• Nie Znaleziono Wyników

We give new characterizations of the analytic Besov spaces Bp on the unit ball B of Cnin terms of oscillations and integral means over some Euclidian balls contained in B

N/A
N/A
Protected

Academic year: 2021

Share "We give new characterizations of the analytic Besov spaces Bp on the unit ball B of Cnin terms of oscillations and integral means over some Euclidian balls contained in B"

Copied!
11
0
0

Pełen tekst

(1)

A N N A L E S

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXV, NO. 2, 2011 SECTIO A 87–97

MAŁGORZATA MICHALSKA, MARIA NOWAK and PAWEŁ SOBOLEWSKI

M¨obius invariant Besov spaces on the unit ball of Cn

Dedicated to the memory of Professor Jan G. Krzyż

Abstract. We give new characterizations of the analytic Besov spaces Bp on the unit ball B of Cnin terms of oscillations and integral means over some Euclidian balls contained in B.

1. Introduction. Let B = {z ∈ Cn : |z| < 1} denote the open unit ball in Cn and H(B) be the set of all holomorphic functions on B. By Aut(B) we mean the group of all automorphisms of B. It is known that Aut(B) is generated by the unitary operators and involutions of the form

ϕw(z) = w − Pw(z) − swQw(z) 1 − hz, wi ,

where w ∈ B, sw = (1 − |w|2)1/2, Pw is the orthogonal projection of Cn to the subspace spanned by w, i.e.

Pw(z) = hz, wi

|w|2 w for w 6= 0, and P0(z) = 0,

2000 Mathematics Subject Classification. 30H25.

Key words and phrases. Besov spaces, conformal M¨obius transformation.

(2)

and Qw = I − Pw (see, e.g. [13, 16] for definition and properties of the automorphism group of B). The mapping ϕa is called the M¨obius transfor- mation. It is known that ρ(z, w) = |ϕz(w)| is a metric on B, the so-called pseudo-hyperbolic metric (see, e.g. [9, 15, 16]).

Let dυ be the Lebesgue measure on B normalized so that υ(B) = 1 and let dτ (z) = (1−|z|dv(z)2)n+1 be the invariant measure on B.

For f ∈ H(B), set

Qf(z) = sup

06=x∈Cn

|h∇f (z), xi|

Hz(x, x)1/2, z ∈ B,

where ∇f (z) = (∂f /∂z1, ∂f /∂z2, . . . , ∂f /∂zn) is the complex gradient of f and Hz(x, x) is the Bergman metric on B, that is

Hz(x, x) = n + 1 2

(1 − |z|2)|x|2+ |hx, zi|2 (1 − |z|2)2 .

The M¨obius invariant Besov space Bp, 1 < p ≤ ∞, consists of all holomor- phic functions on B for which Qf ∈ Lp(B, dτ ). In the case p = ∞ the space B is the Bloch space B; so

B = B= {f ∈ H(B) : kf kB < ∞}, where

kf kB = sup

z∈B

Qf(z).

If 1 < p ≤ ∞ the space Bp is the Banach space with the norm kf kBp = |f (0)| + (p − 1)kQfkLp(dτ ).

Hahn and Youssfi [3] proved that for n > 1 the Besov space Bp is nontrivial and contains all polynomials if and only if p > 2n. Moreover, it is known that for f ∈ H(B), the following conditions are equivalent

(i) f ∈ Bp,

(ii) |∇f (z)|(1 − |z|2) ∈ Lp(B, dτ ),

(iii) | e∇f (z)| ∈ Lp(B, dτ ) where | e∇f (z)| = |∇(f ◦ ϕz)(0)|.

The proofs can be found in [3, 8, 16].

The following results for the space Bp are reminiscences of Holland and Walsh characterization of the Bloch space [6].

In the case n = 1 Stroethoff [14] proved that for 2 < p < ∞, f ∈ Bp

Z

B

Z

B

f (z) − f (w) z − w

p

(1 − |z|2)p2(1 − |w|2)p2dτ (w)dτ (z) < ∞.

(3)

This equivalence has been generalized to the unit ball case in [8], where the following result has been obtained. If 2n < p < ∞, then

(1)

f ∈ Bp Z

B

Z

B

 |f (z)−f (w)|

|w−Pw(z)−swQw(z)|

p

(1−|z|2)p2(1−|w|2)p2dτ (w)dτ (z) < ∞.

Let B(a, r) denote a Euclidian ball of radius r and centered at a ∈ Cn. For a ∈ B and 0 < r < 1 let

E(a, r) = {z ∈ B : |ϕa(z)| < r} = ϕa(B(0, r))

be the pseudo-hyperbolic (or Bergman) metric ball centered at z. Then E(a, r) is an elipsoid in Cn. We will often use the following property of E(a, r).

There exists a positive constant C (dependent on r, but not on z and a) such that

(2) C−1(1 − |z|2) ≤ |1 − hz, ai| ≤ C(1 − |a|2) for all z ∈ E(a, r).

Using equivalence (1), we easily obtain the following

Theorem 1. Assume that f ∈ H(B) and 2n < p < ∞. Then f ∈ Bp if and only if

(3) Z

B

Z

B

 |f (z) − f (w)|

|1 − hz, wi|

p

(1 − |z|2)p2(1 − |w|2)p2dτ (w)dτ (z) < ∞.

Proof. Assume that for f ∈ H(B) condition (3) is satisfied. Since

| e∇f (z)|p≤ C Z

E(z,r)

|f (w) − f (z)|p

|1 − hw, zi|n+1dv(w), (see, e.g. [8]) and for w ∈ E(z, r),

(4) 1 − r2 < 1 − |ϕz(w)|2 = (1 − |z|2)(1 − |w|2)

|1 − hw, zi|2 , we get, using (2),

Z

B

| e∇f (z)|pdτ (z)

≤ C Z

B

Z

E(z,r)

|f (w) − f (z)|p

|1 − hw, zi|n+1

(1 − |z|2)p/2(1 − |w|2)p/2

|1 − hw, zi|p dv(w)dτ (z)

≤ C Z

B

Z

E(z,r)

|f (w) − f (z)|p (1 − |w|2)n+1

(1 − |z|2)p/2(1 − |w|2)p/2

|1 − hw, zi|p dv(w)dτ (z)

≤ C Z

B

Z

B

|f (w) − f (z)|p(1 − |z|2)p/2(1 − |w|2)p/2

|1 − hw, zi|p dτ (w)dτ (z).

(4)

Hence (3) implies f ∈ Bp. The other implication follows from (1) and from the inequality

|w − Pw(z) − swQw(z)| ≤ |1 − hz, wi|, z, w ∈ B.  For α > −1 we define the weighted volume measure dvα(z) = cα(1 −

|z|2)αdv(z), where cα is a positive constant such that vα(B) = 1.

We remark that condition (3) can be written in the form Z

B

Z

B

 |f (z) − f (w)|

|1 − hz, wi|

p

dvα(z)dvα(w) < ∞, where α = −n − 1 + p/2.

Moreover, the inequality

|w − Pw(z) − swQw(z)| ≤ |z − w|, z, w ∈ B, and equivalence (3) imply that if f ∈ Bp, then

(5) Z

B

Z

B

 |f (z) − f (w)|

|z − w|

p

dvα(z)dvα(w) < ∞, α = −n − 1 + p/2.

We do not know if condition (5) is sufficient for f to belong to Bp. The sufficiency of (5) has been claimed in [4]. Unfortunately, the proof given there is not correct.

For p = ∞, condition (5) is understood as kf kB˜= sup

z,w∈B,z6=w

|f (z) − f (w)|

|z − w| (1 − |z|2)12(1 − |w|2)12 < ∞

and is necessary and sufficient for containment in the Bloch space B as shown in [12]. For the proof of the last result the authors [12] used the so-called conformal M¨obius transformation. We also will discuss this transformation in the next section.

Recently, M. Pavlović [10, 11] considered a more general space of C1 functions in the unit ball for which two Bloch norms can be defined as follows

kf kB1 = sup

x∈B

(1 − |x|2)kdf (x)k, (6)

kf kB2 = sup

x∈B

k ˜df (x)k, (7)

where kdf (x)k is the norm of the differential of f at x and k ˜df (x)k = kd(f ◦ ϕx)(0)k. It is proved in [10, 11] that

kf kB1 = kf kB˜ and

kf kB2 = sup

z,w∈B,z6=w

|f (z) − f (w)|

|w − Pw(z) − swQw(z)|(1 − |z|2)12(1 − |w|2)12.

(5)

Here we get one more criterion for containment in the Bloch space.

Namely, if f ∈ H(B), then f ∈ B ⇔ sup

z,w∈B,z6=w

|f (z) − f (w)|

|1 − hz, wi| (1 − |z|2)12(1 − |w|2)12 < ∞.

Finally, it is worth noting that characterizations of weighted Bergman spaces on the unit ball in terms of double integrals of the functions |f (z) − f (w)|/|1 − hz, wi| and |f (z) − f (w)|/|z − w| have been recently obtained in [5] and [7].

2. Characterizations in terms of oscillation and integral means.

For f ∈ H(B), z ∈ B and 0 < r < 1 we put

ωr(f )(z) = sup{|f (z) − f (w)| : w ∈ E(z, r)}

and

M Or(f )(z) = 1 v(E(z, r))

Z

E(z,r)

|f (w) − fz,r|dv(w), where

fz,r= 1 v(E(z, r))

Z

E(z,r)

f (u)dv(u).

ωr(f ) and M Or(f ) are, respectively, the oscillation and the mean oscillation of f in the Bergman metric at the point z.

The following characterizations of the space Bp in terms of ωr(f ) and M Or(f ) can be found in [16].

Theorem A. Let f ∈ H(B) and 2n < p, and 0 < r < 1. Then the following conditions are equivalent

(i) f ∈ Bp,

(ii) ωr(f ) ∈ Lp(B, dτ ), (iii) M Or(f ) ∈ Lp(B, dτ ).

We will prove similar characterizations of Bp in terms of oscillations, but in a different metric. The metric will be connected with the conformal obius transformation on B given by

ϕca(z) = |z − a|2a − (1 − |a|2)(z − a)

||a|z − a0|2 ,

where a ∈ B, a0 = |a|a for a 6= 0 and a0 = (1, 0, . . . , 0), when a = 0. The mapping ϕca is an involution automorphism of B such that ϕca(0) = a and ϕca(a) = 0. Moreover,

a(z)| ≤ |ϕca(z)|, a, z ∈ B.

Also, it is easy to check that (8) 1 − |ϕca(z)|2

ca(z)|2 = (1 − |z|2)(1 − |a|2)

|z − a|2 .

(6)

We refer the reader to [1] and [12] for further properties of ϕca.

Analogously to the M¨obius transformations case, the formula ρc(a, z) =

ca(z)| defines a metric on B. We give the proof of this fact, probably known, because we do not know a reference. By the definition of ϕca, we get

ca(z)| = |z − a|

||a|z − a0| = |a − z|

||z|a − z0|= |ϕcz(a)|.

It is also obvious that

ca(z)| = 0 ⇔ z = a.

The invariance of ρc(a, z) under the conformal M¨obius transformations fol- lows immediately from formula (38) in [1]. So, we have

ρc(a, z) = |ϕca(z)| = |ϕcϕc

w(a)cw(z))| = ρccw(a), ϕcw(z)).

In view of this, it is enough to show that

(9) ρc(a, z) ≤ |a| + |z|.

Using the inequality

1 − (x + y)2 1 − x2

1 − y2 (1 + xy)2 , for x, y ∈ [0, 1], (see, e.g. [15]), we obtain

1 − (|a| + |z|)2 1 − |a|2

1 − |z|2 (1 + |a||z|)2

1 − |a|2

1 − |z|2

||a|z − a0|2 = 1 − |ϕca(z)|2, which proves (9).

For a ∈ B and 0 < r < 1 let

Ec(a, r) = {z ∈ B : |ϕca(z)| < r} = ϕca(B(0, r)).

The set Ec(a, r) is a Euclidian ball in R2n centered at 1−r(1−r2|a|2)a2 and of the radius (1−|a|1−r2|a|2)r2. Note that if z ∈ B(a,r2(1 − |a|2)), then

ca(z)| = |z − a|

||a|z − a0| |z − a|

|a0| − |a||z| |z − a|

1 − |a| 2|z − a|

1 − |a|2 < r.

It follows immediately that

(10) B

 a,r

2(1 − |a|2)



⊂ Ec(a, r) ⊂ E(a, r).

Now, for f ∈ H(B) and z ∈ B, we define

ωcr(f )(z) = sup{|f (z) − f (w)| : w ∈ Ec(z, r)}

(7)

and

M Ocr(f )(z) = 1 v(Ec(z, r))

Z

Ec(z,r)

|f (w) − fz,rc |dv(w), where

fz,rc = 1 v(Ec(z, r))

Z

Ec(z,r)

f (u)dv(u).

We get the following analogue of Theorem A.

Theorem 2. Let 2n < p < ∞ and 0 < r < 1. Then the following state- ments are equivalent

(i) f ∈ Bp,

(ii) ωcr(f ) ∈ Lp(B, dτ ), (iii) M Ocr(f ) ∈ Lp(B, dτ ).

Proof. (i)⇒(ii) If f ∈ Bp, then inclusion (10) and Theorem A imply that ωrc(f ) ∈ Lp(B, dτ ).

(ii)⇒(iii) Since

f (w) − fz,rc = f (w) − f (z) − (fz,rc − f (z)) and

fz,rc − f (z) = 1 v(Ec(z, r))

Z

Ec(z,r)

(f (w) − f (z))dv(w), we get

M Orc(f )(z) ≤ 2 v(Ec(z, r))

Z

Ec(z,r)

|f (w) − f (z)|dv(w) ≤ 2ωrc(f )(z).

(iii)⇒(i) It follows from the subharmonicity of |F |p, F ∈ H(B), that for any 0 < s < 1, 0 < p < ∞ and B(z, s) ⊂ B,

(11) |∇F (z)|psp ≤ Cs−2n Z

B(z,s)

|F (w)|pdv(w), z ∈ B.

Applying inequality (11) with s = r2(1 − |z|2) to the function F (w) = f (z + w) − fz,rc and using inclusion (10), we see that

|∇f (z)|(1 − |z|2) ≤ C Z

Ec(z,r)

|f (w) − fz,rc | dv(w)

(1 − |w|2)2n ≤ CM Orc(f )(z)

and the proof is complete. 

Moreover, we have

Theorem 3. Assume that f ∈ H(B), 2n < p < ∞, r ∈ (0, 1). Then f ∈ Bp

Z

Ec(a,r)

|∇f (z)| dv(z)

(1 − |z|2)2n−1 = (Mf )(a) ∈ Lp(B, dτ ).

(8)

Proof. By subharmonicity of

∂f

∂zi

we have

∂f

∂zi

(z)

Z

B

∂f

∂zi

(z + δw)

dv(w) = 1 δ2n

Z

B(z,δ)

∂f

∂zi

(w)

dv(w)

for z ∈ B and 0 ≤ δ < 1 − |z|. Thus for r ∈ (0, 1),

∂f

∂zi(z)

22n

r2n(1 − |z|2)2n Z

B(z,r2(1−|z|2))

∂f

∂zi(w)

dv(w)

≤ C Z

B(z,r2(1−|z|2))

∂f

∂zi

(w)

dv(w) (1 − |w|2)2n. Consequently,

|∇f (z)|(1 − |z|2) ≤ C Z

B(z,r2(1−|z|2))

|∇f (w)| dv(w) (1 − |w|2)2n−1, which proves the implication “⇒”.

Now, let f ∈ Bp. Then ωr(f ) ∈ Lp(B, dτ ) by Theorem A. It follows from the proof of Theorem 2 that

|∇f (z)|(1 − |z|2) ≤ Cωcr(f )(z) ≤ Cωr(f )(z).

Hence Z

B

(Mf )p(a)dτ (a)

= Z

B

Z

Ec(a,r)

|∇f (z)|(1 − |z|2) dv(z) (1 − |z|2)2n

!p

dτ (a)

≤ C Z

B

Z

Ec(a,r)

ωr(f )(z) dv(z) (1 − |z|2)2n

!p

dτ (a)

= C Z

B

Z

Ec(a,r)

sup

w∈E(z,r)

|f (z) − f (w)|

! dv(z) (1 − |z|2)2n

!p

dτ (a).

To complete the proof, we apply the following triangle inequalities for the pseudo-hyperbolic metric ρ(z, a) = |ϕa(z)| (see, e.g. [2])

(12) |ρ(z, a) − ρ(a, w)|

1 − ρ(z, a)ρ(a, w) ≤ ρ(z, w) ≤ ρ(z, a) + ρ(a, w)

1 + ρ(z, a)ρ(a, w), z, w, a ∈ B.

(9)

This inequality implies that if w ∈ E(a, r) and a ∈ E(z, r), then w ∈ E(z, 2r/(1 + r2)). Consequently, using inclusion (10),

Z

Ec(a,r)

sup

w∈E(z,r)

|f (z) − f (w)|

! dv(z) (1 − |z|2)2n

≤ C sup

z∈Ec(a,r)

sup

w∈E(z,r)

(|f (z) − f (a)| + |f (w) − f (a)|)

!

≤ C sup

z∈E(a, 2r

1+r2)

|f (z) − f (a)| + sup

w∈E(a, 2r

1+r2)

|f (a) − f (w)|

≤ 2C sup

w∈E(a, 2r

1+r2)

|f (a) − f (w)|

= 2Cω 2r

1+r2

(f )(a) ∈ Lp(B, dτ ). 

We remark that the last theorem is equivalent to the statement that a function f holomorphic on B is in Bp if and only if the integral mean of f at a given by

(M f )(a) = 1 v(Ec(a, r))

Z

Ec(a,r)

|∇f (z)|(1 − |z|2)dv(z)

is in Lp(B, dτ ).

Let us define (Hf )(a) = Z

Ec(a,r)

|f (z) − f (a)|

|z − a| (1 − |z|2)12(1 − |a|2)12 dv(z) (1 − |z|2)2n. Our last theorem refers to Holland–Walsh characterization of the Bloch space.

Theorem 4. Let f be a holomorphic function in B and r ∈ (0, 1). Then the following statements are equivalent

(i) f ∈ Bp,

(ii) Hf ∈ Lp(B, dτ ), (iii)

Z

B

Z

Ec(a,r)

|f (z) − f (a)|p

|z − a|p (1−|z|2)p2(1−|a|2)p2 dv(z)

(1 − |z|2)2ndτ (a) < ∞.

Proof. (i)⇒(ii) Suppose f ∈ Bp. Using the invariance of the measure

dv(z)

(1−|z|2)2n under the map ϕca(z), we obtain

(10)

Z

Ec(a,r)

|f (z) − f (a)|

|z − a| (1 − |z|2)12(1 − |a|2)12 dv(z) (1 − |z|2)2n

Z

Ec(a,r)

sup

z∈Ec(a,r)

|f (z) − f (a)|

!(1 − |z|2)12(1 − |a|2)12

|z − a|

dv(z) (1 − |z|2)2n

= ωrc(f )(a) Z

Ec(a,r)

p1 − |ϕca(z)|2

ca(z)|

dv(z) (1 − |z|2)2n

= ωrc(f )(a) Z

Ec(0,r)

p1 − |z|2

|z|

dv(z)

(1 − |z|2)2n = Cωrc(f )(a) ∈ Lp(B, dτ ).

(ii)⇒(iii) It is enough to apply the Jensen inequality.

(iii)⇒(i) From (8) we see that if |ϕca(z)| < r, then (1 − |z|2)12(1 − |a|2)12

|z − a| = p1 − |ϕca(z)|2

ca(z)|

1 − r2

r .

This and (11) imply

|∇f (a)|p(1 − |a|2)p

≤ C Z

Ec(a,r)

|f (z) − f (a)|p

|z − a|p (1 − |z|2)p2(1 − |a|2)p2 dv(z) (1 − |z|2)2n,

which proves the implication. 

References

[1] Alfors, L., M¨obius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Min- neapolis, Minn., 1981.

[2] Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63–76.

[3] Hahn, K. T., Youssfi, E. H., M¨obius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of Cn, Complex Variables Theory Appl. 17 (1991), 89–104.

[4] Li, S., Wulan, H., Besov space on the unit ball of Cn, Indian J. Math. 48 (2006), no.

2, 177–186.

[5] Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), 315–330.

[6] Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317–335.

[7] Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of Cn, II, Canadian Math. Bull., to appear.

[8] Nowak, M., Bloch space and M¨obius invariant Besov spaces on the unit ball of Cn, Complex Variables Theory Appl. 44 (2001), 1–12.

[9] Ouyang, C., Yang, W. and Zhao, R., M¨obius invariant Qpspaces associated with the Green’s function on the unit ball of Cn, Pacific J. Math. 182 (1998), no. 1, 69–99.

[10] Pavlović, M., A formula for the Bloch norm of a C1-function on the unit ball of Cn, Czechoslovak Math. J. 58(133) (2008), no. 4, 1039–1043.

(11)

[11] Pavlović, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb.

Math. Soc. 51 (2008), 439–441.

[12] Ren, G., Tu, C., Bloch space in the unit ball of Cn, Proc. Amer. Math. Soc. 133 (2004), no. 3, 719–726.

[13] Rudin, W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.

[14] Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral.

Math. Soc. 54 (1996), 211–219.

[15] Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501–518.

[16] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

Małgorzata Michalska Department of Mathematics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin

Poland

e-mail: malgorzata.michalska@poczta.umcs.lublin.pl Maria Nowak

Department of Mathematics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin

Poland

e-mail: mt.nowak@poczta.umcs.lublin.pl Paweł Sobolewski

Department of Mathematics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin

Poland

e-mail: pawel.sobolewski@umcs.eu Received August 11, 2011

Cytaty

Powiązane dokumenty

On Integral Means of the Convolution Średnie całkowe dla

[r]

These results are illustrated with several examples of such collections (€ arising in a natural way in the theory of vector measures.. Anantharaman, which was

We prove the theorem on representation of continuous linear functionals over Orlicz-Besov spaces BkM(Q) generated by a class of N -functions M... Let P denote

it is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts... Thus W is relatively compact in

course, the set of natural numbers.. T is of course one-to-one

Let ME denote the family of all nonempty and bounded subsets of E and NE the family of all nonempty and relatively compact sets in E.. D e f in it io

Complex extreme point, complex strict convexity and complex uniform convexity of complex Banach space are natural generalizations of extreme point, strict