• Nie Znaleziono Wyników

On a Certain Extension of Epstein’s Univalence Criterion

N/A
N/A
Protected

Academic year: 2021

Share "On a Certain Extension of Epstein’s Univalence Criterion"

Copied!
8
0
0

Pełen tekst

(1)

ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XIII, 19__________________________ SECTIO A____________________________________ 1988

Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej

A. WESOŁOWSKI

On a Certain Extension of Epstein’s Univalence Criterion O pewnym uogólnieniu kryterim jednolistnośd Epsteina

Abstract. In this paper a sufficient univalence condition for meromorphic and locally univa­

lent functions in the unit disk is given (Theorem 2).

This condition is an essential generalisation of the Epstein’s univalenos criterion (7). As par­

ticular cases the well-known uni valence criteria of A hl for s [l] and Nehari [8] are obtained.

Moreover, a sufficient univalence criterion for meromorphic and locally univalent functions in the upper half plane is given (Theorem 3).

1. CL Pommerenke has recently given a simplified proof of a univalence criterion obtained earlier by Epstein in another way. In his proof an additional assumption made by Epstein was dropped (see e.g. [7, p.143]).

Let D = : |x| < 1} and let Sj denote the Schwaizian derivative

Theorem 1. (CL. Epstein, see e.g. (7]) Let f be meromorphic and g analytic in D. If both function» arc locally univalent in D and if

(1.1) ||(1 - |s|’)’(5/(s) - S,(*)) + (1 - U|’)I < 1

for * eD then f i» univalent in D.

If <(i) s s then (1.1) gives

(L2) |(l-l«l’)’Sz(x)|^2

and this is the well-known univalenoe criterion of Nehari [6].

If g = f then (1.1) implies

(2)

172

A. Wosotowski

and this is also a well-known univalence criterion (see e.g. [9, p.172]).

2. The following theorem is a generalization of the univalence criterion given by Epatein.

Theorem 2. Let f be meromorphic and g analytic in D. If both functions are locally univalent in D and if there exists a function h, analytic in D, satisfying Re h(z) > | and suck that

(2-1)

zh'(t) */'(»)

AU) i'U)

)-

-i(l-W ’ ) ’ |A(x)(S z W-Ss(z))|< l, z e D then f is univalent in D.

Proof. Let /(*) = <

j

0 + <h* + • •• » uU) = A o + Aix+ ••• , «i / 0, At 0. Then it is possible to consider the functions :

v _ ______ Z — <»o_______ .. « 9 ~ Ao

* ” + -£)(/- «o) ’ 9 ' “ A, instead of f and g.

These normalizations don’ t impair the generality of our considerations and we may also assume that

f(z) = g(z)+O(z 9 ) and — fi = l + O(xJ ) as z — » 0 . v

Let us introduce now

(2-2) (2-3)

®U) = = l + 3*’ + O(x’),

«(«) = ZU) • »(«) = » + + O(x3).

Both functions are analytic in D because f cannot have multiple poles and be ­ cause /' and g' do not vanish in D.

For I I =< 0, oo ) we consider [3, p.38]

(2.4) t , _ ”U<~ ‘) + (<* ~ g-> )xA(xe- < )«, (xe-<) M ’ 7 “ v(xe-<) + («< -

The function f(z,t) is for each fixed t 6 I meromorphic in D. FYonr(2.2) and from the assumption on the function h given in Theorem 1 it follows that the denominator in (2.4) has the form 1 + O(z*) as z -* 0, uniformly with respect to t.

It is easy to show, that = z + •■• , t € I, is a normal family in D, where

°iv)

(2.5) «I (t) = «-< + (e ‘— e _,)A(0) and |«i (t)j —» oo as t • oo .

(3)

Ona Certain BxteruionofEpxitan’« UnivalenceCriterion

173 FYom (2.3) and (2.4) we have

(2.0) /(*,<) = ai(t)z + O(z l) as z -» oo , where ai(f) is defined by (2.5).

Let us denote /'(»,<) = , /(z,f) = ~ ■ • After some calculations

OZ Ot

we obtain from (2.4)

(2-7)

w

- */'(*,f) h - 1 -at .„ re- 1 A' /(z,t) + z/'(z,t) h ' > k

(1 - <-»)*<-<(«% - vv") + (1 - e-^pz^fttV - t'v") n'v

uu'

where t»,e, A,A',«",»" are evaluated at the point ze~*

FYom (2.3) and the assumption (2.2) we have

«'o - uv' = f1 o2

*"v - ««" = /%* + 2f'v'v =

«%' - n'v" = f'v'v - f'v"o + 2/'(n') = \f't>2(Sj - S,) .

Thldng this and (2.7) into account we have for z € D

(2-8) W- kite-') ( ’ V A(ze-‘ ) + ,'ze-n - |(1 - e~2t) 2 z2h(ze~ t }(S/(ze~ t) — St (ze~t}) .

, *(«)“ ! The right-hand side is equal —r-r-r—

"1*1 if t > 0. Then putting ze~‘ = f , « “ * (2.8) and the assumption (2.1) that

for t = 0 and is analytic in T5 = {z : |z| < 1}

= |f | and replacing f through z we have from

1)1-

80/(*>*) = */*(*» *)•?(*> 0 » R«p(*»0 > 0 f°r * € P, tel.

Since tel , is a normal family it follows from (2.5) that /(z,t, is a

«»(<)

LSwner chain and /(z, f) is univalent in D [8, Corollary 3J.

<(x) • In particular we conclude from (2.3) and (2.4) that f(z) = = p^z) ’*

univalent in D and this ends the proof.

The proof given here is analogous to the proof given bv Pommerenke in [7].

3.

Corollary 1. I]h(z) si, z € D , then (2A) ¡ivez (1.1).

(4)

174

A. WoBok>w»Ià

Corollary 2. 1J we put h(z) = --- r-r, where |w(r)| < 1 , w(x) 1 for z D, 1 - w(x)

then we obtain from (2.1)

(3.1)

- J<* - (s'w * s,w) l s 1

The univalence criterion obtained by Z.Lewandowski and J.Stankiewicz [4] shows to be a particular case of (3.1) as ÿ(x).= x.

Corollary 3. On putting w(x) = e = const. , |c| < 1, e # 1 and g = f, or g[z)

3

z, respectively, in (2.1) we obtain

|‘ W ’ -(i-M’)i^ÿ|<i, *en

or

|(1 - |x| ’)’S,(x) ~ *0 - <)*| < 2|1 - e| , zeD

These are the well-known univalence criteria given by Ahlfors [1], which for e = 0 give (1.3) and (1.2), respectively.

Remark. The univalenoe criterion given here is a generalization of the criterion obtained by Epstein as the following example shows.

Let /(*) = (1 + *)’ . 9(*) * » + I»3- For z e D we have

I id - |x|’ ) ’(s z - S,) + (1 - |x| ’)T £| = (1 - w’)|r ^| < W +’W 3,

thus the inequality (1.1) isn’ t satisfied in D.

The same pair of functions /and g and A(x) = | gives

- (1 - |*| ’)(~ + ^) - 1(1 - lap)’| h(Sf - S,)| = |x|’ < 1 .

Also the criteria obtained by Ahlfors [1], Lewandowski and St ankiewicz [4]

are not satisfied by the function f(z) = (1 + x)1.

The criteria ci univalenoe in the unit disk D can be transferred on the upper half

plane U = {z € G , Im z > 0}. The mapping w = I * + 2 » , t > 0 , z D, together

with Theorem 2, gives

(5)

On aCertain Extensionof Epstein’sUnivalence Criterion 175

Theorem 3. Let f be meromorphie and g analytic in U. If both functions are locally univalent in U and if there exists a function h, Re h > j, analytic in U such that

(3.2) h(.

hjz) - 1 1 x - il I» z-it (h'(z) g"(z) 2 \ , z) Iz + it I *z—it\h{z) g'(z] z + it)

+ 2y2^ h(z)(Sf(z) - S,(x))j < 1 , zeU , f>0, y = Imx,

then f is univalent in U.

Putting in (3.2) y(x) = -— r- , I > 0 , z 6 U , h(z) = , Re p(z) > 0

2 i” 1» «

in U we obtain a theorem due to Lewandowski and Stankiewicz [5].

Putting in turn h(z) = where e is a constant satisfuing |e — 1| < 1, g(z) = , t > 0, z € U we obtain the inequality of A hl for s [1] for t -» oo from (3.2) :

|2y’S/(x) + e(l - e)| < |e| , z € U , Imx = y.

f

If in the last inequality the right hand side is replaced by &|e|, 0 < k < 1, then the inequality implies the possibility of a K-quasiconformal extension of f on G, K = (1 + k)/(l — k). This was proved in [2] and was a positive answer to the conjecture put forward by A hl fors [1]. A similiar question arises in the case of the inequality (3.1) for I — oo. This problem is in the course of study.

REFERENCES

[1] Ah lfors , L. V. , Sufficient conditions forquasiconformal extension ,Princeton Annals o{

Math 79 (1974),23-29.

[2] Anderson , J. M , Hinkkanen , A. , A univalencecntenon , Michigan Math. J. 32 (1985),33-40.

[3] Becker , J. , LàwnerteheDifferentialgleichvng und quasikonform forisetxbareschltchle RiiJt- tionen, J. reine angew. Math. 255(1972), 23-43.

[4] Lewando wski , Z. , Stankiewicz ,J. , Some sufficient conditions for univalence, Fblia Sdentarum Universitatis Technicae Resoviensis14 (1984), 11-18.

[5] Lewandowski , Z. , Stankiewicz , J. , Sufficient conditions for univalence and gua- sionformalextension tn ahalfplane , FoliaSa. t’niv. Tech. Resoviensis 48 (1988),67-76.

[6] Nehari , Z. , TheSchwaman denvative and schluhi functions ,Bull. Amer. Math. Soc.

55 (1949), 545-551.

[7] Pommerenke , Ch. , On theEpstem univalence cntenon ,Résulta inMathematics vol 10 (1986), 143-146.

[8] Pommerenke , Ch. , (Ther die Subordination analytischer fonhtionsn , J. rane angew.

Math. 218 (1965),159-173.

[9] Pommerenke,Ch. , Univalent fonctions ,GCttingen1975

(6)

176

A. Wesołowski STRESZCZENIE

W pracy podano warunek dostateczny jednolislnoid funkcji meromorficznej i lokalnie jedno- hstnej w kole jednostkowym (tw.2). Warunek ten jest istotnym uogólnieniem warunku podanego przez Epsteina [7]. Przy odpowiednich założeniach otrzymuje sit znane kryteria jednolistnofó Ahlforsa [l] lub Nehariego [6].

W twierdzeniu 3 podano dostateczny warunek jednolistncdci funkcji meromorficznej i lokalnie iednolistnej w górnej półplaszczyżnie.

I

X'Jic s-wy aa*. et /y/so B4«.aS«»?»cj.

(7)

ANNALES UNI VERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XL______________________________SECTIO A________________________________________ 1966 1. Z. Abdulhadi , W Hengartner: Univalent Logharmonic Mappings.

2. W. Cie(lak, J. Zajac: On the Ahlfore Class N in Annulus.

3. W. Drozda: Distortion Problem for Bounded Convex Functions Normalized by Montel’s Con­

ditions.

4. R Fournier: A Growth Theorem for a Class of Convex Functions.

6. J. Górski: On the Biberbach Inequalities in the Class S■

6. E. Hoy: Uber die Approximation Einiger Extremaler Quasikonformer Abbildungea.

7. Z. J. Jakubowski , W. Majchrzak, A. Szwankowski: On Some Problem in the Class

S

of FunctionsHolomorphicand Univalent in the Unit Disc.

8. S. Ki rsch: Remarks on Extremal Problems in a Class of Quasiconformal Mappings in the Mean.

9. W. Koepf: Close-to-convex Functions, Univalence Criteria and Quasiconformal Extension.

10. J. G. Krzyż Boundary Correspondence under Quasiconformal Mappings Revisited.

11. V. Lappalainen: Local and Global Lipschitz Classes.

12. R J. Li bera , E. J. Zlot kiewicz: Bounded Univalent Functions with Mantel Normalization.

13. P. Liczberski: Jack’s Lemma for Holomorphic Mappings in C".

14. A. Maciej kowska: On Some Mappings Obtained by a Holomorphic Continuation from

R in

into

Gin .

16. T. H. MacGregor: Two Applications of Mappings onto the Complement of Spirals.

16. J. Miazga , A. Wesołowski: A Univalence Criterion and the Structure of Some Subclasses of Univalent FXinctions.

17. V. Nestoridis: Interval Averages.

18. D. Party ka , J. Zaj«c An Estimate of the Integral of Quasisymmetric F .uons.

19. D. Pashkuleva: On the Radius of Spiral-convexity of a Subclass <■ jpiral-like Functions.

20. H. Pinto , St. Ruscheweyh , L Salinas: On Sens—dual Analytic Functions.

21. Q. I. Rahman: On Linear Combination of Convex and Certain Other Holomorphic Mappings.

22. H. Renelt: Generalized Powers in the Theory of (*i, fl)-soluUons.

23. F. Renni ng Duality Applied to Mesomorphic Functions with a Simple Pole at the Origin.

(8)

1

ANNALES UNI VERSITATI

VOL.XL

LUBI S) 24. J. St ankie

wic

z , Z.*S t an kie wicz

Functions.

25. S. Topila,P. Lounesto: On aCon 26. J. Waniurski: ConvexMappings an«

27. WenGuo-Chun: The Nonschlicht

I

Biblioteka Uniwersytetu MARII CURIE-SKŁODOWSKIEJ

w Lublinie

4050

CZASOPISMA

28. J. Zderkiewicz: Ona Generalized Problem of M. Biernacki for Subordinate Functions.

29. Listof Problems.

Adresse:

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ

BIURO WYDAWNICTW

Plac Marii

Curie-Skłodowskiej 5 20-031 LUBLIN POLOGNE

Cytaty

Powiązane dokumenty

To calculate an extensive property we need not only the state of the phase (to define intensive properties) but also one extensive quantity.. Also, any extensive quantity is di-

In the paper there has been presented an attempt of applying the methods of complex analysis and optimal control to investigations of extremal problems for holomorphic and

This slightly improves the estimate 1.210 obtained from the exponential function [1]. The problem whether 1 is best possible

From Theorem 2 one could deduce a condition which guarantees that an m -fold symmetric close-to-convex function of order p uas a quasiconforuial extension, a more precise

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

Some authors gave similar univalence conditions by using bounded functions f (z) ∈ A in their papers, see the works (for example Breaz et al.. We note that the functions f ∈ A do

the univalence of / whose all coefficients a* in the expansion (1.2) vanish, it seems natural to ask whether a suitably modified oondition (1.5) involving the coefficients a*

Anderson and Hinkkannen in a recent paper [2] proved a certain univalence condition for functions f meromorphic in upper half-plane U = {z : Im z &gt; 0} given in terms