• Nie Znaleziono Wyników

On Linear Combinations of Convex and Certain Other Holomorphic Mappings

N/A
N/A
Protected

Academic year: 2021

Share "On Linear Combinations of Convex and Certain Other Holomorphic Mappings"

Copied!
8
0
0

Pełen tekst

(1)

U N I V E R S I T A T I S MARIAE CURIE-SKLODOWSK A LUBLIN —POLONIA '

VOL. XL, 21 SECTIO A 1986

Département de Mathématiques et de Statistique Université de Montréal

Q. I. RAHMAN

On Linear Combinations of Convex Functions and Certain Other Holomorphic Mappings

Kombinacje liniowe funkcji wypukłychi innych odwzorowań

holomorficznych

JlHHeiunaeK0M6nHaunn ot Bbinymibix onHonncTHbix(JiyHKUHH h HeKOTopbix flpyntx (pyHKUjiii

0. Introduction. For p>0 we shall denote the open disk [zfeC : |z | 4, f> | by Of and its closure by Ip . Jne class of all normalized functions f(,z) := z + a»z® which are

3=2 convex univalent in will be denoted by K .

In £3, problem 6.1lJ it was asked if for f,g€k and X\<1, the combination Af + (.1- A)g is starlike univalent in . Ine question was answered in the negative oy maoGregor N wno pointed out tnat the functions fQ(.z)

s =

z/(.1-ze^ ,

gQ(.z) := z/(.1-ze_'i^belong to a out (.1/2)1 + + U/2)g0U/i2) = 0 so that O/2)f0 + (.1/2)gQ fails to be (.locally univalent in . On the other hand, ne noted that for f^iX , A^^.0 (3 s1,2,...,n) the function

is always univalent in • In fact> fj«K then flj

(.1) |hrg f^(,z)| 4 2 arc sin|z| for ztn^

which implies that |irg f$(.z)| 3f/2 for Hence for the real part of f^(.z) is positive and so is tne real part of j?- A^f^iz) if 0 (.C =1,2,...,n).

.«hereas MacGregor's result tells the truth it does not tell the whole trutn. It is intuitively clear that tne radius of uni­

valence of Af + (.1- A )g must be a continuous function of A

and so cannot suddenly drop from 1 to

(2)

210 Q.Z. Rahman

1/iZ as soon as X differs from 0 and 1. For given X in [0,1] let A ( = A(X)) denote the radius of the largest disk centred at the origin in which every function of the family -|xf ♦ (l-X)g : f€K, g£K^is univalent. The purpose of this paper is to discuss how A depends on X. Due to obvious symmetry A(X) = A(l-X) and so we only need to consider values of X in [1/2,1].

1. The determination o f A

According to Dieudonne’s criterion [2, p. 310] for univalence, the function h,(z):= Xf(z) ♦ (l-X)g(z) is univalent in D. if and only if

/ A

(i) h^Cz) / 0,

(ii)

h^(zei0) vh^(ze / -i8>) 16 -io

ze - ze / 0 (0 < 6 < n/2)

for |-z|<A. • Hence Xf ♦ (l-X)g is univalent in Dy^ if and only if (?) Xf'(z) ♦ (l-X)g'(z) / 0,

Cii') X - f(ze~1S) + (1.x) # 0 (0 < e < k/2)

ie

■^ïë*

for |z|< A . Mow let us denote by Gp Q the set of all possible values of f (z) as f varies in K and z varies in Dp, i.e.

>}■

>,o!-{fZ(z) : fÇK, zÇD, Further, for each 6 in (0,n/2], let

-, i©' -i©-\

f(ze ) - f(ze ) iO -iô ze - ze

fÇK, zÇDpj-.

Finally, for each 0 in [0,n/2] and cC®, let oGn

o

denote the

f ] P'

set jew : weGp.gj.

It is clear that (iZ), (iiZ) hold for |z|<

A

if and only if for each 0

in [0,n/2] the sets XGp Q and -(l-X)Gp 0 remain disjoint for p

< A

However, the following lemma implies that Gp

Q C

Gp Q for 0 < p < 1 and 0 < 0 < n/2.

(3)

Consequently, XG - and -(l-X)G. - are disjoint for all 9 in [0,x/2] if and only if they are disjoint for 0=0.

LEMMA 1. If f(z):= z <• OO 9£ a.,z is convex univalent in D., then so is 9=2

* ./ » iS, „> -i0.

f" f(Ç.lw) - f(Ç."xu) A Î « - s •

0 < 0 < x/2.

This is a simple consequence of the theorem of Ruscheweyh and Sheil-Small [9, Theorem (2.1)] confirming the Polya-Schoenberg conjecture and the fact that Wq(z):= £ -g°n z^ belongs to K (the function W„(z):= --- - --- y = £ z^ being starlike).

B l+2z cos 9+z^ 9=1 si?l H

It is known that if f£K then (see for example [8, p. 581] and apply Schwarz's lemma)

1 I < |z| for ifD^. (2) Vf"(z)

Consequently,

„ . f 2 -I 1 L P 1 so o ! = iw 8 w ®. w--- 2 < --- yS

P<°. 1 I i_p2| i_p2J

Using this information it can be shown that the regions XG- . and -(l-X)G- „ remain .disjoint for 0 < p < 1/(VT + V1-X). The details will be presented elsewhere. In fact, we are able to prove the following more general result.

THEOREM 1. Given 0 < a < n let X^, be complex numbers with

|Arg X^,|< a/2 for 9= 1, 2 and |X1|+|X2|= 1. If we set X:= max( JxJ , |X2| ) then for f^, f.,ÇK the linear combination X^f^ + X2f2 is univalent in

-/l - 2v^(l-A) sin -y

where t: =--- ---. The result is sharp for each a and each X.

i/T ♦

In order to see that Theorem 1 is indeed sharp let X£[l/2,1) and (•

aÇ[0,n) be given. Then the functions

(4)

212 Q.Z. Rahman

where

fjjz): =

1 - ze -16

X cos Y =

x cos 6 - belong to K and

VTa - Vx sin y

<X ♦ VTT Vx - ilA sin-|-

Vx

VTa

■t sin Y

x sin 6 =

-ft cos

y

f\ * VTft

Vl-X COS

-y

ix ♦ ftftft 717- f2(«>5"

Xeia/2 f'(t) * (1-X)e'ia/2 f'(t) ■ 0.

Consideration of complex coefficients X^, X^ was inspired by [11].

2. Convex linear combinations o f convex

mappings

The reasoning of Section 1 can be easily adapted to deal with linear combinations of several convex mappings. Here is what we obtain:

n

THEOREM 2. Let X > 0 for P = 1, .... n with £ Xu « 1 and suppose that

V~ P-1

X:= max Xp > 1/2. Further, let A:- l/(Vx + VTa) and 1<P< n

(X+1)/^2X + V2(1-X)J. If fp .... ffl belong to K, then ^£ Xp fp is univalent in for 1/2 < X < (1/2){(2-'IZ)(1+V1>4V2)J1/2, (1/2)1/Z* < X < 1 and in for (1/2)|(2-<2)(1*V1» 4/2)j1/2 < X < (1/2)1/4. The result is sharp for each X.

If X:= max Xp < 1/2 then in the case of even n the best that can 1<P< n

n _

be said is that £ Xp fp is univalent in same remark applies if n is odd provided X > l/(n-l).

3. Functions starlike o f order 1/2

0° p

The function f(z):= z ♦ £ a., z , holomorphic in D., is said to be P-2 V

(5)

«tarlike of order 1/2 if Re-¿if (z)/f(z)y > 1/2 for all i£D^. The usual notation for the set of all such functions is * According to a result

of Strohhacker [10] KCS^yj. We observe that Theorems 1 and 2 remain true in the wider class S^y^. fact, the conclusions of those theorems depend entirely on two properties of the class K, namely (i) if f belongs to the class then so does the function Fg (introduced in Lemma 1) for 0 < 8 < x/2, (ii) for each function f belonging to the class,f is subordinate to l' where I(z):= z/(l-z). Using a result of Ruscheweyh and Sheil-Small CC9. Theorem (5.1)3 about the Hadamard product of functions starlike of order 1/2 we can prove that in Lemma 1 the words "convex univalent > may be

4/77 *

replaced by starlike of order 1/2 . This means that the class s^./2 'las property (i). That it also has property (ii) is a result of Pfaltzgraff [7].

it. Linear combinations o f polynomials

Our approach to the above mentioned problem is of considerably wider scope. It can not only be applied to the study of the linear combinations of functions belonging to various other families of univalent functions but can also be used to obtain the following result about polynomials.

THEOREM 5. Given 0 < p < x/2 let Xp X^ be complex numbers with jirg Apj< P for 9 = 1, 2 and + — ^: = max^|^l| ’ | ^2 P an(i

“ V

f (z):= 1 ♦ E a z , (p = 1, 2)

* 9=1 U.V

are polynomials of degree at most n not vanishing in Dp then X1f1(z) + X.jf2(z) does not vanish in Do, where

Vx2/n * (l-X)2/n- 2X141 (l-X)1/n cos((x-2p)/n) ---

The result is sharp for each

p

and each X.

(6)

214 Q.Z. Rahman

5. Acknowledgement

It has been pointed out to me by Professor Jan Krzyz that Lemma 1 also follows from a result of Nehari [6] and that as regards (2), Robertson was anticipated by Karx [5].

REFERENCES

1. L. Bieberbach, Aufstellung und Beweis des Drehungssatzes für schlichte konforme Abbildung, Math. Z. 4 (1919), 295-305.

2. J. Dieudonne””, Recherches sur quelques problèmes relatifs aux polynômes

/ t

et aux fonctions bornées d'une variable complexe, Ann. Ecole Norm. Sup.

(3) 48 (1951), 247-558.

}. W. K. Hayman, Research Problems in Function Theory, The Athlone Press of the University of London, 1967-

4. T. H. MacGregor, The univalence of a linear combination of convex mappings, J. London Math. Soc. 44 (1969), 210-212.

5. A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1952/53), 40-67.

6. Z. Nehari, Sur la deformation de la frontière par les fonctions univalentes convexes, C. R. Acad. Sei. Paris 209 (1939), 781-783.

7. J. A. Pfaltzgraff, On the Marx conjecture for a class of close-to-convex functions, Michigan Math. J. 18 (1971), 275-278.

8. M. S. Robertson, On the theory of univalent functions, Ann. of Math.

57 (1936), 374-408.

9. St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv.

43 (1973), 119-155.

10. E. Strohh'acker, Beitrage zur Theorie der schlichten Funktionen, Math. Z.

37 (1935), 356-380.

11. R. K. Stump, Linear combinations of univalent functions with complex coefficients..Canad, J. Math. 23 (1971), 712-717-

(7)

STRESZCZENIE

Jak wiadomo, kombinacja liniowa Xf + (l - \)g funkcji wypuk­

łych, O < X < 1, nie musi być funkcją wypukłą. Jednakże przy da­

nym A. kombinacja liniowa ma określony promień jednollstności ,/\ (X.) W pracy wyznaczono dokładną wartość

A .

Rozwiązano też problem analogiczny dla zespolonych X X 2 » takich że | AJ+I X2I = 1.

PE33GME

KaK HsnecTHO, jiwHefinaH KOuÓHHanHH X ot

annyiuiHX $yHKiinii He aceraa HBZHeTCB nunyiuioit. Oznako ajib asho

ro X ara KosiOpmamm HMeeT onpejiejieHHHfl pafluyc oahojihcthocth

• B STOR paĆOTe nojiyneHO Tonnoe 3HaueHne A . TaK»e

pemeHa aHajiorHqecKas npofinexa juts KOMiuieKCHNX A. A,

mciiojhhi)-

mux + I Xxl « 4.

(8)

Cytaty

Powiązane dokumenty

Some authors (see eg. [4], [7], [8]) assumed that the class B is identical with the class L of normalized close-to-convex functions introduced independently and in a

W., On Ike domaina of valnee of certain ajeteme of fnnctionala in Ike daaaee of anivalenl fnndione (Russian), Vestnik Leningrad.!)nivAlatb. 16 (1960) no

• On Properties of Certain Subclasses of Close-to-Convex Functions 0 własnościach pownych podklas funkcji prawie wypukłych.. Об свойствах

Pointwise Bounded Families of Holomorphic Functions Punktowo ograniczone rodziny funkcji holomorficznych Точечно ограниченные семейства голоморфных функций.. Let 7

formly convex and uniformly starlike, and some related classes of univalent functions. We also introduce a class of functions ST«) which is given by the property that the image of

Using the methods of differential subordination and superordi- nation, sufficient conditions are determined on the differential linear operator of meromorphic functions in the

, On the domain of local univalence and starlikeness in a certain class of holomorphic functions, Demonstr. , Geometric Theory of Functions of a Complex

Similar result for linear regression and classification for any algorithm, which maintains its weight as a linear combination of instances [Warmuth &amp; Vishwanathan, 2005;