• Nie Znaleziono Wyników

Rekonstrukcja oddziaływań neutrin w detektorze BOREXINO

N/A
N/A
Protected

Academic year: 2021

Share "Rekonstrukcja oddziaływań neutrin w detektorze BOREXINO"

Copied!
42
0
0

Pełen tekst

(1)

M. Misiaszek (Instytut Fizyki UJ, Kraków)

Rekonstrukcja oddziaływań neutrin w detektorze BOREXINO

Kurchatov Inst.

(Russia) Dubna JINR

(Russia) Heidelberg

(Germany)

Munich (Germany) Jagiellonian U.

Cracow (Poland) Perugia

Genova

APC Paris Milano

Princeton University

Virginia Tech.University

Seminarium neutrinowe IFT, Wrocław 16 listopada 2009

(2)

Borexino aims to measure low energy solar neutrinos in real time by elastic neutrino-electron scattering in a volume of highly purified liquid scintillator

Mono-energetic 0.862 MeV

7

Be ν is the main target Pep, CNO and possibly pp ν

Geoneutrinos Supernova ν

Detection via scintillation light

Very low energy threshold Good position reconstruction Good energy resolution

Drawbacks:

No direction measurements

ν induced events can’t be distinguished from β-decay due to natural radioactivity

Extreme radiopurity of the scintillator

Typical  rate (SSM+LMA+Borexino)

The physics goals and detection principles of Borexino

(3)

Detector design and layout

Water Tank:

 and n shield

 water Ch detector 208 PMTs in water 2100 m

3

20 legs Carbon steel plates

Scintillator:

270 t PC+PPO in a 125 m thick nylon vessel

Stainless Steel Sphere:

2212 photomultipliers 1350 m

3

Nylon vessels:

Inner: 4.25 m Outer: 5.50 m

Design based on the

principle of graded

shielding

(4)

CNO

7Be

11

C

10C

14

C

pp+pep+8B

238U + 232Th

The expected signal and the irreducible background

(5)

Borexino is continuously taking data since 13/05/2007

(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

• Algorytmy do rekonstrukcji pozycji zdarzeń oparte są o metodę największej wiarygodności, którą poszukuje się najbardziej

prawdopodobnego miejsca emisji fotonów.

x

0

t

4

t

5

t

6

t

1

t

2

t

3

t

i

= const + tof

i

+ t

'i

tof

i

= n/c * d

i

(x

i

,y

i

,z

i

)

Zakładamy próbną pozycję zdarzenia x0

Obliczamy tof (czas przelotu) dla każdego fotonu

Odejmujemy tof od każdego ti

Porównujemy otrzymany rozkład t'i z oczekiwanym rozkładem fotonów emitowanych ze scyntylatora

Algorytm przeszukuje inne pozycje x0 dopóki nie znajdzie pozycji dla której dopasowanie jest najlepsze

t

i

t

'i

(x

i

,y

i

,z

i

)

(24)

Rozkład przestrzenny zdarzeń

Odrzucenie zdarzeń tła (głównie pr. gamma) R < 3.3 m (100 t masy scyntylatora)

Rozkład radialny

R

2

gauss

2 2 2

Rxyz

R

c

x

2

y

2

z vs R

c

scatter plot

FV

(25)

238 U and 232 Th

212

Bi 

212

Po

208

Pb

 = 432.8 ns

2.25 MeV ~800 KeV eq.

Only 3

bulk candidates (47.4d)

214

Bi-

214

Po

212

Bi-

212

Po

212

Bi-

212

Po

214

Bi 

214

Po

210

Pb

 = 236 s

3.2 MeV ~700 KeV eq.

238

U: < 2. 10

-17

g/g

232

Th: < 1. 10

-17

g/g

(26)

Kształt impulsu w detektorze BOREXINO

[ns]

(27)
(28)

/ discrimination

 particles

Small deformation due to average SSS light reflectivity

 particles

250-260 pe; near the 210Po peak 200-210 pe; low energy side of the 210Po peak

2 gaussians fit 2 gaussians fit

Full separation at high energy

ns

 Gatti parameter  Gatti parameter

(29)

Final spectrum after all cuts



Kr+

Be shoulder

14

C

210

Po (only, not in eq. with

210

Pb!)

11

C

Understanding the final spectrum: main components

Last cut:

214

Bi-

214

Po and Rn daughters removal

No s

After

fiducial volume cut

(“100 tons”)

(30)

Konwersja liczby zmierzonych

fotoelektronów do energii zdarzenia

Fit parametrów do kształtu elektronów z

14

C

~ 500 pe /MeV

Monitoring stabilności detektora

Liczba fotoelektronów Date

N

(31)

100 Hz

14

C+

222

Rn source diluted in PC:

115 points inside the sphere

b :

14

C,

222

Rn diluted in scintillator a :

222

Rn diluted in scintillator g :

54

Mn,

85

Sr,

222

Rn in air N : AmBe

Source localization within 2 cm

through red laser light and CCD camera

Accurate handling and manipulation of the source and of the materials inserted in the scintillator

The Borexino calibration

A first calibration campaign with on axis and off axis radioactive sources has been performed (Oct 08 on axis, Jan-Feb09 off axis)

 accurate position reconstruction

 precise energy calibration

 detector response vs scintillation position

(32)

The measured energy spectrum: May07 - Oct08

(33)

Records in the radiopurity achieved by Borexino

Material Typical conc. Borexino level

in the scintillator

14

C scintillator

14

C/

12

C<10

-12

238

U,

232

Th equiv. - Hall C dust - stainless. steel - nylon

~1 ppm

~1ppb

~1ppt

K

nat

Hall C dust ~1 ppm

222

Rn - external air.

- air underground

~20 Bq/m

3

~40-100 Bq/m

3

85

Kr

39

Ar

in N

2

for stripping ~1.1 Bq/m

3

~13 mBq/m

3

-

222

Rn

-

238

U,

232

Th equiv.

LNGS - Hall C water ~50 Bq/m

3

~10

-10

g/g



14

C/

12

C  2 10

18



10

17

10

18

g /g



10

14

g /g



1  Bq /m

3



~ 0.16 mBq / m

3

~ 0.5 mBq / m

3



~ 30 

Bq / m3

~ 10

14

g / g

(34)

•Fit between 100-800 p.e.;

•Light yield: a free fit parameter;

•Ionization quenching included (Birks’

parametrization);

210

Bi,

11

C and

85

Kr free fit parameters;

•Others v fixed

•Fit to the spectrum without and with subtraction is performed giving consistent results

R

7Be

= 49 ± 3

stat

± 4

sys

cpd/100 tons

The measurement of the 7 Be flux (192 days of live time)

Borexino Collaboration Phys. Lett. B 658 (2008) : after 2 months of data taking Borexino Collaboration PRL 101 (2008) : 192 days of live time

(35)

Expected rate

(cpd/100 t) No oscillation 75 ± 4 BPS07(GS98) HighZ 48 ± 4 BPS07(AGS05) LowZ 44 ± 4

No-oscillation hypothesis rejected at 4 level

7 Be: (49 ± 3 stat ±4 sys ) cpd/100 tons (192 days)

The analysis of the calibration data is in progress

The measurement of the 7 Be flux (192 days of live time)

(36)

Survival probability of the  e

(37)

Before Borexino

After Borexino

Survival probability of the  e

First measurement of the ratio between the

survival probabilities in vacuum and in matter

(38)

Limits obtained by Borexino after 200 days of data taking - the best in the literature

1- Limits on pp e CNO solar fluxes;

with the Luminosity constraint:

2- Limit on the neutrino magnetic moment:



5.4 10

11

B

(90%C.L.)



pp(Borexino data) /pp(SSM) 1.000.0200.008

CNO(Borexino data) /CNO(SSM) 3.8 (90%C.D.)

(39)

The low threshold measurement of the 8B solar neutrinos

2.6 MeV ’s from 208Tl on PMT’s

and in the buffer

Borexino threshold: 2.8 MeV

Expected (MSW-LMA) count rate due to 8B neutrinos above 2.8 MeV:

0.26±0.03 c/d/100 tons

Borexino energy spectrum after muon subtraction: 246 days of live time

(40)

The low threshold measurement of the 8B solar neutrinos

Major background sources:

1) Muons;

2) Gammas from neutron capture;

3) Radon emanation from the nylon vessel;

4) Short lived (t < 2 s) cosmogenic isotopes;

5) Long lived (t > 2 s) cosmogenic isotopes (

10

C);

6) Bulk

232

Th contamination (

208

Tl);

The Borexino

8

B spectrum

tons /100

counts/day )

0.02 0.04

0.26

(

stat sys

8 .

2

  

MeV

Rate

7Be and 8B flux measured with the same detector

Borexino 8B flux above 5 MeV agrees with existing data

Neutrino oscillation is confirmed by the 8B of Borexino

at 4.2 sigma

(41)

Results already achieved in Borexino

1. First direct experimental evidence of the vacuum regime and of the transition region in the neutrino oscillation at very low energy: measurement of the

7

Be flux (0.2-0.8 MeV) and strong limit on the pp

 flux.

2. First determination of the ratio between the 

e

survival probability in vacuum and in matter: 1.6 ± 0.33 (from the

7

Be flux and the

8

B flux, measured with a threshold down to 2.8 MeV).

3. Measurements of the day/night effect for  at very low energy:

4. First validation of the MSW-LMA model in the vacuum regime and in the transition region within the error (10% for the

7

Be flux measurement: stat.+ syst.).

5. Best limits for CNO flux,  magnetic moment, Pauli principle violation.

ADNN  D

N  D  0.02  0.04

What next

A. Measurement of the

7

Be flux with a total error  final validation of the MSW-LMA model;

important insight for the Standard Solar Model metallicity puzzle and stronger limits on the pp flux.

B. Determination of the survival probability ratio, day/night effect, etc. with strongly reduced errors.

C. Study of the pep and CNO region (energy spectrum in the range 0.9-1.5 MeV) with the suppression of the

11

C muon produced.

D. Measurements of the geoneutrinos (the Gran Sasso region is especially favoured due to the absence of the main background: reactor ).





e

Observatory

• Borexino is a Supernova observatory in the network SNEWS .

(42)

Literatura

First real time detection of 7Be solar neutrinos by Borexino (Phys. Lett. B 658 (2008) 101-108)

New results on solar neutrino fluxes from 192 days of Borexino data (Phys. Rev. Lett. 101 (2008) 091302 )

Measurement of the solar

8

B neutrino flux with 246 live days of Borexino and observation of the MSW vacuum-matter transition

(arXiv:0808.2868v1)

Cytaty

Powiązane dokumenty

We present a measurement of the geo-neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. 4 ) geo-neutrino

Abstract: The very low radioactive background of the Borexino detector, its large size, and the well proved capability to detect both low energy electron neutrinos and anti-

T hese setups are cu rrently running and been calib rated at

The measure of the pp flux has been released by the Collaboration in [8], a fundamental additional milestone toward the full solar neutrino spectroscopy by a single solar

M easurem ent of th e Solar pp-n eu trin o flux com pleted th e m easurem ent of Solar neu trin o fluxes from th e pp-chain of reactions in Borexino

In addition, we expand the former analysis by measuring the atmospheric kaon-to-pion production ratio, observe a long-term modulation of the cosmic muon flux, investigate a

solution, these two parameters are obtained combining the measurements of high energy SB solar neutrino fluxes, of the integrated solar neutrino fluxes from radiochemical

In order to measure the number of geo-neutrinos and antineutrinos from nuclear reactors, we implement an unbinned maximum likelihood fit of the prom pt energy