily,callednNIF- relatedpeptides(NRPs),afterthefirstidentifiedpeptide(NET- inhibitoryfactor,nNIF),alsoconsistsofcancer-

associatedSCMrecognition,immunedefensesuppressionan dserineproteaseprotectionpeptide(CRISPP)anda44–

aminoacidcarboxyterminuscleavagefragmentofA1AT(α1- antitrypsin),A1ATm358(Yostetal.2016).Thelevelsofinhi bitorsrapidlydecreaseinthecirculationoftheinfantafterdeliv ery.Thismightexplainwhy,insomestudies,dif-

ferencesinNETformationwerereportedbetweenpreterman dterminfants.Theinhibitorsweredetectedindifferentti ssues/bodyfluids-

umbilicalblood(nNIF),placenta(A1ATm358),plasma(

CRISPP-relatedpeptides)-

underlingingtheirimportance.TheyalsoinhibitedNETfor- mationinducedbybacteria(S.aureus),damage-

associatedmolecularpattern(DAMP;heme)andPMA(Yoste

(16)

17

CellTissueRes(2018)371:473–488

tal.2016)butdidnotdestroythem.Amechanismoftheiraction isalsoveryintriguing,asNRPsdonotaffectROSproduction

(17)

Fig.3I mpactofindividual(human)ageonneutrophilextracellulartrap(NE T)release.GraphicalrepresentationofneutrophilcapacitytoproduceNETs uponstimulation.Inthecaseofneonates,neutrophilpotentialtoreleasethet rapschangesintime.Tostrengthenthegraphicalvisualiza-

tion,potentialtoformNETsismarkedwith–and+where+<++;−/+

indicatesthatinthecaseofnewborninfantssomestudiesreportedalackofN ETformation(−)whereasothersreportedsomeNETrelease(+).Thepresen ceofendogenousNETinhbitorsshortlyafterbirthisindicatedbycircleswit hadiagonalline.Referencedataareincludedanddiscussedinthemaintext

norNEactivity(although,afterenteringthecell,theylocalizeini tscloseproximity)butinhibitPAD4andhistonecitrullinati on.Importantlyfromatherapeuticalpointofview,theinjectiono feithernNIForCRISPPintoadultmiceinfect-

edwithE.coliorLPSpreventedformationofNETsanddecrea sedmortality(Yostetal.2016).

Whywouldsuchinhibitorsfunctiononlyinfetuses/neo- nates?nNIFlevelswerenegligibleinhealthyadultsandun- detectableintheplasmaofadultindividualswithchronicin- flammatorydisorders(Yostetal.2016).Itispossiblybecause,dur ingpregnancy,NET-

inducingstimuliarepresent/generatedatthematernalfetali nterface(Guptaetal.2005;Marderetal.2016;MizugishiandYa mashita2017)andthusexcessiveformatiomofthetrapscouldc auseinflammatorypathologyinthefetomaternalenvironment.

Butthen,shortlyafterbirth,theinhbitorsaredegradedorneutra lizedbyun-

knownmeans.Intriguingly,thelattercorrelateswiththetimewh enresidentmicrobiotainhabitsthehumaninfantandthemicrob iotawasindeedshowntoregulategranulocytosisandhostresist ancetosepsisintheneonate(Deshmukhetal.2014).Theimpact ofmicrobiotaonthelife-spanandfunc-

tioningofneutrophilsinadulthoodhasjustbeenestablished(see BNETsandageofneutrophils^).

NETreleasebyelderlyindividuals

Ana gingo r g a n ism,l i k e t hen ewborn,i s susceptiblet o a var ietyofinflammatorypathogenesis,leadingtoincreasedmorb idity,whichisduetoimpairedimmunefunction(Collertonet al.2012;Tsengetal.2012;Boeetal.2017).

Therefore,thetermimmunosenescencehasbeenintroduced.I mmunsenescence,orinflamm-aging,isassociatedwithlow- grade,chronic,pro-

inflammatorystatus,resultingfromanimbalancebetwee npro-inflammatoryagentsandanti-

inflammatoryfactors(Franceschietal.2007;Collertonetal . 20 1 2).It i s charact e ri zed b y el evat ed l e ve l s of pro- inflammatorycytokines,includingIL-6andTNF-α,inphys- iologicalconditions(Bruunsgaardetal.2000;Krabbeetal.200 4;Ferruccietal.2005).Onehypothesissaysitisbecauseoftheco nstantimmunechallengesoverthelifetimeleadingtoahigherba salactivationstateofcellsoftheinnateimmunesystem(Fulopeta l.2017).Inaddition,arecentstudyreportsthattheseage- associatedchangesdependonthemicrobiota(Thevaranjanetal .2017).Ontheotherhand,theelderlyhaveaweakerresponsetov accination(Goodwinetal.2006;Sasakiet al.2011),w h ichm i ghtre s ultf r oman i m pairedabilitytopresentantigenstoTcel ls,thelatterleadingtoadysfunctionalimmuner esponse(De Martinisetal.20 04;Plowdenetal.2004;WongandGoldstein2 013).

Neutrophilsofelderlyindividualsarecharacterizedbyim- pairedbactericidalactivity(Wenischetal.2000),chemotaxis(F ulopetal.2004),phagocytosis(Butcheretal.2001;Simelletal.2 011)anddecreasedabilitytoperformarespiratoryburst(Wenisc hetal.2000).However,someparametersareeitherpreserved(c hemokinesis)orup-regulated(degranulation)

(Sapeyetal.2014).Thechangesarebelievedtoreflectontheb ehaviorofthecellsinagedindividuals.Theyperformaberrant migration(alteredchemotaxis/chemokinesisratio)sotheycans preadmoreefficientlythanthosefromyoungerin-

dividualsand,becausetheyreleasemoreprotease(asshown

(18)

482 CellTissueRes(2018)371:473–488

forNE;Sapeyetal.2014),possiblytofacilitatemigrationthr oughtheECM,morecollateraldamagecanoccur.

Interestingly,highlevelsofNE,alongwitheleventate dpro-

inflammatorycytokinelevels,arealsocharacteristicforthelo w-

gradeinflammatorystateaccompanyingobesity(Talukdaret al.2012).Infact,itisrecognizednowthatsuchaninflammatorys tateconnectsaging,metabolicsyndromeandcardiovasculard isease(GuarnerandRubio-Ruiz2015).

Inphysiologicalconditions,numbersofneutrophilsinthebo nemarrowaresimilarbetweenoldandyoungmice.However, duringinflammatoryconditions,suchassepsisin-

ducedbycecalligationandpuncture(CLP),fewerneutrophilsar eobservedintheperitoneallavageinoldversusyoungmice(Xuet al.2017).Thus,whileinhealthyagedorganisms,thepro- inflammatorystateisapparent,inthecourseofinflamma- tion,theimmuneresponseseemstobedimmed.Althoughnotma nystudieshavebeenundertakenonNETformationbyel derlyindividuals,theyallconsistentlyreportedweakerpro- ductionofthetraps,inlinewiththedataonotherneutrophilactivi ties(Fig.3).Itwasobservedwhenthecellswerefirstprimedwit hTNF-αandthenactivatedtoformNETswithLPSorIL- 8(Hazeldineetal.2014),stimulatedwithPam3CSK4,a TL R2ligand(Xuetal.2017),S.aureus(Tsengetal.2012)ormitoch ondrialDNA,aDAMP(Itagakietal.2015).Notably,expression ofnucleasesbyS.aureus(vs.thenucleasenullstrains)ledtoincrea sedbacterialdissemina-

tioninyoungbutnotoldmice,suggestingthatdefectiveNETfor mationinelderlymicepermittedbothnucleaseandnon- nucleaseexpressingS.aureustodisseminate,altogetherlead- ingtomoreinvasiveS.aureusinfection(Tsengetal.2012).Inter estingly,neutrophilsisolatedfromelderlyperiodontitispatient salsoreleasedfewerNETsthantheyoungonesbutthiswasnot observedinthecaseofhealthyage-

matchedcontrols(Hazeldineetal.2014).Inthestudiesapplyin gTLR2andTLR4ligands,neutrophilscollectedfromelderlype oplehadnormalexpressionofrespectivereceptorsrequiredfort hecellactivationbutdimishedROSproduction(Hazeldine etal.2014;Xuetal.2017).Andthusthelatterwasproposedasa mechanismofthelowerNETrelease.However,Hazeldineetal .(2014)aswellasTortorellaetal.

(2004)showedthatthereisnoimpairmentinp38mitogen- activatedproteinkinase(p38MAPK)activity,thesignalingcas cadeactivatedbyROS,inTNF-α-

primedneutrophilsinboththeelderlyandyoungerindividuals.

Furthermore,PMA,astrongchemicalinducerofROS,induceds imilarquantitiesofNETsinbothagegroups(Tortorellaetal.200 4;Hazeldineetal.2014).

AnotherpossiblemechanismleadingtodimishedNETfor- mationinagedindividualsisimpairedautophagy.Althoughinv olvementofautophagyinNETformationiscontroversial(seeB OnhowNETsarecreated^),itsimpairmentwassug-

gestedtobeco-

responsible,alongwithROS,foraweakNETreleasebyneutrophi lsofelderlyindividuals(Xuetal.2017).

(19)

CellTissueRes(2018)371:473–488 3 Inparticular,adefectofAtg5,involvedinautphagosomefor-

mation,waspointedouttocontributetodimmedNETrelease.

AndinsteadofformingNETs,neutrophilswereundergoinga poptosis(Xuetal.2017).

Thereisonereportonanincreasedcapacityofneutro- philsfromagedindividualstoproduceNETs.Thisobser- vationcomesfromstudiesonaorticlesionsinatheroscle- roticmiceandisstrengthenedbydatafromisolatedneu- trophilsactivatedtoproduceNETswith7-

ketocholesterol,anathero-

relevantstimulus,themostabundantoxysterolinhuman(Wa ngetal.2017).Suchaneffectresultedfromincreasedmitocho ndrialoxidativestress,thusmitochon-

drial(mitoOS)andnotcytosolic,ROSgeneration.Theforme rbeingindeedassociatedwithatherosclerosisdur-

ingaging(Vendrovetal.2015).Consideringthatnumbersofi nflammatoryneutrophilswerethesameinagedandyoungmi ce,theyounganimalshadsmallerlesionsandtheirNETforma tionwasmitoOS-

dependent,indicatingintrinsicchangesinneutrophilsofage dsubjects.Thisexperimentalsettingdiffersfromtheotherst udiesonNETformationbyneutrophilsofelderlyindividuals inclearrequirementofmitochondrialROSandnotNA DPHoxidase-dependent.

Asforwhatweknowtodate,neutrophilsofelderlysub- jectsingeneralcastfewerNETs(Fig.3).Nodataindicatesofart hatthisisbecauseofactiveinhibitonoftheirformationasinneo natesbutratheritresultsfromdysregulatedactivityofneutroph ils.Itistemptingtospeculatethatoneofthemecha-

nismsinvolvedmightbeconnectedtotheincreasedreleaseofN Eviadegranulation,asthisenzymeiscriticalforNETfor- mation.FortheseNETsthatrequireNADPHoxidase- dependentROS,adiminishedrespiratoryburstbyneutrophils ofelderlysubjectscanprovideanadditionalexplanation.Ho wever,theobservationthatincreasedmitochondrialROScani nfactincreaseNETformationbyneutrophilsofagedindivi dualssuggeststhatthecellsdonotlosethecapacitytoreleaseN ETsperseandthatthisisratherduetoupstreamdysfunctiona lpathways.

Conclusion s

Thephenotypeofanygivencellreflectseitheritsmaturationsta teortheimpactofextrinsicfactorsandmanifestsitselfbychang esincellmorphology,expressionpatternofintracellularandex tracellularmoleculesbut,foremost,its(altered)func- tioning.Thisisalsotrueforneutrophilsandtheircapacitytoind uceNETs.As,nowadays,NETsarethefocusofbiomed- icalresearch,mostlyduetothesideeffectsoftheirformation,as earchfortheirinhibitorsorremovingagentsdominatesthefiel d.Owingtostudiesonneonateneutrophilsisthediscoveryofen dogenousNETinhibitors.Thisisespeciallypromisinginthelig htoffindingthatimmatureneutrophils,whicharemore

(20)

abundantinnumerousdiseasesinwhichNETsplayapivotalrole ,releasethetrapsspontaneously.Obviously,thecellsdonotbeh aveuniformlyinallconditionsandstudiesonNETsarealsotech nicallychallengingastheymostlyrelyoneitherdetectionofsing ularNETcomponentsinbodyfluidsorexvivostimulationofis olatedneutrophils.Although,inthecaseofmicestudies,theseli mitationscanbeovercomewithintravitalmicroscopy,detectin gthetrapsdirectlyinbloodvesselsortissuesofliveanimals, thistechniquecannotbeappliedtohumanstudies.AndNETi nhibitioncanalsobedetrimental.Forinstance,atearlystagesof sepsis,thestruc-

tureshelptocontaindisseminationofinfectionanditisatlatertime pointsthattheirpersistentpresencecausescollateraldamage.T hus,NETinhibitionorremovalshouldalsobetime-

lyadjusted,which,however,isdifficulttocontrol.Now,ane wfactorhastobetakenintoconsiderationwhenitcomestotheco ntrolofNETformationanditsconsequences,namelythepresen ceofneutrophilsofcertainages(immature–mature–

senescent)aswellastheageoftheindividuals.

FundingThisstudywasfundedbytheNationalScienceCentreofPoland(

grantnumber2014/15/B/NZ6/02519).

Compliancewithethicalstandards

Conflictof interestTheauthorsdeclaret hattheyh aven o conflictofinterest.

OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCo mmo nsAt tribu t ion4. 0In t ernat iona lLicen se(ht tp://creativecom mons.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,a ndreproductioninanymedium,providedyougiveappro-

priatecredittotheoriginalauthor(s)andthesource,providealinktotheCreat iveCommonslicense,andindicateifchangesweremade.

References

AlghamdiAS,FosterDN(2005)SeminalDNasefreesspermatozoaenta ngledinneutrophilextracellulartraps.BiolReprod73:1174–1181 AminiP,StojkovD,WangX,WickiS,KaufmannT,WongWWL,SimonH

U,YousefiS(2016)NETformationcanoccurindependentlyofRIPK 3andMLKLsignaling.EurJImmunol46:178–184

AmulicB,CazaletC,HayesGL,MetzlerKD,ZychlinskyA(2012) Neutrophilfunction:frommechanismstodisease.AnnuRevImmu nol30:459–489

AndzinskiL,KasnitzN,StahnkeS,WuCF,GerekeM,vonKöckritz- BlickwedeM,SchillingB,BrandauS,WeissS,JablonskaJ(2016)Typ eIIFNsinduceanti-tumorpolarizationoftumorassociatedneu- trophilsinmiceandhuman.IntJCancer138:1982–1993

AritaK,ShimizuT,HashimotoH,HidakaY,YamadaM,SatoM(2006)Stru cturalbasisforhistoneN-

terminalrecognitionbyhumanpeptidylargininedeiminase4.Proc NatlA cadSciU SA103:5291–5296

AsagaH,NakashimaK,SenshuT,I shigamiA,YamadaM (2001)Immuno cytochemicallocalizationofpeptidylargininedeiminaseinhumaneo sinophilsandneutrophils.JLeukocBiol70:46–51

BarthCR,FunchalGA,LuftC,deOliveiraJR,PortoBN,DonadioMVF(201 6a)Carrageenan-inducedinflammationpromotesROSgenera- tionandneutrophilextracellulartrapformationinamousemodelofper itonitis.EurJImmunol46:964–970

BarthCR,LuftC,FunchalGA,deOliveiraJR,PortoBN,DonadioMVF(201 6b)LPS-

inducedneonatalstressinmiceaffectstheresponseprofiletoaninfla mmatorystimulusinanageandsex-

dependentmanner.DevPsychobiol58:600–613

BeiterK,WarthaF,AlbigerB,NormarkS,ZychlinskyA,Henriques- NormarkB (2006)AnendonucleaseallowsStreptococcuspneu moniaetoescapefromneutrophilextracellulartraps.CurrBiol16:4 01–407

BektasS,GoetzeB,SpeerCP(1990)Decreasedadherence,chemotaxisand phagocyticactivitiesofneutrophilsfrompretermneonates.ActaPaedi atrScand79:1031–1038

BennettL,PaluckaAK,ArceE,CantrellV,BorvakJ,BanchereauJ,Pasc ualV(2003)Interferonandgranulopoiesissignaturesinsys- temiclupuserythematosusblood.JExpMed197:711–723

BerendsETM,HorswillAR,HasteNM,MonestierM,NizetV,von Köckritz-

BlickwedeM (2010)NucleaseexpressionbyStaphylococcusa ureusfacilitatesescapefromneutrophilextracellu-

lartraps.JInnateImmun2:576–586

Berger-AchituvS,BrinkmannV,AbedUA,KühnLI,Ben-

EzraJ,ElhasidR,ZychlinskyA(2013)Aproposedroleforneutrophile xtracellulartrapsincancerimmunoediting.FrontImmunol4:48.https ://doi.org/10.3389/fimmu.2013.00048

BianchiM,HakkimA,BrinkmannV,SilerU,SegerRA,ZychlinskyA, ReichenbachJ(2009)RestorationofNETformationbygenether- apyinCGDcontrolsaspergillosis.Blood114:2619–2622

BirminghamCL,SmithAC,BakowskiMA,YoshimoriT,BrumellJH(20 06)Autophagycontrolssalmonellainfectioninresponsetodam- agetothesalmonella-containingvacuole.JBiolChem281:11374–

11383

BoeDM,BouleLA,KovacsEJ(2017)Innateimmuneresponsesintheagein glung.ClinExpImmunol187:16–25

BorregaardN(2010)Neutrophils,frommarrowtomicrobes.Immunity33:

657–670

BouleLA,KovacsEJ(2017)Alcohol,aging,andinnateimmunity.JLeu kocBiol102:41–55

BrinkmannV,ZychlinskyA(2012)Neutrophilextracellulartraps:isi mmunitythesecondfunctionofchromatin?JCellBiol198:773–783 BrinkmannV,ReichardU,GoosmannC,FaulerB,UhlemannY,WeissDS,

WeinrauchY,ZychlinskyA(2004)Neutrophilextracellulartrapsk illbacteria.Science303:1532–1535

BruegelM,FiedlerGM,MatthesG,ThieryJ(2004)Referencevaluesforim maturegranulocytesinhealthyblooddonorsgeneratedontheSysme xXE-2100automatedHematologyanalyser.SysmexJInt14:5–7 BruunsgaardH,SkinhøjP,PedersenAN,SchrollM,PedersenBK(2000)Ag

eing,tumournecrosisfactor-alpha(TNF-alpha)andatheroscle- rosis.ClinExpImmunol121:255–260

ButcherSK,ChahalH,NayakL,SinclairA,HenriquezNV,SapeyE, O'MahonyD,LordJM(2001)Senescenceininnateimmunere- sponses:reducedneutrophilphagocyticcapacityandCD16expres- sioninelderlyhumans.JLeukocBiol70:881–886

ByrdAS,O’BrienXM,JohnsonCM,LavigneLM,ReichnerJS(2013)Ane xtracellularmatrix-basedmechanismofrapidneutrophilextra- cellulartrapformationinresponsetoCandidaalbicans.JImmunol190 :4136–4148

ByrdAS,O’BrienXM,Laforce-NesbittSS,ParisiVE,HirakawaMP, BlissJM,ReichnerJS(2016)NETosisinneonates:evidenceofareact iveoxygenspecies-

independentpathwayinresponsetofungalchallenge.JInfectDis213:

634–639

(21)

Carmona-

RiveraC,CarlucciPM,MooreE,LingampalliN,UchtenhagenH,Ja mesE,LiuY,BickerKL,WahamaaH,HoffmannV,Catrina

(22)

AI,ThompsonP,BucknerJH,RobinsonWH,FoxDA,KaplanMJ(201 7)Synovialfibroblast-neutrophilinteractionspromotepatho- genicadaptiveimmunityinrheumatoidarthritis.SciImmunol2:eaa g3358.https://doi.org/10.1126/sciimmunol.aag3358

CarrR,PumfordD,DaviesJM(1992)Neutrophilchemotaxisandadhe- sioninpretermbabies.ArchDisChild67:813–817

Casanova-AcebesM,PitavalC,WeissLA,Nombela- ArrietaC,ChèvreR,A-

GonzálezN,KunisakiY,ZhangD,vanRooijenN,SilbersteinLE,We berC,NagasawaT,FrenettePS,CastrilloA,HidalgoA(2013)Rhy thmicmodulationofthehematopoieticnichethroughneutrophilclea rance.Cell153:1025–1035

ChenG,ZhuchenkoO,KuspaA(2007)Immune-

likephagocyteactivityinthesocialamoeba.Science317:678–681 ChenK,NishiH,TraversR,TsuboiN,MartinodK,WagnerDD,StanR,Croc

eK,MayadasTN(2012)Endocytosisofsolubleimmunecom- plexesleadstotheirclearancebyFcγRIIIBbutinducesneutrophilextr acellulartrapsviaFcγRIIAinvivo.Blood120:4421–4431

ChowOA,vonKöckritz-

BlickwedeM,BrightAT,HenslerME,ZinkernagelAS,CogenAL, Gal loRL,MonestierM,WangY,GlassCK,NizetV(2010)Statinse nhanceformationofphagocyteextracellulartraps.CellHostMicrobe 8:445–454

CollertonJ,Martin-

RuizC,DaviesK,HilkensCM,IsaacsJ,KolendaC,ParkerC,DunnM,C attM,JaggerC,vonZglinickiT,KirkwoodTBL(2012)Frailtyandtherol eofinflammation,immunosenescenceandcellularageingintheveryo ld:cross-

sectionalfindingsfromtheNewcastle85+study.MechAgeingDev13 3:456–466

CrispínJC,KyttarisVC,TerhorstC,TsokosGC(2010)Tcellsasthera- peutictargetsinSLE.NatRevRheumatol6:317–325

CrockerIP,BakerPN,FletcherJ(2000)Neutrophilfunctioninpregnancya ndrheumatoidarthritis.AnnRheumDis59:555–564

CrowMK(2014)AdvancesinunderstandingtheroleoftypeIinterferonsinS LE.CurrOpinRheumatol26:467–474

DaubyN,GoetghebuerT,KollmannTR,LevyJ,MarchantA(2012)Unin fectedbutnotunaffected:chronicmaternalinfectionsduringpregnan cy,fetalimmunity,andsusceptibilitytopostnatalinfections.LancetIn fectDis12:330–340

DeMartinisM,ModestiM,GinaldiL(2004)Phenotypicandfunctionalcha ngesofcirculatingmonocytesandpolymorphonuclearleucocyt esfromelderlypersons.ImmunolCellBiol82:415–420

DennyMF,YalavarthiS,ZhaoW,ThackerSG,AndersonM,SandyAR,Mc CuneWJ,KaplanMJ(2010)Adistinctsubsetofproinflamma- toryneutrophilsisolatedfrompatientswithsystemiclupuserythe- matosusinducesvasculardamageandsynthesizestypeIIFNs.JImm unol184:3284–3297

DesaiJ,KumarSV,MulaySR,KonradL,RomoliS,SchauerC,Herrman nM,BilyyR,MüllerS,PopperB,NakazawaD,WeidenbuschM,Th omasovaD,KrautwaldS,LinkermannA,AndersHJ(2016)PMAand crystal-

inducedneutrophilextracellulartrapformationinvolvesRIPK1- RIPK3-MLKLsignaling.EurJImmunol46:223–229

DeshmukhH,LiuY,MenkitiOR,MeiJ,DaiN,O'LearyCE,OliverPM,Koll sJK,WeiserJN,WorthenGS(2014)Themicrobiotaregulatesneutrop hilhomeostasisandhostresistancetoEscherichiacoliK1sepsisinneo natalmice.NatMed20:524–530

DörnerT,JacobiAM,LeeJ,LipskyPE(2011)AbnormalitiesofBcellsubse tsinpatientswithsystemiclupuserythematosus.JImmunolMethods 363:187–197

DrifteG,Dunn-

SiegristI,TissièresP,PuginJ(2013)Innateimmunefunctionsofim matureneutrophilsinpatientswithsepsisandseveresystemicinflam matoryresponsesyndrome.CritCareMed41:820–832

EashKJ,GreenbaumAM,GopalanPK,LinkDC(2010)CXCR2andCXCR 4antagonisticallyregulateneutrophiltraffickingfrommurinebonemar row.JClinInvest120:2423–2431

(23)

FarleyK,StolleyJM,ZhaoP,CooleyJ,Remold-

O'DonnellE(2012)ASerpinB1regulatorymechanismisessentialf orrestrictingneutro-

philextracellulartrapsgeneration.JImmunol189:4574–4581 FauziAR,KongNCT,ChuaMK,JeyabalanV,IdrisMN,Azizah

R(2004)Antibodiesinsystemiclupusantineutrophilcytoplasmice r-

ythematosus:prevalence,diseaseactivitycorrelationsandorga nsystemassociations.MedJMalaysia59:372–377

FerrucciL,CorsiA,LauretaniF,BandinelliS,BartaliB,TaubD D,GuralnikJM,LongoDL(2005)Theoriginsofage-relatedproin- flammatorystate.Blood105:2294–2299

FranceschiC,CapriM,MontiD,GiuntaS,OlivieriF,SeviniF,Panourgia MP,InvidiaL,CelaniL,Scu rtiM,CeveniniE,CastellaniGC, SalvioliS(2007)Inflammagingandanti-

inflammaging:asystemicperspectiveonagingandlongevityemer gedfromstudiesinhumans.MechAgeingDev128:92–105 FridlenderZG,SunJ,KimS,KapoorV,ChengG,LingL,WorthenGS,Alb

eldaSM(2009)Polarizationoftumor- associatedneutrophil(TAN)phenotypebyTGF- β:BN1^versusBN2^TAN.CancerCell16:183–194

FuchsTA,AbedU,GoosmannC,HurwitzR,SchulzeI,WahnV,Weinra uchY,BrinkmannV,ZychlinskyA(2007)Novelcelldeathprogram leadstoneutrophilextracellulartraps.JCellBiol176:231–241 FulopT,LarbiA,DouziechN,FortinC,GuérardKP,LesurO,KhalilA,Du

puisG(2004)Signaltransductionandfunctionalchangesinneu- trophilswithaging.AgingCell3:217–226

FulopT,WitkowskiJM,LePageA,FortinC,PawelecG,LarbiA(2017)Int racellularsignallingpathways:targetstoreverseimmunosenesc ence.ClinExpImmunol187:35–43

FurzeRC,RankinSM(2008)Theroleofthebonemarrowinneutrophilcle aranceunderhomeostaticconditionsinthemouse.FASEBJ22:311 1–3119

GabrielC,McMasterWR,GirardD,DescoteauxA(2010)Leishmaniado novanipromastigotesevadetheantimicrobialactivityofneutro- philextracellulartraps.JImmunol185:4319–4327

Gajic-VeljicM,Bonaci-

NikolicB,LekicB,SkiljevicD,CiricJ,ZoricS,StojimirovicB,Nikol icM(2015)ImportanceoflowserumDNaseIactivityandpolyspecif icanti-neutrophilcytoplasmicantibodiesinpropylthiouracil- inducedlupus-likesyndrome.Rheumatology(Oxford)54:2061–

2070

GardnerSL(2009)Sepsisintheneonate.CritCareNursClinNorthAm21:

121–141

GermicN,StojkovD,ObersonK,YousefiS,SimonHU(2017)Neithereo sinophilsnorneutrophilsrequireATG5-

dependentautophagyforextracellularDNAtrapformation.Immun ology152:517–525

GlennJW,CodyMJ,McManusMP,PulsipherMA,SchiffmanJD,YostC C(2016)Deficientneutrophilextracellulartrapformationinpa- tientsundergoingbonemarrowtransplantation.FrontImmunol7:2 50.h ttps://doi.org/10.3389/fimmu.2016.00250

GoodwinK,ViboudC,SimonsenL(2006)Antibodyresponsetoinflu- enzavaccinationintheelderly:aquantitativereview.Vaccine24:11 59–1169

GouldTJ,VuTT,SwystunLL,DwivediDJ,MaiSHC,WeitzJI,LiawPC(

2014)Neutrophilextracellulartrapspromotethrombingenerationt hroughplatelet-dependentandplatelet-

independentmechanisms.ArteriosclerThrombVascBiol34:1977 –1984

GrangerV,FailleD,MaraniV,NoëlB,GallaisY,SzelyN,FlamentH,Pall ardyM,Chollet-

MartinS,deChaisemartinL(2017)Humanbloodmonocytesare abletoformextracellulartraps.JLeukocBiol102:775–781 GuarnerV,Rubio-RuizME(2015)Low-

gradesystemicinflammationconnectsaging,metabolicsyndrom eandcardiovasculardisease.InterdiscipTopGerontol40:99–106

Guimarães-

CostaAB,NascimentoMTC,FromentGS,SoaresRPP,MorgadoF N,Conceição-SilvaF,SaraivaEM(2009)Leishmania

(24)

amazonensispromastigotesinduceandarekilledbyneutrophilex- tracellulartraps.ProcNatlAcadSciUSA106:6748–6753 Guimarães-CostaAB,DeSouza-VieiraTS,Paletta-SilvaR,Freitas-

MesquitaAL,Meyer-FernandesJR,SaraivaEM(2014)3′-nucleo- tidase/nucleaseactivityallowsLeishmaniaparasitestoescapekill- ingbyneutrophilextracellulartraps.InfectImmun82:1732–1740 GuptaAK,HaslerP,HolzgreveW,GebhardtS,HahnS(2005)Inductionofn

eutrophilextracellularDNAlatticesbyplacentalmicroparticlesandI L-8andtheirpresenceinpreeclampsia.HumImmunol66:1146–

1154

GyörgyB,TóthE,TarcsaE,FalusA,BuzásEI(2006)Citrullination:aposttr anslationalmodificationinhealthanddisease.IntJBiochemCellBiol 38:1662–1677

HagiwaraT,NakashimaK,HiranoH,SenshuT,YamadaM(2002)Dei minationofarginineresiduesinnucleophosmin/B23andhis- tonesinHL-

60granulocytes.BiochemBiophysResCommun290:979–983 HakkimA,FürnrohrBG,AmannK,LaubeB,AbedUA,BrinkmannV,Herr

mannM,VollRE,ZychlinskyA(2010)Impairmentofneutro- philextracellulartrapdegradationisassociatedwithlupusnephritis.P rocNatlAcadSciUSA107:9813–9818

HakkimA,FuchsTA,MartinezNE,HessS,PrinzH,ZychlinskyA,Wal dmannH(2011)ActivationoftheRaf-MEK-

ERKpathwayisrequiredforneutrophilextracellulartrapformation.

NatChemBiol7:75–77

HampsonP,DinsdaleRJ,WearnCM,BamfordAL,BishopJRB,Hazeldi neJ,MoiemenNS,HarrisonP,LordJM(2017)Neutrophildysfunctio n,immaturegranulocytes,andcell-

freeDNAareearlybiomarkersofsepsisinburn- injuredpatients:aprospectiveobser-

vationalcohortstudy.AnnSurg265:1241–1249

HawesMC,GunawardenaU,MiyasakaS,ZhaoX(2000)Theroleofrootb ordercellsinplantdefense.TrendsPlantSci5:128–133

HazeldineJ,HarrisP,ChappleIL,GrantM,GreenwoodH,LiveseyA,Sape yE,LordJM(2014)Impairedneutrophilextracellulartrapformat ion:anoveldefectintheinnateimmunesystemofagedindivi duals.AgingCell13:690–698

HomaJ,OrtmannW,KolaczkowskaE(2016)Conservativemechanismsof extracellulartrapformationbyAnnelidaEiseniaandrei:serineprote aseactivityrequirement.PLoSONE11:e0159031.https://doi.org /10.1371/journal.pone.0159031

ItagakiK,KaczmarekE,LeeYT,TangIT,IsalB,AdibniaY,SandlerN,Gri mmMJ,SegalBH,OtterbeinLE,HauserCJ(2015)Mitochondri alDNAreleasedbytraumainducesneutrophilextracel-

lulartraps.PLoSONE10:e0120549.https://doi.org/10.1371/jour nal.pone.0120549

JabirMS,RitchieND,LiD,BayesHK,TourlomousisP,PulestonD,Lupto nA, H opkinsL ,S imonA K,BryantC , EvansTJ( 2014)Caspase- 1cleavageoftheTLRadaptorTRIFinhibitsautophagyandβ- interferonproductionduringPseudomonasaeruginosainfec- tion.CellHostMicrobe15:214–227

JenneCN,WongCHY,ZempFJ,McDonaldB,RahmanMM,ForsythPA, McFaddenG,KubesP(2013)Neutrophilsrecruitedtositesofinfectio nprotectfromviruschallengebyreleasingneutrophilextra- cellulartraps.CellHostMicrobe13:169–180

JohnsonCJ,Cabezas-

OlcozJ,KernienJF,WangSX,BeebeDJ,HuttenlocherA,AnsariH, NettJE(2016)TheextracellularmatrixofCandidaalbicansbiofilmsi mpairsformationofneutrophilextra-

cellulartraps.PLoSPathog12:e1005884.https://doi.org/10.1371/j ournal.ppat.1005884

KearneyPL,BhatiaM,JonesNG,YuanL,GlascockMC,CatchingsKL,Ya madaM,ThompsonPR(2005)Kineticcharacterizationofpro- teinargininedeiminase4:atranscriptionalcorepressorimplicatedint heonsetandprogressionofrheumatoidarthritis.Biochemistry44:105 70–10582

KennoS,PeritoS,MosciP,VecchiarelliA,MonariC(2016)Autophagyand reactiveoxygenspeciesareinvolvedinneutrophilextracellular

trapsreleaseinducedbyC.albicansmorphotypes.FrontMicrobiol7:8 79.h ttps://doi.org/10.3389/fmicb.2016.00879

KessenbrockK,KrumbholzM,SchönermarckU,BackW,GrossWL, WerbZ,GröneHJ,BrinkmannV,JenneDE(2009)Nettingneutro- philsinautoimmunesmall-vesselvasculitis.NatMed15:623–625 KnightJS,ZhaoW,LuoW,SubramanianV,O'DellAA,YalavarthiS,Hod

ginJB,EitzmanDT,ThompsonPR,KaplanMJ(2013)Peptidylargi ninedeiminaseinhibitionisimmunomodulatoryandvasculoprotec tiveinmurinelupus.JClinInvest123:2981–2993

KnightJS,LuoW,O’DellAA,YalavarthiS,ZhaoW,SubramanianV,Guo C,GrennRC,ThompsonPR,EitzmanDT,KaplanMJ(2014)Peptidyl argininedeiminaseinhibitionreducesvasculardamageandmodulate sinnateimmuneresponsesinmurinemodelsofatheroscle-

rosis.CircRes114:947–956

KolaczkowskaE,KubesP(2013)Neutrophilrecruitmentandfunctioninhe althandinflammation.NatRevImmunol13:159–175

KolaczkowskaE,JenneCN,SurewaardBGJ,ThanabalasuriarA,LeeW Y,SanzMJ,MowenK,OpdenakkerG,KubesP (2015)Molecular mechanismsofNETformationanddegradationrevealedbyintravitali maginginthelivervasculature.NatCommun6:6673.https://doi.org/

10.1038/ncomms7673

KrabbeKS,PedersenM,BruunsgaardH(2004)Inflammatorymediatorsint heelderly.ExpGerontol39:687–699

KusunokiY,NakazawaD,ShidaH,HattandaF,MiyoshiA,MasudaS,Nish ioS,TomaruU,AtsumiT,IshizuA(2016)Peptidylargininedeiminas einhibitorsuppressesneutrophilextracellulartrapforma-

tionandMPO-

ANCAproduction.FrontImmunol7:227.https://doi.org/10.3389/fi mmu.2016.00227

Lahoz-

BeneytezJ,ElemansM,ZhangY,AhmedR,SalamA,BlockM,Nieder altC,AsquithB,MacallanD(2016)Humanneutrophilki-

netics:modelingofstableisotopelabelingdatasupportsshortbloodne utrophilhalf-lives.Blood127:3431–3438

LandeR,GangulyD,FacchinettiV,FrascaL,ConradC,GregorioJ,Mell erS,ChamilosG,SebasigariR,RiccieriV,BassettR,AmuroH,Fukuh araS,ItoT,LiuYJ,GillietM(2011)Neutrophilsactivateplasmacytoid dendriticcellsbyreleasingself-DNA–peptidecom-

plexesinsystemiclupuserythematosus.SciTranslMed3:73ra19.htt ps://doi.org/10.1126/scitranslmed.3001180

LawnJE,KerberK,Enweronu-

LaryeaC,CousensS(2010)3.6millionneonataldeaths–

whatisprogressingandwhatisnot?SeminPerinatol34:371–386 LeeMJ,LiuH,BarkerBM,SnarrBD,GravelatFN,AlAbdallahQ,Gavi

noC,BaistrocchiSR,OstapskaH,XiaoT,RalphB,SolisNV, LehouxM,BaptistaSD,ThammahongA,CeroneRP,KaminskyjS GW,GuiotMC,LatgéJP,FontaineT,VinhDC,FillerSG,SheppardD C(2015)Thefungalexopolysaccharidegalactosaminogalactanmed iatesvirulencebyenhancingresistancetoneutrophilextracellulartrap s.PLoSPathog11:e1005187.https://doi.org/10.1371/journal.ppat.

1005187

LefflerJ,MartinM,GullstrandB,TydénH,LoodC,TruedssonL,Bengt ssonAA,BlomAM(2012)Neutrophilextracellulartrapsthatarenotde gradedinsystemiclupuserythematosusactivatecomple-

mentexacerbatingthedisease.JImmunol188:3522–3531

LiY,TrushMA(1998)Diphenyleneiodonium,anNAD(P)Hoxidaseinh ibitor,alsopotentlyinhibitsmitochondrialreactiveoxygenspe- ciesproduction.BiochemBiophysResCommun253:295–299 LiP,LiM,LindbergMR,KennettMJ,XiongN,WangY(2010)PAD4isesse

ntialforantibacterialinnateimmunitymediatedbyneutrophilextrace llulartraps.JExpMed207:1853–1862

LinAM,RubinCJ,KhandpurR,WangJY,RiblettM,YalavarthiS,V illanuevaEC,ShahP,KaplanMJ,BruceAT(2011)Mastcellsandne utrophilsreleaseIL-

17throughextracellulartrapformationinpsoriasis.JImmunol187:49 0–500

(25)

LippP,RuhnauJ,LangeA,VogelgesangA,DresselA,HeckmannM(20 17)Lessneutrophilextracellulartrapformationintermnew- bornsthaninadults.Neonatology111:182–188

Cytaty

Powiązane dokumenty

Neutrophils carry out these func- tions via numerous mechanisms, including a relatively recently described activity based on a release of neutrophil extracellular traps (NETs),

Comparison of human immature (bone marrow) and mature (blood) neutrophils in their capac- ity to produce NETs upon IFN-α/γ priming and following stimulation with complement factor

formazan deposits (*), e moving cells – chemotaxis, f encapsulation, g ROS and proPO activation in the formed kapsule and h melanin synthesis (dark deposits) which finally leading

The research on the connection between the age of employees and their attitudes towards work also indicates that a large part of job satisfaction in older people

The analysis of ROS production by PMNs stimulated with FOH showed that neutrophils release ROS in just a few minutes after activation confirming the ROS-dependent netosis pathway

Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family.. Majchrzak-Gorecka M, Majewski

To elucidate whether exposure to intensive training could affect innate immunity, we analysed WBC counts, inflammatory markers and neu- trophil extracellular traps in male ice

This form of questionnaire allows for evaluation of the respondent’s level of physical activ- ity in three different areas of activity: occupation (Work Physical Activity Index