• Nie Znaleziono Wyników

Poznan University of Technology Faculty of Chemical Technology Institute of Chemical Technology and Engineering

N/A
N/A
Protected

Academic year: 2021

Share "Poznan University of Technology Faculty of Chemical Technology Institute of Chemical Technology and Engineering"

Copied!
160
0
0

Pełen tekst

(1)

Institute of Chemical Technology and Engineering

PhD thesis

Skeletons of selected marine demosponges as supports for dyes adsorption

Małgorzata Norman, M.Sc., Eng.

Supervisor: Professor Teofil Jesionowski

Poznań 2017

(2)

I would like to express gratitude to many people involved in various stages of development of this doctoral thesis.

First of all, I would like to thank my supervisor Professor Teofil Jesionowski for his scientific support, advice and discussions as well as opportunity to study under his supervision.

I would like to acknowledge Professor Hermann Ehrlich and his team members for all their help during my internship.

I would like to express my gratitude for all my co-authors, colleagues and students from Faculty of Chemical Technology, especially

Filip Ciesielczyk Jakub Zdarta Przemysław Bartczak Sonia Żółtowska-Aksamitowska Agnieszka Zgoła-Grześkowiak Last, but not least, I would like to thank my Family and Friends, who always supported and encouraged me throughout my life.

(3)

Scientific activity ... 4

List of publications chosen as the basis for the PhD procedure ... 11

1. Abstract ... 13

2. Streszczenie ... 15

3. Introduction ... 18

3.1. Porifera – state of the art... 18

3.2. Functionalization of Hippospongia communis skeleton ... 32

4. Motivation and aim of the work ... 36

5. Description of the content of publications ... 37

6. Summary ... 53

7. List of references ... 55

Publication 1 ... 66

Publication 2 ... 88

Publication 3 ... 101

Publication 4 ... 119

Publication 5 ... 132

Statements of co-authorship ... 150

(4)

Scientific activity

Publications:

1. M. Norman, S. ołtowska-Aksamitowska, A.Zgoła Grze kowiak, H. Ehrlich, T. Jesionowski, Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A, Journal of Hazardous Materials 2018, 347, 78-88.

2. J. Zdarta, M. Norman, W. Smułek, D. Moszyński, E. Kaczorek, A.L. Stelling, H. Ehrlich, Teofil Jesionowski, Spongin-based scaffolds from Hippospongia communis Demosponge as an effective support for lipase immobilization, Catalysts 2017, 7(5), 1-20.

3. M. Norman, J. Zdarta, P. Bartczak, A. Piasecki, I. Petrenko, H. Ehrlich, T. Jesionowski, Marine sponge skeleton photosensitized by copper phthalocyanine:

A catalyst for Rhodamine B degradation, Open Chemistry 2016, 14, 243-254.

4. M. Norman, P. Bartczak, J. Zdarta, W. Tomala, B. urańska, A. Dobrowolska, A. Piasecki, K. Czaczyk, H. Ehrlich, T. Jesionowski, Sodium copper chlorophyllin immobilization onto Hippospongia communis marine demosponge skeleton and its antibacterial activity, International Journal of Molecular Sciences 2016,17(9), 1564-1580.

5. J. Zdarta, M. Wysokowski, M. Norman, A. Kołodziejczak-Radzimska, D. Moszyński, H. Maciejewski, H. Ehrlich, T. Jesionowski, Candida antarctica Lipase B immobilized onto chitin conjugated with POSS® compounds: useful tool for rapeseed oil conversion, International Journal of Molecular Sciences 2016,17(9), 1581-1603.

6. M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Anthocyanin dye conjugated with Hippospongia communis marine demosponge skeleton and its antiradical activity, Dyes and Pigments 2016, 134, 541-552.

7. P. Bartczak, S. ółtowska, M. Norman, Ł. Klapiszewski, J. Zdarta, A. Komosa, I. Kitowski, F. Ciesielczyk, T. Jesionowski, Saw-sedge Cladium mariscus as a functional low-cost adsorbent for effective removal of 2,4-dichlorophenoxyacetic acid from aqueous systems, Adsorption, 2015, 22(4), 517-529.

8. P. Bartczak, M. Norman, Ł. Klapiszewski, N. Karwańska, M. Kawalec, M. Baczyńska, M. Wysokowski, J. Zdarta, F. Ciesielczyk, T. Jesionowski, Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study, Arabian Journal of Chemistry 2015, 1-14 (Article in press), doi.org/10.1016/j.arabjc.2015.07.018.

9. Ł. Klapiszewski, T. Rzemieniecki, M. Krawczyk, D. Malina, M. Norman, J. Zdarta, I. Majchrzak, A. Dobrowolska, K. Czaczyk, T. Jesionowski, Kraft

(5)

lignin/silica–AgNPs as a functional material with antibacterial activity, Colloids and Surfaces B: Biointerfaces 2015, 134, 220-228.

10. J. Zdarta, Ł. Klapiszewski, M. Wysokowski, M. Norman, A. Kołodziejczak- Radzimska, D. Moszyński, H. Ehrlich, H. Maciejewski, A.L. Stelling, T. Jesionowski, Chitin-lignin material as a novel matrix for enzyme immobilization, Marine Drugs 2015, 13, 2424-2446.

11. M. Norman, P. Bartczak, J. Zdarta, W. Tylus, T. Szatkowski, A.L. Stelling, H. Ehrlich, T. Jesionowski, Adsorption of C.I. Natural Red 4 onto spongin skeleton of marine demosponge, Materials 2014, 8, 196-216.

12. J. Zdarta, A. Kołodziejczak-Radzimska, K. Siwińska-Stefańska, K. Szwarc-Rzepka, T. Szatkowski, M. Norman, Ł. Klapiszewski, P. Bartczak, E. Kaczorek, T. Jesionowski, Immobilization of Amano Lipase A onto silica surface: process characterization and kinetic studies, Open Chemistry 2013, 13, 138-148.

13. J. Rakowska, K. Radwan, Z. losorz, B. Porycka, M. Norman, Selection of surfactants on the basis of foam and emulsion properties to obtain the fire fighting foam and the degreasing agent, Tenside Surfactants Detergents 2014, 51, 215-219.

14. M. Nowacka, Ł. Klapiszewski, M. Norman, T. Jesionowski, Dispersive evaluation and surface chemistry of advanced, multifunctional silica/lignin hybrid biomaterials, Central European Journal of Chemistry 2013, 11(11), 1860-1873.

Conference contributions:

1. D. Hernes, M. Norman, A. Zgoła-Grze kowiak, T. Jesionowski, Układ ftalocyjanina żelaza – szkielt gąbki morskiej jako katalizator rozkładu bisfenolu A, II Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 02.12.2017 (poster)

2. E. Weidner, M. Norman, A. Zgoła-Grze kowiak, T. Jesionowski, Fotokatalityczna degradacja zanieczyszczeń fenolowych z wykorzystaniem układu hybrydowego szkielet gąbki morskiej sulfonowana ftalocyjanina żelaza(III), II Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 02.12.2017 (poster)

3. M. Norman, D. Hernes, A. Zgoła-Grze kowiak, T. Jesionowski, Usuwanie zanieczyszczeń organicznych w procesie fotodegradacji wspomaganym adsorpcją i utlenianiem, X Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 21-23.06.2017 (oral presentation)

4. M. Norman, E. Weidner, A. Zgoła-Grze kowiak, T. Jesionowski, Fotokatalityczny rozkład fenolu i jego pochodnych, X Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 21-23.06.2017 (poster)

(6)

5. T. Jesionowski, M. Norman, H. Ehrlich, Marine sponge skeleton as a suport for natural dye adsorption, Fifth International Conference on Multifunctional, Hybrid and Nanomaterials, Lisbon 06-10.03.2017 (poster)

6. M. Norman, A. Zgoła-Grze kowiak, T. Jesionowski, Wykorzystanie HPLC jako efektywnej techniki do oznaczania bisfenolu A po procesie jego fotokatalitycznego rozkładu, 5 Konferencja Naukowa „Monitoring i analiza wody. Chromatograficzne metody oznaczania substancji o charakterze jonowym”, Łysomice 02-04.04.2017 (poster)

7. M. Norman, T. Jesionowski, Marine sponge skeleton as a support for dye adsorption, XI Szkoła Letnia dla Doktorantów oraz Młodych Pracowników Nauki Zjawiska Międzyfazowe w Teorii i Praktyce, Sudomie 19-24.06.2016 (oral presentation)

8. T. Szalaty, Ł. Klapiszewski, M. Norman, M. Wrzał, K. Siwińska-Stefańska, T. Jesionowski, Funkcjonalne materiały hybrydowe SiO2-lignosulfonian magnezu otrzymywane z użyciem różnych typów krzemionek, X Konferencja Technologie Bezodpadowe i Zagospodarowanie Odpadów w Przemy le i Rolnictwie, Międzyzdroje 14-17.06.2016 (poster)

9. M. Norman, J. Zdarta, P. Bartczak, T. Jesionowski, H. Ehrlich, Wykorzystanie spektroskopii UV-Vis do oceny wydajności degradacji barwników syntetycznych, IX Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 07-09.06.2016 (oral presentation)

10. M. Norman, J. Zdarta, P. Bartczak, T. Jesionowski, H. Ehrlich, Metody spektroskopowe w analizie układu metaloftalocyjanina-biopolimer, IX Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 07-09.06.2016 (poster)

11. J. Zdarta, Ł. Klapiszewski, M. Norman, P. Bartczak, W. Smułek, E. Kaczorek, T. Jesionowski, Ocena aktywności i stabilności enzymów immobilizowanych na matrycach krzemionka-lignina i chityna-lignina w oparciu o pomiary spektrofotometryczne, IX Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 07-09.06.2016 (oral presentation)

12. J. Zdarta, K. Antecka, M. Norman, Ł. Klapiszewski, P. Bartczak, T. Jesionowski, Wykorzystanie metod spektroskopowych do charakterystyki układu kompozytowego Fe3O4-lignina, IX Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 07-09.06.2016 (poster) 13. P. Bartczak, M. Wysokowski, F. Ciesielczyk, J. Zdarta, M. Norman, H. Ehrlich,

T. Jesionowski, Didymosphenia geminata jako efektywny adsorbent jonów metali szkodliwych dla środowiska, IX Ogólnopolskie Sympozjum „Nauka i przemysł –

(7)

metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 07-09.06.2016 (oral presentation)

14. P. Bartczak, J. Zembrzuska, Ł. Klapiszewski, M. Wysokowski, M. Norman, J. Zdarta, F. Ciesielczyk, T. Jesionowski, Adsorpcja fenolu z układów wodnych z wykorzystaniem sorbentów biopolimerowych, IX Ogólnopolskie Sympozjum

„Nauka i przemysł – metody spektroskopowe, nowe wyzwania i mo liwo ci”, Lublin 07-09.06.2016 (poster)

15. M. Norman, A. Idczak, A. Radkiewicz, J. Zdarta, P. Bartczak, T. Jesionowski, Proces sorpcji metaloftalocyjanin na adsorbencie pochodzenia naturalnego, I Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 05.12.2015 (poster)

16. B. urańska, W. Tomala, M. Norman, K. Czaczyk, A. Dobrowolska, T. Jesionowski, Właściwości antybakteryjne materiału hybrydowego chlorofilina - gąbki morskie, I Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 05.12.2015 (poster)

17. J. Zdarta, M. Wysokowski, M. Norman, P. Bartczak, A. Jędrzak, T. Szalaty, T. Jesionowski, Układy chityna-POSS jako efektywne nośniki w procesie immobilizacji enzymów, I Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 05.12.2015 (poster)

18. P. Bartczak, A. Chudzińska, M. Wysokowski, M. Norman, J. Zdarta, F. Ciesielczyk, H. Ehrlich, T. Jesionowski, Didymosphenia geminata jako nowatorski adsorbent jonów metali szkodliwych dla środowiska, I Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 05.12.2015 (poster)

19. T. Szalaty, Ł. Klapiszewski, M. Norman, J. Zdarta, K. Siwińska-Stefańska, T. Jesionowski, Funkcjonalne materiały hybrydowe SiO2-lignosulfonian - otrzymywanie oraz charakterystyka, I Wielkopolskie Seminarium Chemii Bioorganicznej, Organicznej i Biomateriałów BioOrg, Poznań 05.12.2015 (poster) 20. M. Norman, J. Zdarta, P. Bartczak, H. Ehrlich, T. Jesionowski, Gąbki morskie –

materiał pochodzenia naturalnego jako skuteczny adsorbent metaloftalocyjanin, II Poznańskie Sympozjum Młodych Naukowców. Nowe Oblicze Nauk Przyrodniczych, Poznań 14.11.2015 (oral presentation)

21. J. Zdarta, Ł. Klapiszewski, M. Norman, A. Jędrzak, T. Szalaty, A. Gan, K. Antecka, T. Jesionowski, Gąbka roślinna Luffa cylindrica jako efektywny nośnik w procesie immobilizacji lipazy z Aspergillus niger, II Poznańskie Sympozjum Młodych Naukowców. Nowe Oblicze Nauk Przyrodniczych, Poznań 14.11.2015 (oral presentation)

22. P. Bartczak, J. Zembrzuska, W. Czernicka, N. Majcherek, M. Norman, M. Wysokowski, Ł. Klapiszewski, F. Ciesielczyk, T. Jesionowski, Układ

(8)

hybrydowy chityna-lignina − efektywny adsorbent zanieczyszczeń organicznych oraz nieorganicznych, II Poznańskie Sympozjum Młodych Naukowców. Nowe Oblicze Nauk Przyrodniczych, Poznań 14.11.2015 (poster)

23. J. Piotrowska, A. Zdarta, M. Norman, W. Smułek, E. Kaczorek, Oddziaływanie wybranych fungicydów na bakterie glebowe, II Poznańskie Sympozjum Młodych Naukowców. Nowe Oblicze Nauk Przyrodniczych, Poznań 14.11.2015 (poster) 24. J. Zdarta, M. Norman, M. Wysokowski, T. Jesionowski, Zastosowanie

nowatorskich materiałów hybrydowych chityna–POSS w procesie unieruchomienia lipazy, 8. Kongres Technologii Chemicznej, Rzeszów 30.08-04.09.2015 (oral presentation)

25. M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Immobilizacja sulfonowanych ftalocyjanin Cu(II) oraz Ni(II) na materiałach pochodzenia naturalnego, 8. Kongres Technologii Chemicznej "Surowce - energia - materiały", Rzeszów 30.08-04.09.2015 (poster)

26. M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Adsorption of anthocyanins and carotenoids onto biopolymer of natural origin, 9th International Symposium Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids ISSHAC-9, Wrocław 17-23.07.2015 (poster)

27. P. Bartczak, J. Zembrzuska, M. Norman, K. Kabat, F. Ciesielczyk, T. Jesionowski, Coffee grounds as an effective sorbent of phenol from aqueous systems, Ninth International Symposium Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids ISSHAC-9, Wrocław 17-23.07.2015 (poster)

28. K. Siwińska-Stefańska, M. Norman, , T. Jesionowski, Synthesis and characterization of a novel group of TiO2-ZrO2 hybrid materials, Ninth International Symposium Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids ISSHAC-9, Wrocław 17-23.07.2015 (poster)

29. M. Norman, W. Tomala, B. urańska, P. Bartczak, J. Zdarta, T. Jesionowski, Ocena skuteczności adsorpcji chlorofiliny na powierzchni gąbek morskich za pomocą metod spektroskopowych, VIII Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 09-11.06.2015 (poster)

30. J. Zdarta, A. Kołodziejczak-Radzimska, Ł. Klapiszewski, A. Jędrzak, T. Szalaty, P. Bartczak, M. Norman, T. Jesionowski, Weryfikacja skuteczności immobilizacji lipazy na wybranych nośnikach krzemionkowych z wykorzystaniem metod spektroskopowych, VIII Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 09-11.06.2015 (oral presentation)

31. J. Zdarta, A. Kołodziejczak-Radzimska, I. Skotarczak, K. Smelkowska, M. Norman, P. Bartczak, T. Jesionowski, Ocena aktywności immobilizowanych

(9)

enzymów w oparciu o pomiary spektrofotometryczne, VIII Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 09-11.06.2015 (poster)

32. P. Bartczak, Ł. Klapiszewski, M. Wysokowski, M. Norman, J. Zdarta, F. Ciesielczyk, T. Jesionowski, Ocena efektywności procesu adsorpcji jonów metali na sorbencie typu chityna-lignina z wykorzystaniem technik spektroskopowych, VIII Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 09-11.06.2015 (oral presentation)

33. P. Bartczak, M. Jankowska, J. Zdarta, M. Norman, Ł. Klapiszewski, F. Ciesielczyk, A. Komasa, T. Jesionowski, Usuwanie jonów metali z układów wodnych z wykorzystaniem adsorbentu pochodzenia naturalnego, VIII Ogólnopolskie Sympozjum „Nauka i przemysł – metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 09-11.06.2015 (poster)

34. M. Norman, P. Bartczak, J. Zdarta, Ł. Klapiszewski, T. Szatkowski, H. Ehrlich, T. Jesionowski, Zastosowanie metod spektroskopowych do oceny wydajności procesu adsorpcji barwników naturalnych na gąbkach morskich, VII Ogólnopolskiego Sympozjum „Nauka i Przemysł – metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 10-12.06.2014 (oral presentation)

35. M. Norman, A. Pawełko, D. Połczyńska, W. Król, A. Pisarek, P. Bartczak, M. Wysokowski, T. Szatkowski, T. Jesionowski, H. Ehrlich, Ocena skuteczności adsorpcji barwników naturalnych na powierzchni komercyjnej chityny przy użyciu metod spektroskopowych, VII Ogólnopolskiego Sympozjum „Nauka i Przemysł - metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 10- 12.06.2014 (poster)

36. J. Zdarta, A. Kołodziejczak-Radzimska, Ł. Klapiszewski, P. Bartczak, M. Norman, T. Jesionowski, Weryfikacja skuteczności immobilizacji lipazy na wybranych nośnikach krzemionkowych z wykorzystaniem metod spektroskopowych, VII Ogólnopolskiego Sympozjum „Nauka i Przemysł - metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 10-12.06.2014 (oral presentation)

37. P. Bartczak, Ł. Klapiszewski, M. Norman, J. Zdarta, T. Jesionowski, Zastosowanie atomowej spektrometrii absorpcyjnej w ocenie skuteczności procesu adsorpcji jonów metali na naturalnym torfie, VII Ogólnopolskiego Sympozjum „Nauka i Przemysł - metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 10-12.06.2014 (oral presentation)

38. Ł. Klapiszewski, P. Bartczak, J. Zdarta, M. Norman, T. Jesionowski, Zastosowanie spektroskopii FTIR i XPS w ocenie efektywności wytwarzania materiałów hybrydowych krzemionka-lignina, VII Ogólnopolskiego Sympozjum „Nauka

(10)

i Przemysł - metody spektroskopowe w praktyce, nowe wyzwania i mo liwo ci”, Lublin 10-12.06.2014 (oral presentation)

39. P. Bartczak, D. Bednarek, Ł. Klapiszewski, M. Norman, F. Ciesielczyk, T. Jesionowski, Charakterystyka fizykochemiczna i strukturalna torfu jako potencjalnego adsorbentu jonów kadmu z roztworów wodnych, XXXVIII Międzynarodowe Seminarium Naukowo Techniczne „Chemistry for agriculture”, Karpacz, 01-04.12.2013 (poster)

40. A. Kołodziejczak-Radzimska, J. Zdarta, A. Ku nierek, M. Norman, T. Jesionowski, Immobilizacja aminoacylazy na powierzchni SiO2, XXXVIII Międzynarodowe Seminarium Naukowo Techniczne „Chemistry for agriculture”, Karpacz, 01-04.12.2013 (poster)

41. J. Rakowska, K. Radwan, Z. losorz, B. Porycka, M. Norman, Emulsion and foams. Structure of surfactant colloids, The 4th International Scientific Conference Applied Natural Sciences 2013 Novy Smokovec, High Tatras, Slovak Republic, 02- 04.10.2013 (poster)

Research projects

1. Research project (Minister of Science and Higher Education) IUVENTUS PLUS V Nr IP2015 032574 - Innowacyjne materiały hybrydowe na bazie ligniny oraz lignosulfonianów aktywowanych cieczami jonowymi, 09.2016-09.2019

Łukasz Klapiszewski – leader, Małgorzata Norman – principal investigator

2. Research project (Poznan University of Technology, Faculty of Chemical Technology) Rola układu krzemionka-lignina w procesie usuwania zanieczyszczeń środowiskowych oraz immobilizacji enzymów, 04-11.2015

Łukasz Klapiszewski – leader, Małgorzata Norman – principal investigator 3. Research project (Poznan University of Technology, Faculty of Chemical

Technology) Adsorpcja wybranych barwników organicznych na trójwymiarowych szkieletach gąbek morskich, 04-11.2016

Marcin Wysokowski – leader, Małgorzata Norman – principal investigator

4. Research project (Poznan University of Technology, Faculty of Chemical Technology) Strukturalne kompozyty na bazie trójwymiarowych sponginowych szkieletów gąbek morskich, 04-11.2017

Marcin Wysokowski – leader, Małgorzata Norman – principal investigator

(11)

Internship

„In ynier Przyszło ci. Wzmocnienie potencjału dydaktycznego Politechniki Poznańskiej”

financed by UE, Interdisciplinary Doctoral Studies „Material Science”, internship in TU Bergakademie Freiberg (1.06-31.08.2015)

Awards and scholarships

1. Scholarship of the Minister of Science and Higher Education for outstanding achievements for PhD students in academic year 2016/2017.

2. Scientific scholarship awarded by the Rector of the Poznań University of Technology for the PhD student (2013/2014, 2014/2015, 2015/2016, 2016/2017).

3. Scholarship awarded in the field of Interdisciplinary Doctoral Studies "Material Science" at the Faculty of Chemical Technology at the Poznań University of Technology for the PhD students (2013/2014, 2014/2015, 2015/2016, 2016/2017).

List of publications chosen as the basis for the PhD procedure

According to: Ustawa o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz.U. 2003 Nr 65 poz. 595) - 2. Rozprawa doktorska może mieć formę maszynopisu książki, książki wydanej lub spójnego tematycznie zbioru rozdziałów w książkach wydanych, spójnego tematycznie zbioru artykułów opublikowanych lub przyjętych do druku w czasopismach naukowych, określonych przez ministra właściwego do spraw nauki na podstawie przepisów dotyczących finansowania nauki (...).

No. Publications IF MNiSW

points

Individual input (%)

1

M. Norman, P. Bartczak, J. Zdarta, W. Tylus, T. Szatkowski, A.L. Stelling, H. Ehrlich, T. Jesionowski, Adsorption of C.I. Natural Red 4 onto spongin skeleton of marine demosponge, Materials 2014, 8, 196-216

Małgorzata Norman was responsible for preparing and analyzing dye/biopolymer hybrid material as well as writing the manuscript and discussion with reviewers.

1.879 35 55

2

M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Anthocyanin dye conjugated with Hippospongia communis marine

4.055 40 70

(12)

demosponge skeleton and its antiradical activity, Dyes and Pigments 2016, 134, 541-552

Małgorzata Norman conceived and designed the experiments, developed the results of spectroscopic, thermal analysis and antioxidant tests, wrote the manuscript and discussed with reviewers.

3

M. Norman, P. Bartczak, J. Zdarta, W. Tomala, B. urańska, A. Dobrowolska, A. Piasecki, K. Czaczyk, H. Ehrlich, T. Jesionowski, Sodium copper chlorophyllin immobilization onto Hippospongia communis marine demosponge skeleton and its antibacterial activity, International Journal of Molecular Sciences 2016,17(9), 1564-1580

Małgorzata Norman conceived and designed the adsorption experiments, developed the results, wrote the manuscript and answered the reviewers.

3.257 30 45

4

M. Norman, J. Zdarta, P. Bartczak, A. Piasecki, I. Petrenko, H. Ehrlich, T. Jesionowski, Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation, Open Chemistry 2016, 14, 243-254 Małgorzata Norman was author of the idea of the research, conducted the adsorption tests as well as catalytic studies, described results of analysis, wrote whole manuscript and discussed with reviewers.

1.027 20 60

5

M. Norman, S. Zółtowska-Aksamitowska, A. Zgoła-Grze kowiak, H. Ehrlich, T. Jesionowski, Iron(III) phthalocyanine supported on a spongin scaffold as photocatalyst in an advanced oxidation process of halophenols and bisphenol A, Journal of Hazardous Materials 2018, 347, 78-88

Małgorzata Norman conceived and designed the adsorption and catalytic experiments, developed the results of hybrid material analysis, wrote the manuscript and answered the reviewers.

6.065 45 60

(13)

1. Abstract

During realization of the presented doctoral thesis, the 3D spongin-based hybrid material was obtained and further characterized in terms of its physicochemical and structural properties. The aim of the work was the adsorption of selected dyes, both natural and synthetic, on the sponginous skeleton isolated from the marine sponges. The results of this study allowed to evaluate the effectiveness of the process depending on the contact time between the adsorbent and adsorbate as well as initial concentration of the dye solution, temperature, pH and the ionic strength. Key parameters that have the greatest influence on the process were pH and the presence of Na+ and Cl- ions. The acidic environment proved to be optimal for the adsorption process because it promotes creation of the interactions between functional groups of spongin and dye molecules.

In addition, adsorption kinetics and Langmuir and Freundlich isotherm parameters were determined. A kinetic model that uniquely corresponded with experimental data was a pseudo-second order model. In case of adsorption isotherms, the calculated parameters indicate a complex process mechanism.

The products obtained during the research were subjected to comprehensive physicochemical and structural analysis using the available methods and techniques.

Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), carbon nuclear magnetic resonance (13C CP MAS NMR), elemental and thermal analysis were applied.

The studies described in the first work Adsorption of C.I. Natural Red 4 onto the spongin skeleton of marine demosponge (M. Norman, P. Bartczak, J. Zdarta, W. Tylus, T. Szatkowski, A.L. Stelling, H. Ehrlich, T. Jesionowski, Materials 2014, 8, 196-216), concerned the adsorption of anthraquinone dye carmine. Results provided interesting and new information about the spongin and answered the question about the nature of the interaction between the sponginous scaffold and dye. The presence of electrostatic interactions and hydrogen bonds between the adsorbent and the adsorbate has been proved.

The obtained hybrid material, depending on dye used, exhibited different properties:

 antioxidant – the paper Anthocyanin dye conjugated with Hippospongia communis marine demosponge skeleton and its antiradical activity (M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Dyes and Pigments 2016, 134,

(14)

541-552) describe antiradical activity exhibited by anthocyanin dye-spongin 3D hybrid. These properties were tested by estimating the ability of the dye- biopolymer material to scavenge the 2,2'-diphenyl-1-picrylhydrazyl free radical (DPPH). Moreover, the equivalent of Trolox was calculated.

 antibacterial – the system chlorophyllin/spongin, described in the work Sodium copper chlorophyllin immobilization onto Hippospongia communis marine demosponge skeleton and its antibacterial activity (M. Norman, P. Bartczak, J. Zdarta, W. Tomala, B. urańska, A. Dobrowolska, A. Piasecki, K. Czaczyk, H. Ehrlich, T. Jesionowski, International Journal of Molecular Sciences 2016,17(9), 1564-1580), was verified for the antibacterial activity. A series of tests against Gram-positive and Gram-negative bacteria strains were made, and effective reduction in the growth of Straphylococcus aureus was proved.

 catalytic in the process of decomposition of selected organic pollutants: Rhodamine B (Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation (M. Norman, J. Zdarta, P. Bartczak, A. Piasecki, I. Petrenko, H. Ehrlich, T. Jesionowski, Open Chemistry 2016, 14, 243-254)), and phenol, its halogen derivatives and bisphenol A (Iron(III) phthalocyanine supported on a spongin scaffold as photocatalyst in an advanced oxidation process of halophenols and bisphenol A (M. Norman, S. ółtowska- Aksamitowska, A. Zgoła-Grze kowiak, H. Ehrlich, T. Jesionowski, Journal of Hazardous Materials 2018, 347, 78-88)). In these research papers the adsorption of sulfonated copper(II) and iron(III) phthalocyanine on sponginous scaffold was made and the obtained product served as heterocatalyst. According to the obtained results the synergistic effect during the simultaneous use of a heterogeneous catalyst, ultraviolet radiation and hydrogen peroxide was confirmed. Using conjugated technique: high-performance liquid chromatography and mass spectrometry (HPLC-MS), the efficiency of the process was calculated and the degradation products identified.

The preparation of the spongin/dye systems allowed to combine the functional properties of the dyes with the thermally and mechanically resistant natural carrier, the creation of products with unique physicochemical properties and the possibility of finding interesting application.

(15)

2. Streszczenie

Celem prac była adsorpcja wybranych barwników, zarówno pochodzenia naturalnego, jak i syntetycznych, na sponginowych szkieletach gąbek morskich wyizolowanych z gatunku Hippospongia communis. W ramach przeprowadzonych badań oceniono skuteczno ć procesu w zale no ci od czasu kontaktu adsorbent - adsorbat, początkowego stę enia roztworu barwnika, temperatury, pH układu modelowego oraz siły jonowej. Kluczowymi parametrami, w największym stopniu wpływającymi na przebieg procesu było pH oraz obecno ć jonów Na+ i Cl-. rodowisko kwa ne okazało się optymalne dla procesu adsorpcji, poniewa sprzyja występowaniu oddziaływań pomiędzy grupami funkcyjnymi szkieletów gąbek oraz cząsteczkami barwnika.

Ponadto okre lono parametry kinetyczne procesu adsorpcji oraz wyznaczono izotermy wg modeli Langmuira i Freundlicha. Modelem kinetyki, który jednoznacznie korespondował z danymi eksperymentalnymi okazał się model pseudo-drugiego rzędu.

W przypadku izoterm adsorpcji obliczone parametry wskazują na zło ony mechanizm procesu. W ramach zrealizowanych badań otrzymano, a następnie wnikliwie scharakteryzowano, pod kątem okre lenia wła ciwo ci fizykochemicznych oraz strukturalnych, materiały hybrydowe barwnik-spongina. Wykonano analizy z zastosowaniem spektroskopii w podczerwieni z transformacją Fouriera (FTIR), spektroskopii Ramana, spektroskopii fotoelektronów wzbudzonych w zakresie promieniowania rentgenowskiego (XPS), mikroanalizy rentgenowskiej (EDS), węglowego magnetycznego rezonansu jądrowego (13C CP MAS NMR), analizy elementarnej oraz termicznej (TD/DTA). Rezultaty opisane w pierwszej pracy Adsorption of C.I. Natural Red 4 onto spongin skeleton of marine demosponge (M. Norman, P. Bartczak, J. Zdarta, W. Tylus, T. Szatkowski, A.L. Stelling, H. Ehrlich, T. Jesionowski, Materials 2014, 8, 196- 216), w której barwnik antrachinonowy – karminę zaadsorbowano na sponginowym szkielecie, dostarczyły interesujących informacji wzbogacających wiedzę na temat samej sponginy oraz pozwoliły odpowiedzieć na pytanie o charakter oddziaływań powstałych pomiędzy sponginowym szkieletem a barwnikiem. W oparciu o otrzymane rezultaty stwierdzono występowanie oddziaływań elektrostatycznych oraz wiązań wodorowych pomiędzy adsorbentem i adsorbatem.

Wykorzystanie otrzymanych układów w zakresie działania antyrodnikowego było przedmiotem badań zaprezentowanych w publikacji Anthocyanin dye conjugated with

(16)

Hippospongia communis marine demosponge skeleton and its antiradical activity (M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Dyes and Pigments 2016, 134, 541-552). Udowodniono skuteczną aktywno ć przeciwutleniającą układów barwnik antocyjaninowy - spongina, którą oznaczono za pomocą metody redukcji rodnika DPPH (redukcja rodnika 1,1-difenylo-2-pikrylohydrazylu) oraz obliczono równowa nik Troloxu.

Układy chlorofilina - szkielet gąbki morskiej, opisane w pracy Sodium copper chlorophyllin immobilization onto Hippospongia communis marine demosponge skeleton and its antibacterial activity (M. Norman, P. Bartczak, J. Zdarta, W. Tomala, B. urańska, A. Dobrowolska, A. Piasecki, K. Czaczyk, H. Ehrlich, T. Jesionowski, International Journal of Molecular Sciences 2016,17(9), 1564-1580) zweryfikowano pod kątem aktywno ci antybakteryjnej. Wykonano szereg testów wobec szczepów bakterii Gram-dodatnich oraz Gram-ujemnych, na podstawie których udowodniono działanie ograniczające wzrost bakterii Straphylococcus aureus przez otrzymany produkt.

Zweryfikowanie działania katalitycznego w procesie rozkładu zanieczyszczeń organicznych: Rodaminy B (Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation (M. Norman, J. Zdarta, P. Bartczak, A. Piasecki, I. Petrenko, H. Ehrlich, T. Jesionowski, Open Chemistry 2016, 14, 243-254)) oraz fenolu, jego halogenopochodnych jak i bisfenolu A (Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A, (M. Norman, S. ółtowska-Aksamitowska, A. Zgoła-Grze kowiak, H. Ehrlich, T. Jesionowski, Journal of Hazardous Materials 2018, 347, 78-88)) stanowiło cel badań zaprezentowanych w powy szych publikacjach. W pracach tych zaprezentowano wyniki badań dotyczące adsorpcji sulfonowanej ftalocyjaniny miedzi(II) oraz elaza(III) na odpowiednio spreparowanych proteinowych szkieletach gąbek morskich, które to układy pełniły rolę katalizatora w procesie degradacji wymienionych substancji szkodliwych dla rodowiska.

Na podstawie zrealizowanych badań stwierdzono efekt synergii w czasie jednoczesnego działania otrzymanego układu heterogenicznego, promieniowania ultrafioletowego oraz nadtlenku wodoru. Wykorzystując wysokosprawną chromatografię cieczową sprzę oną ze spektrometrem mas (HPLC/MS) obliczono wydajno ć procesu oraz zidentyfikowano produkty rozkładu.

(17)

Otrzymanie trójwymiarowych układów spongina - barwnik pozwoliło na połączenie funkcjonalnych wła ciwo ci barwników z trwałym termicznie i mechanicznie no nikiem pochodzenia naturalnego, stworzenie produktów odznaczających się unikatowymi wła ciwo ciami fizykochemicznymi i mo liwo cią znalezienia ciekawych walorów u ytkowych.

(18)

3. Introduction

3.1. Porifera – state of the art

Sponges, belonging to phylum Porifera, are the phylogenetically oldest animals, their evolution is dating back to 600 million years ago. Currently (2017), there are 8 848 valid species described in the The World Porifera Database [1], which could be found in marine and freshwater habitats.

These aquatic animals are currently described in 4 classes: Demospongiae, Calcarea, Hexactinellida and Homoscleromorpha, essentially based on morphological data, molecular and genetic analyses. Sponges, regardless of the class to which they belong, secrete mineral or organic structures that give them a variety of three-dimensional shapes, which minimizes the metabolic cost of water exchange. The skeleton may also be supplemented by exogenous materials, such as sand grains. Most Demospongiae and Hexactinellida produce silica-made skeletons consisting of individualized elements (spicules) of lengths ranging from micrometers to centimeters, which can subsequently fuse or interlock with each other [2]. The high diversity of spicule shapes and sizes in both fossil and living sponges has been repeatedly reported and has received particular attention in taxonomic and cladistic studies. The mineralized spicules of Calcarea class are made of calcium carbonate. Thus, skeletal formations of sponges are examples of natural rigid glass-based or CaCO3 based composites [3].

Sponges’ skeletons, built from minerals and/or organic matrix, depending on the nature and density of building components, may variously be soft, compressible, fragile or hard in consistency. Sponges come in various shapes and sizes, from flat cushions to elaborate branching or cup-shaped forms, from tiny crusts measured in millimeters, to giant shapes in meters. The shapes of sponges are variable among different species and genera, but also vary to some extent between individuals of the same species in response to environmental factors such as hydrodynamics, light and turbidity [4].

The structure of their bodies is very simple and distinguish against other multicellular animals, especially in terms of the lack of organs, tissues and symmetry of the body. They are built form specialized cells for a variety of life functions. The sponge body is made up of two layers of cells: the outer pinacoderm (made of cells called pinacocytes) and the

(19)

inner (choanoderm). Between them there is a mesohyl - an amorphous substance containing cells with various functions. In adult organisms it forms a jelly-like matrix.

Pinacocytes forming the outer layer are flat cells capable of shrinking. Porocytes - cells with a water channel, which create a system of ostia responsible for water exchange - are irregularly located between them. The inside of the sponge body is called spongocoel, but it should not be identified with the digestive tract, since spongy digestion takes place inside the cells. Osculum enable water gets out of the body. The above-mentioned elements - pores, ostia and spongocoels together with the osculum form a water system.

Three types of Porifera body structure could be distinguish: asconoid, syconoid and leuconoid (Fig. 1.) Asconoid - found in the simplest sponges, is characterized by a single layer of collar cells (chonaocytes) in the spongocoel and straight channels. Choanocytes are cells that line the interior of asconoid, syconoid and leuconoid body type sponges that contain a central flagellum, surrounded by a collar of microvilli. Choanocytes force water and oxygen flow through the spongocoel. Water simultaneously receives carbon dioxide, ammonia and food residue. Syconoid have a tubular body and single osculum, but the body wall, which is thicker and more complex than that of asconoids, contains choanocyte-lined radial canals that empty into the spongocoel. The spongocoel in syconoids is lined with epithelial-type cells rather than flagellated cells as in asconoids. Water enters through a large number of dermal ostia into incurrent canals and then filters through tiny openings into the radial canals. Here food is ingested by the choanocytes, whose flagella force the water through internal pores (apopyles) into the spongocoel. From there it emerges through an osculum. The most developed type of sponge construction is leuconoid, in which chonaocytes are located in spherical chambers forming a network with water channels [5].

It also should be mentioned that sponges have the ability to reproduce the entire organism on the basis of several cells of one kind. Cells connect and then divide, restoring the body.

(20)

Fig. 1. Cross-section of Porifera body structure (a) – asconoid, (b) – syconoid, (c) – leuconoid; 1 – spongocoel, 2 – osculum, 3 – pores, 4 – incurrent canal, 5 – radial canal

(choanocyte chamber), red arrow – water flow.

They reproduce in two ways - sexually (gametes occur in mesoglea) or asexually (after fragmentation, by budding and by producing gemmules). Adult forms usually form colonies that can count up to 50,000 individual organisms.

Demospongiae is the largest sponge class including about 80% of all living sponges with nearly 7,000 species worldwide, divided into three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha [6]. In Dictyoceratida and Dendroceratida orders, jointly referred to as “keratose demosponges” (also called “horny sponges”), the skeleton does not contain siliceous spicules but only protein (spongin - unique to the phylum Porifera) fibres [7].

Among biomaterials, there are three kinds of organic substances, which skeleton of some sponges can be built of: chitin, spongin and collagen. It was previously shown that chitin is present as a structural component in skeletons of two poriferan classes, Hexactinellida and Demospongiae [8,9]. Taxonomically, spongin is a character of the class Demospongiae. Collagen is the only intercellular organic framework that contribute to approximately 10% of the total organic matter in Demospongiae.

In presented doctoral dissertation Hippospongia communis species was used. The taxonomy and distribution of Hippospongia communis are presented in Figs 2 and 3, respectively. Their skeleton is built ofspongin fibres exclusively.

(21)

Fig. 2. Taxonomy of Hippospongia communis.

Fig. 3. Distribution of Hippospongia communis species [10].

Spongin is a biopolymer of still unknown chemical structure, but seems to be a naturally occurring hybrid between collagen and keratin-like proteins. In 1843 Crookewitt first pointed out that the endoskeleton of the common bath sponge is derived from the dermal (horny) layer and called him spongin. Up to now spongin was called also pseudokeratin, neurokeratin, horny protein, collagen-like protein, scleroprotein and spongial multilayered skeleton structures [11]. It is commonly agreed by most authors that

(22)

spongin is formed by epithelial cells - spongioblasts. The basal pinacoderm (basopinacocytes) secrete a mixture of spongin and complex carbohydrates (probably in the form of a fibrillar spongin-polysaccharide complex) that allows the animal to attach to a substrate. The spongin attachment plaques can be seen as the precursor of the sponge holdfast: the protein-carbohydrate-based glue holds the sponge in place [12]. Spongin is also present in the coat of gemmules.

Spongin fibres, which may range in thickness from few to several hundred microns, are constituted by densely packed microfibrils arranged within a preferential orientation, usually in concentric layers. The hierarchical, multilevel organization of microfibrils results in spongin, a protein more resistant to enzymatic degradation than collagenous microfibrils themselves. Spongin is known to be resistant to bacterial collagenases, pepsin, trypsin, chymotripsin, pronase, papain, elastase, lysozyme, cellulase, and amylase [13].

Among protein, high sugar content was also typical in number of spongin fibres containing sponges. Glucose, galactose, xylose, mannose, and arabinose were found in conjunction with spongin fibres. Junqua et al. [13] found small amounts of galactosyl-hydroxylysine and much more substantial amounts of glucosylgalactosyl-hydroxylysine in three marine sponges (Ircinia variabilis, Hippospongia communis and Cacospongia scalarist).

Fibronectin, a type of glycoprotein, was also found in sponges [14]. On the basis of their amino acid and carbohydrate composition, solubility behavior and presence in the intercellular matrix, they appear to belong to class of structural glycoprotein. Sponge fibronectin-like protein probably play an important role during the reassociation of dissociated sponge as well as during morphogenesis and differentiation of sponges. In some species also lipids were found in their skeletons.

What is more important, spongin is defined as a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton and play an important role in formation of extracellular matrix. Genomic and complementary DNA studies showed that spongin (similarly to collagen) contain the classic collagenous Gly-Xaa-Yaa motif where Hydroxyproline (Hyp) occupies any of the positions in the triplet motif, other than Gly (Glycine) position [15].

Non-fibrillar short-chain collagen is likely to be a component of spongin [16]. There is a remote homology between the carboxyl-terminal noncollanenous NC1 domain of spongin short-chain collagens and type IV collagen [17]. The C-terminal, non-collagenous

(23)

domain of individual chains appears duplicated as in the NC1 (non-triple helical) domain of type IV collagen; eight of the nine cysteine residues of this sponge collagen molecule domain are in a similar position as eight of the twelve cysteine residues of the NC1 domain of type IV collagen [15]. Basal membrane with type IV collagen is present in Homoscleromorpha but failed to recover in Demospongiae. Nevertheless, the similarities between spongin, nematode cuticular, and basement membrane type IV collagens could suggest that spongin family possibly reflects two lines of evolution. One line might have been exocollagens (such as spongins) attaching sponges to their substrata (such as worm cuticles). The second might have been internalization of such collagens, leading to the differentiation of basement membrane collagens [18]. Spongin is also analogous to collagen type XIII. The amino acid composition of spongin is similar to vertebrate collagen as determined by infrared absorption spectra, with a high percentage of glycosylated hydroxylysine, aspartic and glutamic acid [19]. Generally, amino acid analysis and morphological studies have shown that sponges possess two different kinds of collagen, structured respectively as microfibrils and fibrils. The microfibrils are involved in the organization of coarse structures, fulfilling a skeletal or protective function. They are restricted to sponges and might be named spongin microfibrils. Basically, they are long filaments about 10 nm in diameter. They can be randomly deposited or regularly arranged, depending on the structure they build. The basal cell layer elaborates a thin sheet of a collagenous material which usually sticks the sponge to its substratum. The unit microfibrils appear then as beaded filaments of about 4 nm in diameter. They can assemble into larger filaments; structures made by two joined microfilaments are rather frequently seen. Spongin microfibrils have to be included in the diverse group of “external collagens”, represented above all among invertebrates (by exoskeleton, cuticles, anchoring devices, etc.) but also in fish [20]. Other study [21] inform that some keratose species possess three characteristic collagens: filamentous, fibrillar (collage type I) and non-fibrillar (type IV), with diverse range of fiber diameter. Studies of Exposito and Garrone [22] revealed that phylum Porifera contains several morphological forms of collagen. The sponge species contain collagen fibrils displaying a typical banding pattern and uniform diameter. In addition, other species possess highly variable forms of collagen aggregates, generally made up of micrifibrils.

(24)

Spongin matrix has been defined as an exoskeleton and exhibit different morphological aspect among demosponges. Up to now, it is not known if all spongin assemblies are equivalent [17]. Two morphologically distinct forms of spongin fibres, designated spongin “A” and spongin “B,” were demonstrated by Gross et al. to be members of the collagen class [23]. This finding was supported structurally by X-ray diffraction and electron microscopy results, and chemically by their hydroxyproline amid glycine content as well as by the general amino acid pattern. Spongin “A” is a long unbranched fibril of uniform width on the order of 20 nm whereas spongin “B” is a large branched fibre, 10–50 μm in width, composed primarily of bundles of thin unbranched filaments less than 10 nm wide [24]. On the other hand, Garrone has distinguished five types of spongin [25]. First, there is spongin of the spiculated fibres, which is always associated with the endogenous inorganic skeleton of the sponge. This kind of spongin is resistant to diverse bacterial collagenases, pepsin, and mild acid or alkaline hydrolysis.

Only a solution of cuprammonium hydroxide appears to be able to attack spongin at room temperature.

Second, the spongin fibres which constitute the skeleton of the horny sponges: the abundance and compactness of the spongin and almost complete lack of its own inclusions, which are replaced with foreign particles, testify to the originality of the spongin in this group. Third is the basal spongin, which attaches the animal to the substratum. In sponges with no organized internal skeleton, the more or less continuous layer of external spongin is secreted by the basopinacocytes. In sponges with an organized skeleton, formed either with speculated or spongin fibres, the basal spongin is continuous with the internal spongin. Fourth form, spiculoids are organic elements whose shape, often regular, is strikingly similar to that of inorganic spicules, but extremely flexible and elastic. They are either free or partly joined to the fibres of the skeleton. They are compressible and can be easily torn apart. In its fifth form spongin made a shell of the gemmules [24].

The amino acid composition of spongin, as a proteinaceous material, could vary depending on the sponge species. Nevertheless, among above-mentioned hydroxyproline and glycine glutamic and aspartic acid, arginine, alanine and proline are most popular [26,27]. The results of elemental analysis, energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of Hippospongia communis spongin [28–30]

confirmed the highest content of carbon, oxygen, nitrogen and hydrogen, as expected.

(25)

However, above-mentioned analyses revealed the presence of halogens and other elements as the components of spongin. It has been proved that halogens exist in combination with organic components in demosponges, in form of 3,5-diiodotyrosine and 3-bromotyrosine [24]. Bromine-containing compounds related to tyrosine constitute by far the commonest class of secondary metabolites in Verongida. These compounds are present in the cellular matrix and may also be incorporated into the chitin-based skeletons, where serve as stabilizing and cross-linking substances. Skeletal fibres are thought to play a role in sequestering and accumulating brominated compounds, perhaps as an inactive residues. In Dictioceratida order halogenated tyrosines occur in these sponges together with proteinogenic amino acids. Bromine is often concentrated within keratosan fibres [31,32].

The presence of tyrosine compounds confirmed the presence of aromatic amino acids in spongin, what stays in agreement with (FTIR) and XPS results’(publication 5 [33]), which confirmed the chemical state of carbon characteristic for aromatic compounds. Sulfur is a component of cysteine, an amino acid, which also occurs in the structure of spongin. As it was mentioned, spongin is a protein with similarities to both collagen and keratin. Intra- and intermolecular hydrogen bonds are characteristic for keratin, as well as sulfur- containing cysteine, required for the disulfide bridges that confer additional strength and rigidity by permanent, thermally stable cross-linking.

Studies performed and described in presented doctoral dissertation revealed the occurrence of elements at low concentration (Mg, Ca, Al, Si). Presence and concentration of those elements (and others like K, Fe, Mn) stay in agreement with previously published studies and depends on the environment [34]. They are preferentially accumulated either in the skeleton or in the soft tissues depending on the pollution levels of the collection sites. This also allows to consider the use of sponges as biological pollution indicators (biomonitoring). Two kinds of accumulation of elements in sponges could be distinguish:

the simple uptake of elements present in environment and particular selection of elements which may be eventually involved in the metabolism of the sponges. In effect, the cleaning procedure of the sponges does not eliminate all the foreign material aggregated in sponge structure. Only the macroscopic materials, like small parts of shell, sand grains etc. may be removed [35].

From practical point of view, the properties and architecture of Hippospongia communis scaffold play a key role and these properties of spongin are consequence of its

(26)

structure. Spongin is insoluble in water and acids. The fibres withstand treatment with 3M HCl and 5% trichloroacetic acid at 90 °C [11]. On the other hand, alkalis can dissolve the spongin material into hydrolysate of amino acids. As it was mentioned above, it is chemically inert and can not be digested by the enzymes. Spongin differs from vertebrate collagens by the presence of unreducible cross-links between the molecules of the tropocollagen elements and aromatic compounds, which provides additional biological stability [19]. Spongin is also thermal stable, the results of studies [36,37] indicate that the degradation of spongin starts at around 150 °C.The thermal stability of spongin stays in agreement with several studies regarding thermal behavior of keratin. Not without a meaning is also a hydration state of collagenous fibrils (presence of water molecules between triple helices), which serve as a mediator in hydrogen bonding between hydroxyl groups of the amino acids, also positively influencing thermal stability. Spongin resembles keratin in its remarkable thermal and chemical stability and resistance to acidic hydrolysis.

This protein provide stiffness and strength to the structure in which it occurs. Nonetheless, in modern multicellular animals, spongin gives a sponge its flexibility and support, similar like collagen to a tissue.

There is a tremendous diversity of skeletal architectures and fiber constructs within the phylum. The feature, which spongin, collagen and keratin have in common is fibrous structure. Single fibres, composed of microfibers, which are built of amino acid chain, combine into a complex hierarchical network of Hippospongia communis skeleton. The skeleton is three-dimensional, reticular, organized in open-pores cellular structures with multi-junctional regions (Fig. 4).

(27)

Fig. 4. SEM images of Hippospongia communis spongin skeleton at different magnifications.

Stabilization of fibres is affected by the multileveled, hierarchical organization of fibrils and fibres, hydrophobic interactions [13] and the presence of cross-links: (i) between the molecules of the tropocollagen elements and aromatic compounds,(ii) sulfur-sulfur type cross-links between cysteine and cystine residues [19].

Microfibrils have about 10 nm in diameter. Fibres are made of an axial core that may range from a few to about 10-15 μm in thickness, surrounded by helically coiled elementary fibrils which are secreted by the spongioblast cells derived from the mesenchyme. The spongioblast cells arrange themselves in rows and develop a vacuole within which spongin material is collected. Later, spongin secreted by each spongioblast cell fuses with the neighbouring cells to form long fibres. Spongin fibres form a mesh work to provide firmness to the sponge body [38]. The skeletons of Porifera appear to possess several unique and suitable properties: (i) the ability to become hydrated, what is favorable for cell adhesion and (ii) the presence of open interconnected channels created by the fiber network makes them an interesting host system, e.g., for cells [19]. Considerable liquid absorption,

(28)

which take place by capillary attraction is due to skeleton’s large internal surface area estimated at between 25 and 34 m2 for a 3 to 4 gram skeleton [39]. Multileveled, cellular and hierarchical structure of spongin skeleton influence their extraordinary mechanical properties at low weight and low density. It is important for effective water pumping and maintains high mechanical strength and endurance necessary against sea and ocean currents as well predators. Moreover, the mechanical performance is crucial from the application point of view. Sponge- or foam-like porous scaffold are widely used in tissue engineering applications, especially for growth of host tissue, bone regrowth or organ vascularization. The porous network simulates extracellular matrix allowing cells to interact effectively with their environment. A detailed study on the mechanical parameters of different species of Demospongiae were conducted by Louden and co-workers [40].

Researchers quantified the physical properties of sponges (density, fibre width and length, water retention efficiency) and their mechanical properties (firmness, compression modulus, compressive strength, tensile strength, elastic limit, elastic strain, modulus of elasticity and modulus of resilience).

Sponges are dominant members of many aquatic environments. They interact with wide community in a variety of important relationships, from competing for space with sessile organisms to filtering small suspended particulate matter and transferring energy from the pelagic to the benthic zone. As large biofilters they control microbial populations [41]. From the ecological point of view, individual sponge species can have very specific requirements for substrate quality, food particles, light and current regime. Moreover, sponges are strongly associated with the abiotic environment and therefore they are very sensitive to environmental stress, what makes them useful tools for environmental monitoring [42]. For example sponges have shown accumulation of elements which can be used as a biomarker to assess pollution risks and ecosystem health in the seas and oceans (bioindicators of heavy metals) [43]. Studies of Batista and co-workers [44] evaluates the potential of Hymeniacidon heliophila (Demospongiae class) as bioindicator of polycyclic aromatic hydrocarbons (PAH) contamination. The high rates of filtration - 1 kg of sponges can processes over 24,000 L of water per hour, as well as the ability to ingest particles from 0.2 to 50 mm allows capturing pollutants efficiently both in the dissolved and particulate phases.

(29)

Marine sponges have been used by humans for centuries. The publication of Pronzato and Manconi [45] deals with the history of the exploitation of a natural resource made up of various types of Mediterranean horny sponges. Sponges were used as artistic tool - for painting and decoration. They were widely used in household application for cleaning and hygienic activities. Sponge allowed ancient fishermans to breath during diving and the soldiers served as padding under helmets and armor. Sponges played also a very important role in ancient medicine. The first person who used them for this application was Hippocrates, for which sponges were the primary tool for treating illnesses and health problems. They were used in popular healing baths, as well as for relieving pain. Sponges soaked with hot water were applied to the head, back, hips or legs and were attached with wool or leather. Moreover, small honey-filled sponges were used to treat ear inflammation.

They were also an indispensable element in wound dressing - before the bandages were applied, the wound was cleaned and dried with sponges. Sponges also served for digestive system and gynecological diseases treatment. Attached to a string and wrapped in silk were used by ancient Jews, and were historically considered to be the most effective contraceptive. In medieval Arabic surgery sponge soaked with a mixture of hashish, papaver and hyocymine juice, dried under the sun and humidified again when required, were placed at the patient’s nose. In Europe sponge was boiled in a brass vessel with a mixture containing specific proportions of opium, hemlock, and the juices of mandragora, ivy and unripe mulberries until all the liquid was reduced and soaked up in the sponge. The sponge was then applied to the nostrils of the patient. A sponge full of vinegar was usually applied to the nose to wake the patient up again after surgery.

Right now the organic chemistry of sponges is also the focus of intense research because they have been known to contain active biomolecules which are of therapeutic and pharmaceutical value. Numerous ecological studies have shown that secondary metabolites produced by sponges often serve defensive purposes to protect them from threats such as predator attacks, microbial infections, biofouling and overgrowth by other sessile organisms [46]. Thousands of sponge-derived bioactive metabolites have been isolated and identified so far [47,48]. Most bioactive compounds from sponges belong to anti- inflammatory, antitumor, immuno- or neurosuppressive, antiviral, antimalarial, antibiotic, cytotoxic, cytoprotective, enzyme-inhibitory or antifouling class. One of the example was above-mentioned bromotyrosines. Aeroplysinin-1, a brominated tyrosine metabolite from

(30)

the sponge Verongia aerophoba, has been found to inhibit purified epidermal growth factor receptor protein tyrosine kinase activity, to block proliferation of cancer cell lines, to induce their apoptosis at high nanomolar concentrations and to suppress angiogenesis in vivo [49].

As was previously mentioned, the skeletons of marine sponges are among a group of natural biomaterials that possess elaborate optimized space-filling, three-dimensional architectures. Natural skeletons are highly optimized structures that support and organize functional tissues. They provide important design information for the fabrication of synthetic tissue-engineering scaffolds and may prove efficacious in tissue-engineering strategies [19,50]. The availability, structural diversity, hydrophilic and permeable nature of these natural marine sponges indicate their potential as natural biological scaffolds.

Green with co-workers [19] examine the adhesion, spread, growth, differentiation and phenotypic modulation of human osteoprogenitors on the fibre skeletons of a marine sponge. This study also examined the capability of a marine sponge skeleton to act as a delivery vehicle for osteogenic proteins. The results confirm the potential of marine sponge skeletons to deliver bone morphogenic proteins and the advantages of scaffold architecture for bone progenitor cell growth, differentiation and ultimately mineralization.

Lin et al. [51] evaluate the usefulness of natural marine sponge collagen as a scaffold for bone tissue engineering. An ideal scaffold for bone tissue engineering must possess suitable biocompatibility, osteoconductive and osteoinductive capacities together with a structure which mimics the trabecular network of bone tissue. Marine sponges display a structure which is similar to the cancellous architecture of bone tissue. The complex canal system within sponges creates a porous environment which is ideal for cellular integration when combined with cells for tissue engineering. The studies of Cunningham and co-workers [52] demonstrates the potential use of marine sponges as precursors in the production of ceramic based tissue engineered bone scaffolds. Three species of Demospongiae: Spongia officinalis, Spongia zimocca and Spongia agaricina were selected for replication. A high solid content of hydroxyapatite was developed, infiltrated into each sponge species and subsequently sintered, producing a scaffold structure that replicated pore architecture and interconnectivity of the precursor sponge. The researchers proved the potential of sponges in repeatable production of hydroxyapatite scaffolds with the necessary characteristics to be used as a viable bone substitute material.

(31)

The perspectives of application (for example in drug delivery systems, cosmetic) of marine sponge collagen was presented in the work of Silva et al. [53].

Ehrlich and Worch [39] demonstrate the examples of sponges as biomaterials – sponges’

spicules of Hexactinellida class are natural glass-based composites with specific mechanical and optical properties. There are also literature reports about surfactant biodegradation by marine sponges [54]. Their potential as an adsorbent for metal uranium [55] as well as dye of natural [28,29,36] and synthetic [30] origin was also demonstrated.

Szatkowski and Jesionowski [56] describe the hydrothermal synthesis of materials based on spongin. Authors describe unique structural, mechanical, and thermal properties of chitin extracted from different kind of sponges species and indicate how physicochemical properties may find uses in diverse areas of the material sciences. These new biomaterials have electrical, chemical and material properties that have applications in water purification, medicine, catalysis, and biosensing. The study presented in the work of Zdarta and co-workers described effective immobilization of enzyme - lipase B from Candida antarctica onto 3D spongin-based scaffolds from Hippospongia communis marine demosponge and use of that product for rapeseed oil transesterification [57].

Summarizing, the utilization of materials of natural origin like structural proteins - spongin, has been gaining increasing scientific attention. Key features contributing to the popularity of these biomaterials include biodegradability, ecological safety, low cost, high compatibility with the environment and renewability.

Despite the growing interest in sponges, their increasing use is not a threat to them.

Spongin-containing marine sponges, including Mediterranean Hippospongia communis, are examples of renewable resources, because are cultivated under marine ranching conditions and represent available and relative low-cost biological materials [58,59].

Literature emphasize the scientific and application potential of marine sponges.

Moreover, wide range of sponges’ properties enable further functionalization of selected marine demosponge skeletons as special scaffolds to improve their surface properties and enable their use in various further areas. The functionalization of Hippospongia communis spongin skeleton was made by using dyes. A novel, dye/biopolymer hybrid materials, with designed properties, combine the beneficial features of both constituents.

(32)

3.2. Functionalization of Hippospongia communis skeleton

Functionalization agent used for Hippospongia communis modification described in presented PhD thesis was natural and synthetic dyes with special properties: antioxidant, antibacterial and catalytic properties were used for this purpose.

Dyes derived from nature were the only dyes available to mankind for the coloring until the discovery of the first synthetic dye in XIX century. Natural dyes are derived from plants, animals, microbes or minerals. According to their chemical structure they could be divided into several class, presented in the Fig 5.

Fig. 5. Types of natural dyes with the examples.

Due to the content of the presented publications, only selected, particular dyes will be described in details.

Carmine also called C.I. Natural Red 4 or cochineal, is a dark red dye of animal origin [60]. Industrial carmine is obtained by mixing carminic acid with metal salts [61].

The structure of carminic acid is based on anthraquinone with multiple hydroxyl groups,

Cytaty

Powiązane dokumenty

State of Operation Basic Materials for Material Factor Normal Operation Before HAZOP.. Process Control Credit Factor (C1) Credit

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,

a b.. The addition of 0.05 mol L -1 of LiI decreases the potential limit of positive electrode to be inferior to the water oxidation limit. The addition of iodides into the

Metallic lithium is not directly applied as anode material, as dendrites would be formed during cycling, leading to short-circuit of the cell and even thermal

Na podstawie badań studialnych i eksperymentalnych, stwierdzeń z aktualnego stanu wiedzy i praktyki przedmiotu zagadnienia, projektowania, użytkowania i

Further analyses revealed that the strong relationship between the cell surface hydrophobicity and biodegradation of hydrophobic organic compounds was found in the

One of the most important challenges for the readout electronics designers from the analog electronics point of view, is the noise level reduction (stemming from

One of the most important challenges for the readout electronics designers from the analog electronics point of view, is the noise level reduction (stemming from the