• Nie Znaleziono Wyników

A strongly positive sulphur isotopic shift in late Ediacaran-early Cambrian seawater: evidence from evaporites in the Salt Range Formation, northern Pakistan

N/A
N/A
Protected

Academic year: 2022

Share "A strongly positive sulphur isotopic shift in late Ediacaran-early Cambrian seawater: evidence from evaporites in the Salt Range Formation, northern Pakistan"

Copied!
13
0
0

Pełen tekst

(1)

A strongly pos i tive sul phur iso to pic shift in late Ediacaran-early Cam brian sea wa ter: ev i dence from evaporites in the Salt Range For ma tion, north ern Pa ki stan

Fanwei MENG1, Zhili ZHANG2, Krzysztof BUKOWSKI3, *, Qingong ZHUO4, Naveed AHSAN5, Saif UR-REHMAN5 and Pei Ni6

1 Chi nese Acad emy of Sci ences, Nanjing In sti tute of Ge ol ogy and Palae on tol ogy, State Key Lab o ra tory of Palaeo bi ol ogy and Stra tig ra phy, Nanjing, 210008, China

2 Pe tro leum Ex plo ra tion and De vel op ment Re search In sti tute, SINOPEC, 100083, Beijing, China

3 AGH Uni ver sity of Sci ence and Tech nol ogy, Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion, Al. A. Mickiewicza 30, 30-059 Kraków, Po land

4 Re search In sti tute of Pe tro leum Ex plo ra tion and De vel op ment, CNPC, Beijing, 100083, China

5 Uni ver sity of the Punjab, In sti tute of Ge ol ogy, Quaid-e-Azam Cam pus, La hore 54590, Pa ki stan

6 Nanjing Uni ver sity, School of Earth Sci ences and En gi neer ing, In sti tute of Geo-Flu ids, State Key Lab o ra tory for Min eral De posit Re search, Nanjing, 210093, China

Meng, F., Zhang, Z., Bukowski, K., Zhuo, Q., Ahsan, N., Ur-Rehman S., Ni, P., 2021. A strongly pos i tive sul phur iso to pic shift in late Ediacaran-early Cam brian sea wa ter: ev i dence from evaporites in the Salt Range For ma tion, north ern Pa ki stan. Geo - log i cal Quar terly, 2021, 65: 30, doi: 10.7306/gq.1598

The Salt Range For ma tion in north ern Pa ki stan is glob ally well-known for its ex tremely large evaporite de pos its dated to the up per Ediacaran–lower Cam brian. This huge evaporite belt formed an area cov er ing pres ent-day parts of In dia, Pa ki stan, Iran, Oman, and even South China (~200,000 km2 in South China). Sul phate min er als, in clud ing anhydrite and gyp sum, can con tin u ously re cord sea wa ter sul phur iso to pic com po si tion. Un til now, there was only one dataset re port ing the iso to pic com - po si tion of evaporites in Pa ki stan. This study re ports new data, which points to a strongly pos i tive sul phur iso to pic shift (>+30‰, VCDT val ues) in the Salt Range For ma tion in Pa ki stan. Based on the strati graphic po si tion, sim i lar ity in li thol ogy, age, and sul phur iso tope data of the evaporitic se quences, it can be in ferred that the Neoproterozoic Indo-Pa ki stan Plate and the Yang tze Plat form were closely re lated palaeogeographically dur ing the ter mi nal Neoproterozoic. This in ter pre ta tion can im prove un der stand ing of the palaeo geo graphi cal evo lu tion of the area dur ing the Neoproterozoic, with par tic u lar ref er ence to the or i gin of biogeochemical cy cles and the diagenetic evo lu tion of the evaporitic de pos its.

Key words: sul phur iso tope, gyp sum, Salt Range For ma tion, Indo-Pa ki stan Plate, South China, Yang tze Block.

INTRODUCTION

The ter mi nal Neoproterozoic (Ediacaran) to early Cam brian was a pe riod in Earth’s his tory when huge evaporite de pos its ac cu mu lated in In dia, Pa ki stan, Iran, Oman, and South China in rift bas ins (Knauth, 1998, 2005; Meng et al., 2011a, b; Cui et al., 2015, 2016; War ren, 2016). Evaporites re tain a wealth of in for - ma tion about the pre vail ing tem per a ture, cli mate, and chem is - try of an cient seas and sa line lakes (e.g., Ben i son, 1995;

Kovalevich et al., 1998; Shields et al., 1999; Bukowski et al., 2000, 2007; Losey and Ben i son, 2000; Lowenstein et al., 2001;

Kovalevych et al., 2002, 2006, 2009; Galamay et al., 2003,

2020; Petrychenko and Peryt, 2004; Petrychenko et al., 2005;

Satterfield et al., 2005; Meng et al., 2011a, b, 2012, 2014, 2018;

Spear et al., 2014). In par tic u lar, the pro cesses of pre cip i ta tion, diagenesis, and weath er ing do not cause no ta ble frac tion ation of the sul phur iso topes in an cient evaporite de pos its (Hoefs, 2004; Jaworska and Wilkosz, 2012). This fact has been well-sub stan ti ated through lab o ra tory ex per i ments (e.g., Thode et al., 1961; Raab and Spiro, 1991) in which it has been found that sul phur iso tope frac tion ation dur ing the pre cip i ta tion of evaporites is neg li gi ble (0–2.6‰). More over, the sul phur iso to - pic ra tio (d34S/d32S) for pres ent-day ma rine evaporites con forms to that of sea wa ter (Claypool et al., 1980).

There fore, ma rine sul phur as sul phate (SO4-2) as so ci ated with evaporite de pos its (sed i men tary gyp sum or anhydrite) can be used to re li ably de ter mine tem po ral vari a tions in the d34S com po si tion of an cient sea wa ter, in clud ing dur ing the ter mi nal Neoproterozoic (Holser and Kaplan, 1966; Claypool et al., 1980; Holser, 1984; Holser et al., 1988; Strauss et al., 2001;

Strauss, 2003; Kampschulte and Strauss, 2004; Mazumdar and Strauss, 2006; Pres ent et al., 2020).

* Corresponding author, e-mail: buk@agh.edu.pl

Received: January 2, 2021; accepted: May 1, 2021; first published online: June 16, 2021

(2)

Evaporites can form in mul ti ple geo log i cal set tings from ma - rine and non-ma rine brines (War ren, 2016; Li et al., 2018). The old est recrystallized halites have been re ported from the Bit ter Springs For ma tion (840–830 Ma) in Aus tra lia (Kovalevych et al., 2006), and the old est anhydrite from the Paleoproterozoic (~2.1 Ga) Dashiqiao For ma tion in China (Chen et al., 2003;

Dong et al., 2016). The var i ous evaporite and car bon ate de pos - its along Gondwanan supercontinental mar gins were formed near the equa tor dur ing the late Neoproterozoic Ediacaran to early Cam brian time. They have been re corded in Iran and the Per sian Gulf (Hormuz Salt For ma tion), from the re gion of Oman and Qa tar (Ara Salt For ma tion), as well as Pa ki stan (Salt Range For ma tion). These evaporite-bear ing for ma tions con sti - tute part of the evaporite belt re con structed by Husseini and Husseini (1990), in which Oman is lo cated to the west of the belt and In dia is at its east ern edge. A Late Neoproterozoic to early

Cam brian age has gen er ally been as signed to the Hanseran Evaporite Group (In dia) based on ha lite and lithological sim i lar i - ties to the Salt Range For ma tion of Pa ki stan (Jones, 1970;

Strauss et al., 2001).

The Salt Range and Hanseran for ma tions rep re sent the east ern most evaporite de pos its in north west ern Pa ki stan and In dia (Jones, 1970; Husseini and Husseini, 1990; Grelaud et al., 2002; Jiang et al., 2003; Hussain et al., 2020, 2021). The Salt Range For ma tion in Pa ki stan is well-ex posed, and its pres ence has been re ported from var i ous bore holes drilled on the Potwar Pla teau and Punjab Plat form (Fig. 1). This for ma tion is com - posed of gypsiferous marls, ha lite, do lo mite and oil shales, and un con form ably over lies pre sumed Pre cam brian meta mor phic rocks. Its up per con tact is with the Cam brian se quence that ter - mi nates un con form ably at the Perm ian and is marked by gla cial tillites (Ahmad and Alam, 2007; Khan et al., 2020).

Fig. 1. Map of the South Potwar Ba sin (A, B) show ing the lo ca tion and sul phur sta ble iso topes of the gyp sum sam ples from the Salt Range For ma tion (C)

KMF – Khari Murat Fault, MBT – Main Bound ary Thrust, RF – Riwat Fault, SB – Soan Back Thrust (af ter Grelaud et al., 2002)

(3)

The sul phur (d34S) iso tope com po si tion of the evaporite de - pos its in the Hanseran For ma tion (In dia) shifts strongly to +30‰ (Strauss et al., 2001). How ever, a re view of the rel e vant lit er a ture (Gee, 1945; Asrarullah, 1967; Fatmi, 1973; Shah, 1977, 2009) in di cates that no sub stan tial re search has been con ducted on the sul phur iso tope com po si tion of the Salt Range For ma tion. If the sul phur iso tope pos i tive anom aly is re - corded in the evaporite suc ces sion in Pa ki stan, this could be con sid ered an im por tant cor re la tion event – if it in deed rep re - sents a global geo chem i cal anom aly. In this study, we de ter - mine the sul phur (d34S) iso tope com po si tion of the evaporite de pos its dat ing from the late Ediacaran–early Cam brian in Pa - ki stan and com pare them with data from Pro tero zoic-lower Cam brian for ma tions from South China and NW In dia in or der to ad dress this ques tion.

GEOLOGICAL SETTING

Evaporites of the “sa line se ries” of Wynne (1878) and

“Punjab sa line se ries” of Gee (1945) have been re ferred to the Salt Range For ma tion (Asrarullah, 1967; Fatmi, 1973).

Asrarullah (1967) di vided the Salt Range For ma tion into three mem bers; in chronostratigraphic or der (from base to top), are (1) the Billianwala Salt, (2) Bhandar Kas Gyp sum, and (3) the Sahwal Marl (Fig. 1). The Billianwala Salt Mem ber com prises red, ferruginous marl with thick seams of salt and a to tal thick - ness of ~650 m at the type lo cal ity. The Bhandar Kas Gyp sum Mem ber is com posed of ~80 m thick mas sive gyp sum, with mi - nor do lo mite beds em bed ded in shales. The 140 m thick Sahwal Marl Mem ber con sists of dull and bright red marls with seams of gyp sum and salt. Near the apex of Sahwal Marl Mem - ber, the marls were in truded by the Khewra Trap/Khewrite vol - ca nic flow. More over, ~20 cm of oil shales ap pear on top of the Sahwal marl. At its type lo cal ity, the Sahwal Marl Mem ber is

~140 m thick.

The Salt Range For ma tion is well-ex posed from east (Kussak, Pa ki stan) to west (Kalabagh) along the south ern mar - gin of the Salt Range (Fig. 1). This for ma tion is also en coun - tered in var i ous bore holes drilled on the Potwar Pla teau and Punjab Plat form (Kadri, 1995; Ahsan et al., 2013). The base of the Salt Range For ma tion is only well-known from Karampur,

where it over lies meta mor phic rocks, pos si bly those of the Pre - cam brian Kirana com plex. The evaporites lack fos sils through - out the for ma tion; thus, their age can only be con strained us ing ra dio met ric meth ods (Chaudhuri and Clauer, 1992; Shah, 2009). How ever, the Salt Range For ma tion age is still de bated, al though it is con form ably over lain by the lower Cam brian Khewra Sand stone (Shah, 2009). The ab nor mally high sea wa - ter sul phur iso to pic data (+30 to +35‰, and some times up to 45‰) from the up per Neoproterozoic–Cam brian ma rine evapo - rites could be used to con strain the age of the for ma tion (Strauss et al., 2001; Paytan et al., 2012).

Husseini and Husseini (1990) sug gested that the Salt Range For ma tion, which is sim i lar to the Hormuz Salt For ma - tion, was cre ated in evaporite bas ins along Gondwanan super - continental mar gins in late Neoproterozoic to early Cam brian times (Allen, 2007; Fig. 2). Vol ca nic rocks ac com pa ny ing the evaporites were formed in the Late Ediacaran, as shown by ra - dio met ric dat ing of zir cons from an ex po sure of rhyolites on the is land of Hormuz, in di cat ing an age of 558 ±7 Ma (Faramarzi et al., 2015) and zir con ages of ig ne ous rocks from the Hormuz For ma tion in the Jahani salt diapir gave an age of 547 ±6 Ma (Alavi, 2004).

MATERIALS AND METHODS

Sam ples of pure gyp sum were col lected from two sec tions through an out crop of the Bhandar Kas Gyp sum Mem ber in the Salt Range For ma tion from its type lo cal ity at Khewra Gorge (Fig. 1; Ta bles 1 and 2). Eight sam ples were col lected from the first sec tion of the Bhandar Kas Gyp sum; one sam ple (9) came from the gyp sum at the top of the oil shales (Ta ble 1). In ad di - tion, 27 sam ples were col lected from the sec ond sec tion, in - clud ing 12 sam ples from the Bhandar Kas Gyp sum (KSR-24 to KSR-53) and 15 sam ples (KSR-55 to KSR-102) from the Sahwal Marl (Ta ble 2 and Fig. 3).

Sam ples from the first sec tion were pro cessed with the meth ods out lined by Strauss et al. (2001), who ob tained pure anhydrite or sul phate-ha lite mix tures from sev eral bore holes.

The for mer is ana lysed di rectly, and the lat ter is ana lysed by add ing bar ium chlo ride to pre cip i tate bar ium sul phate af ter dis - so lu tion. The meth ods em ployed to ana lyse sul phur iso topes

Fig. 2. Po si tions of the Salt Range For ma tion in the evaporitic belt, the In dian Shield, and the Yang tze Block (South China) dur ing the Neoproterozoic

(af ter Jiang et al., 2003; Allen, 2007; Craig et al., 2009)

(4)

were mod i fied af ter Ha³as and Szaran (1999). Ap prox i mately 15 mg of CaSO4 was mixed with NaPO3 (150 mg) and combusted in the pres ence of cop per turn ings (150 mg). A vac - uum was cre ated for con ver sion to sul phur di ox ide at 750°C for 15 min utes. These anal y ses were con ducted at the In sti tute of Ge ol ogy and Geo phys ics, Chi nese Acad emy of Sci ences (IGG-CAS) on a Finnigan Delta-S gas-source mass spec trom - e ter. d34S data were cal i brated rel a tive to the Vi enna-Can yon Diablo Troilite scale us ing IAEA stan dards NBS 127 (+20.3‰) IAEA-SO-5 (+0.5‰) and IAEA-SO-6 (–34.1‰), and the sul phur iso tope re sults were gen er ally re pro duc ible within ±0.3‰.

Twenty-seven pure gyp sum sam ples col lected from the sec ond sec tion (Ta ble 2) were pro cessed fol low ing the meth - ods out lined by Meng et al. (2019). Anal y sis for de ter min ing sta - ble iso topes of sul phur was car ried out at the Oxy-An ion Sta ble Iso tope Con sor tium (OASIC) at Lou i si ana State Uni ver sity, USA. Gyp sum sam ples were pow dered and dis solved in 30 mL 1N HCl with con tin u ous shak ing. The slurry was de canted and vac uum fil tered through a 0.45 mm cel lu lose mem brane fil ter.

Supernatants were trans ferred to 50 ml cen tri fuge tubes and pre cip i tated as BaSO4 by add ing 3 mL sat u rated BaCl2 so lu tion.

Sul phur iso tope anal y ses were con ducted via an Isoprime100 (Isoprime 100, UK) gas source mass spec trom e ter fit ted with a pe riph eral el e men tal an a lyzer (Mi cro Vario Cube UK). About 0.2–0.3 mg of pow dered sam ples were placed into tin cap sules, mixed with ex cess V2O5, and combusted at 1050°C to pro duce SO2, which was then mea sured by the spec trom e ter. All iso tope mea sure ments are ex pressed in delta no ta tion rel a tive to Vi - enna Can yon Diablo Troilite (V-CDT) iso to pic stan dard.

An a lyt i cal er rors were <0.3‰, cal cu lated from rep li cate anal y ses of sam ples and lab o ra tory stan dards. Iso to pic stan - dards were used to con struct cal i bra tion curves for lin ear and two-point cor rec tions. The val ues were cal i brated us ing stan - dards of bar ium sul phate (LSU-BaSO4-1: –4.5‰; LSU-BaSO4-2: +38.5‰; Meng et al., 2019).

RESULTS AND DISCUSSION

Ra tios of sul phur iso topes are shown in per mil (‰) rel a tive to the sul phur iso tope com po si tion of the stan dard Vi enna-Can - yon Diablo Troilite (V-CDT) us ing d34S no ta tion. Sul phur iso tope data for sul phate-bear ing evaporites from the Salt Range For - ma tion ranged from +32.1 to +37.6‰ (mean = +33.6‰, n = 8) from the first sec tion (Ta ble 1), and ranged from +29.6 to +34.4‰ (mean = +34.0‰, n = 27) from the sec ond sec tion (Ta - ble 2).

Sul phur iso tope val ues (d34S) for mid dle Pro tero zoic eva - porite de pos its are gen er ally be low +20‰ (from +10 to +18‰) (Strauss, 1993) and grad u ally in crease to their max i mum within postglacial Neoproterozoic and Cam brian de pos its (Strauss et al., 2001; Shields et al., 2004; Schröder et al., 2004, 2008;

Halverson and Hurtgen, 2007; Shields and Mills, 2019; Meng et al., 2019; Pres ent et al., 2020).

Holser (1977) termed this up ward in crease in strongly pos i - tive d34S val ues (+30 to +35‰, and some times up to 45‰) as the “Yudomski Event” (~575 Ma) for the up per Neoproterozoic- Cam brian evaporites in SE Si be ria. The “Yudomski Event” has been re ported from the Neoproterozoic–lower Cam brian eva - po rites of south east ern Si be ria in Rus sia, as well as from the Hormuz For ma tion and Desu Se ries in Iran, the Hanseran For - ma tion in In dia, and the Wusonggeer For ma tion in the Tarim Ba sin, north west ern China (Holser, 1977; Claypool et al., 1980;

Hought on, 1980; Strauss et al., 2001; Peryt et al., 2005; Meng et al., 2019). Ad di tion ally, pos i tive d34S phosphorite sig na tures and those in struc tur ally bound sul phate-bear ing car bon ates (by us ing struc tur ally sub sti tuted sul phate pres ent in phospho - rite and micritic car bon ates) in Neoproterozoic–lower Cam brian de pos its have been re ported in many stud ies (Shields et al., 1999; Mazumdar et al., 2008; Tostevin et al., 2017; He et al., 2019). For ex am ple, Shields et al. (1999) re ported large pos i tive

T a b l e 1 Gyp sum sam ples col lected from the first sec tion through the Salt Range For ma tion

(Bhandar Kas Gyp sum/Sahwal Marl) and their sul phur iso tope data Sam ples

(from top to base) Li thol ogy d34S

[‰] Mem ber

Sam ple-9 pure white gyp sum 37.6 Sahwal Marl

Sam ple-5 pure white gyp sum 34.3 Bhandar Kas Gyp sum

Sam ple-4* thick gyp sum Bhandar Kas Gyp sum

Pk-4-6 pure white gyp sum 32.8 Bhandar Kas Gyp sum Pk-4-5 pure white gyp sum 34.1 Bhandar Kas Gyp sum Pk-4-4 pure white gyp sum 32.1 Bhandar Kas Gyp sum Pk-4-3 pure white gyp sum 32.8 Bhandar Kas Gyp sum Pk-4-2 pure white gyp sum 32.9 Bhandar Kas Gyp sum Pk-4-1 pure white gyp sum 32.4 Bhandar Kas Gyp sum S.L.- 120-T63-40 pure white gyp sum 38.2 Salt Range Fm. (af ter Sakai, 1972)

Sam ples Pk-4-1, Pk-4-2, Pk-4-3, Pk-4-4, Pk-4-5, Pk-4-6 come from one level in the thick gyp sum sec tion, sam ple-9 co mes from within the oil shales, the bound ary of up per Neoproterozoic-lower Cam brian; data for sam ple S.L.-120-T63-40 co mes from Sakai (1972); * – due to the large thick ness was di vided into Pk-4-1, Pk-4-2, Pk-4-3, Pk-4-4, Pk-4-5; Pk-4-6

(5)

d34S val ues (+29–37‰, avg. = +33 ±2‰, n = 40) from forty phosphorite sam ples col lected from a Pre cam brian–Cam brian Meishucun ex po sure on the Yang tze Plat form in China. Sim i - larly, struc tur ally sub sti tuted sul phate pres ent in Ediacaran and Cam brian micritic car bon ates on the Yang tze Block have yielded strongly pos i tive d34S val ues (Zhang et al., 2003, 2004).

The “Yudomski Event” has been placed in the frame work of a model of a pos si ble “Snow ball Earth” and as so ci ated ox i da tion of the Ediacaran Ocean (Strauss et al., 2001; Fike et al., 2006).

The en rich ment sig na ture of d34S in chem i cal de pos its across the Pre cam brian-Cam brian bound ary is well-es tab - lished, but its ul ti mate cause is still a mat ter of de bate (War ren, 2016). Holser (1977, 1984) sug gested that bac te rial sulphides ac cu mu lated in rel a tively deep parts of rift bas ins un der a re - duc ing en vi ron ment. Sul phate re duc tion then re sulted in the re - moval of 32S and en rich ment of 34S in brines, pro duc ing strongly pos i tive sul phur iso tope val ues. Upwelling cur rents car ried 34S- rich brines to ward shal low seas, and they mixed with sur face seawaters at the end of the gla cial pe riod. Gorjan et al. (2000), Hurtgen et al. (2002), and Zhang et al. (2003) also sup ported this model for the strongly pos i tive 34S val ues of Neo proterozoic de pos its in Aus tra lia, Namibia, and China (Dous han tuo For ma - tion). The on set and ter mi na tion of the global snow ball glacia - tions can ac count for the rapid trans fer of 34S- rich brines to ward

shal low seas and en rich sul phate de pos its in 34S world wide af - ter the Neoproterozoic glaciations (Hoffman et al., 1998;

Strauss et al., 2001; Meng et al., 2019).

Pre vi ous stud ies have dem on strated that sul phur iso tope data vary widely within ma rine evaporites through out geo log i cal his tory (Fig. 5). This vari abil ity de pends upon the in flux of river sul phate, mainly de rived from the con ti nen tal weath er ing of sulphates and sulphides. Mod ern rivers have a glob ally av er - age d34S = +8‰ (Grinenko and Krouse, 1992) or 4.4 ±4.5‰

(Burke et al., 2018) where the sul phur iso to pic com po si tion de - pends on the ge ol ogy of (and thus yield ing dis solved SO4-2 to) the river ba sin. Ad di tion ally, the pres ence of sul phate-re duc ing bac te ria in depositional bas ins can lead to ir reg u lar iso to pic val - ues dur ing the pre cip i ta tion of sul phate min er als, driven by en - hanced pri mary pro duc tion and se ques tra tion of or ganic car bon (e.g., Bottrell and New ton, 2005; Fike and Grotzinger, 2008; Cui et al., 2015; Och et al., 2016).

A strong pos i tive shift of 34S val ues within an evaporite se - quence may re sult from closed sys tem con di tions and/or a lim - ited sul phate sup ply (Strauss, 1993; Li et al., 2018). Both ef fects be come vi tal in the case of evaporite bas ins that are par tially sep a rated from the open ocean. Data ac quired from such bas - ins have broad re gional im por tance rather than global im pli ca - tions. By con trast, huge evaporite bas ins may have re cords of

T a b l e 2 Gyp sum sam ples were col lected from the sec ond sec tion through

the Salt Range For ma tion (Bhandar Kas Gyp sum/Sahwal Marl) and their sul phur iso tope data in this study

Sam ples

(from top to base) Li thol ogy d34S

[‰] Mem ber

KSR-102 pure white gyp sum 29.6 Sahwal Marl

KSR-93 pure white gyp sum 30.5 Sahwal Marl

KSR-90 pure white gyp sum 30.3 Sahwal Marl

KSR-86 pure white gyp sum 30.6 Sahwal Marl

KSR-82 pure white gyp sum 30.5 Sahwal Marl

KSR-79 pure white gyp sum 30.9 Sahwal Marl

KSR-67 pure white gyp sum 31.2 Sahwal Marl

KSR-66 pure white gyp sum 31.4 Sahwal Marl

KSR-65 pure white gyp sum 34.4 Sahwal Marl

KSR-61 pure white gyp sum 36.3 Sahwal Marl

KSR-60 pure white gyp sum 36.4 Sahwal Marl

KSR-59 pure white gyp sum 36.0 Sahwal Marl

KSR-58 pure white gyp sum 36.0 Sahwal Marl

KSR-57 pure white gyp sum 35.5 Sahwal Marl

KSR-55 pure white gyp sum 36.3 Sahwal Marl

KSR-53 pure white gyp sum 35.5 Bhandar Kas Gyp sum

KSR-52 pure white gyp sum 35.1 Bhandar Kas Gyp sum

KSR-51 pure white gyp sum 36.4 Bhandar Kas Gyp sum

KSR-50 pure white gyp sum 34.6 Bhandar Kas Gyp sum

KSR-47 pure white gyp sum 35.6 Bhandar Kas Gyp sum

KSR-45 pure white gyp sum 35.6 Bhandar Kas Gyp sum

KSR-43 pure white gyp sum 35.8 Bhandar Kas Gyp sum

KSR-42 pure white gyp sum 34.0 Bhandar Kas Gyp sum

KSR-33 pure white gyp sum 35.6 Bhandar Kas Gyp sum

KSR-31 pure white gyp sum 34.9 Bhandar Kas Gyp sum

KSR-25 pure white gyp sum 32.9 Bhandar Kas Gyp sum

KSR-24 pure white gyp sum 35.1 Bhandar Kas Gyp sum

All data ranged from +29.6 to +37.6‰ (mean = +33.9‰, n = 35; Fig. 4)

(6)

Fig. 3A – ex po sure of white to dirty white gyp sum in the Bandar Kas Gyp sum Mem ber of the Salt Range For ma tion, on the right bank of the Khewra Gorge, East ern Salt Range; dull red marls over - lie the mas sively bed ded gyp sum beds; B – hand spec i men of mas sive white gyp sum of the Bhandar Kas Gyp sum Mem ber de rived from the ex po sure shown in the photo (A); C – pol ished sec tion of the mas sive white gyp sum (B) in di cates that it is de void of im pu ri ties; D – mi cro pho to - graph of sam ple (B), un der CNL, shows very finely crys tal line gyp sum with some large elon gated and acicular crys tals of gyp sum and platy to pris matic anhydrite

Fig. 4. Sul phur iso to pic com po si tion of evaporites from the Salt Range For ma tion com pared to pre vi ous data

(7)

global im por tance (Fig. 5; Strauss et al., 2001; Fike et al., 2006;

Tostevin et al., 2017; He et al., 2019; Pres ent et al., 2020). Sim - i larly, the sul phate iso topes of mod ern sea wa ter are very sta ble be tween +20 and +20.5‰ (Longinelli, 1989). Yet, this can vary in some semi-closed bas ins; for in stance, the Black Sea wa ter’s sul phur iso tope val ues are be tween +18.20 and +20.17‰ due to riverine in flux (Swee ney and Kaplan, 1980).

Sup pose a ma rine evaporite ba sin is af fected by a large amount of river in put. In that case, its sul phur iso tope will be sig - nif i cantly re duced be cause the av er age value of the sul phur iso tope of the mod ern river is only +8% (Grinenko and Krouse, 1992). On the other hand, if a ma rine evaporite ba sin is fre - quently re charged by sea wa ter, its sul phur iso tope com po si tion tends to be close to that of sea wa ter (Li et al., 2018).

Sup pose brine strat i fi ca tion oc curs in an eva porite ba sin. In that case, the re sid ual sul phate in the lower brine layer will be - come heavier due to the re duc tion of sul phate by bac te ria, mak - ing the sul phur iso tope value of gyp sum reach a very high value. This has been ob served in sa line con ti nen tal bas ins in China, such as the con ti nen tal evaporites in the Qianjiang de - pres sion, Jianghan Ba sin. These evaporites have high d34S val - ues from +31 to +40.43‰. The con ti nen tal evaporites in the Dongpu Dof Bohai Bay Ba sin also have high d34S val ues from +28 to +33‰ (Li et al., 2018). These gyp sum de pos its are usu - ally inter bedded with black shales, in di cat ing an anoxic sed i - men tary en vi ron ment. This kind of en vi ron ment may be caused by brine strat i fi ca tion in a deep ba sin (Gao et al., 2009).

Fig. 5. Tem po ral evo lu tion of d34S dur ing end-Neoproterozoic and early Pa leo zoic times (af ter Strauss and Banerjee, 1998; Hough et al., 2006), us ing evaporite sul phate data from the lit er a ture (Holser and Kaplan, 1966; Clay pool et al., 1980; Hought on, 1980; Strauss, 1993; Fox and Videtich, 1997; Misi and Veizer, 1998; Gorjan et al., 2000; Schröder et al., 2004; Hurtgen et al., 2005; Peryt et al., 2005; Hough et al., 2006; Tostevin et al., 2017; He et al., 2019; Becker et al., 2019) and this study – Salt Range For ma tion, Pa ki stan, box di men sions range rep re sent en tire data, and red cir cles show mean val ues

(8)

3el baT fo noi ta le rroC lanoi geRciozoretorpoeNnat si kaP ni noitamroF egnaR tlaS dna ai dnI .W.N ,anihC ni mro ftalP ez tgnaY fo ecneu qeS nair bmaC rewol–

(9)

Strongly pos i tive d34S val ues can be ob served in late Edia - caran- early Cam brian ma rine evaporites of In dia, Iran, Oman and the Tarim Ba sin in China (Strauss et al., 2001; Schröder et al., 2004, 2008; Halverson and Hurtgen, 2007; Shields and Mills, 2019; Meng et al., 2019). These high d34S val ues in dif fer - ent re gions of the same geo log i cal age in di cate that the ocean had very high sul phur iso tope back ground lev els at that time (Strauss et al., 2001). The gyp sum de pos its in the Salt Range For ma tion are usu ally inter bedded with red marls (Kadri, 1995;

Ahsan et al., 2013), in di cat ing an ox i dized shal low wa ter en vi - ron ment. The brine was not strat i fied, and the orig i nal sul phur iso tope in for ma tion of brine from sea wa ter can be di rectly re - corded.

In ad di tion to the Salt Range For ma tion re sults of this study, strongly pos i tive d34S data (+30.2 to +34.8‰; n = 11) have also been re ported for the lower–mid dle Cam brian evaporites of the Tarim Ba sin (Meng et al., 2019). These data in di cate that sea - wa ter with a strongly pos i tive sul phur iso tope ra tio within sul - phate con tin ued to pre vail from the Late Neo proterozoic to the mid dle Cam brian (Fig. 5).

REGIONAL CORRELATION OF PROTEROZOIC – LOWER CAMBRIAN FORMATIONS

The Salt Range For ma tion is lithologically com pa ra ble to rocks of the ter mi nal Neoproterozoic to lower Cam brian of north west ern In dia and the Ediacaran of the Yang tze Block in South China (Jones, 1970). Neoproterozoic strati graphic com - par i son be tween In dia and the Yang tze Block also re veals ob vi - ous sim i lar i ties (Jiang et al., 2003). Zhang et al. (2003, 2004) and Meng et al. (2011a) de vel oped use ful chronostratigraphic frame works (Ta ble 3). How ever, a com pre hen sive strati graphic and chemostratigraphic cor re la tion be tween the Neoprotero - zoic of Indo-Pa ki stan and China re mains lack ing. Sparse palaeo magnetic data and sim i lar sed i men tary as sem blages in - di cate that the Yang tze Block of South China was lo cated to the north-west of In dia and Pa ki stan (Jiang et al., 2003; Allen, 2007;

Fig. 2) when the evaporitic belt formed dur ing the ter mi nal Neoproterozoic (Husseini and Husseini, 1990).

The up per Ediacaran Dengying For ma tion (551–541 Ma) is well-ex posed in the Three Gorges area near Yichang city in south ern China. From the base to the top, this for ma tion (Ta ble 3) can be di vided into three mem bers: the Hamajing, Shiban - tan, and Baimatuo (Zhao et al., 1980). The Hamajing Mem ber con tains grey intraclastic do lo mite with oncolites, chert beds, and nod ules. The Shibantan Mem ber is com posed of a thin black layer of si li ceous and asphaltene-rich finely crys tal line lime stone with high or ganic mat ter con tent. Abun dant macro - algae, or ganic-walled microfossils, and trace fos sils have been found in this sec tion. Fi nally, the Baimatuo Mem ber con sists of grey and grey ish-pur ple lay ered silico-phos phatic dolomites and chert (Zhao et al., 1980).

The Hongchunping For ma tion, lo cated on the Yang tze Block (Ta ble 3) in South China and rep re sented in the Chan - gning-2 bore hole, is lithologically di vis i ble into two sec tions (Meng et al., 2011a). The lower sec tion (2492.5–2992.5 m in depth) is mainly com posed of do lo mite, anhydrite, and ha lite, while the up per sec tion (1975–2492.5 m in depth) com prises do lo mite and grapestone - bear ing do lo mite. More over, the Hong chun ping For ma tion is over lain by the Lower Cam brian Maidiping For ma tion which con tains abun dant small shelly fos - sils and is com posed of car bo na ceous chert interbedded with

do lo mite and black shale (Meng et al., 2011a). Pre vi ously, strongly pos i tive d34S val ues (+29 to +37‰; avg. = +33 ±2‰; n

= 40) were re ported from phosphorite sam ples from an ex po - sure of the lower Cam brian Meishucun sec tion on the Yang tze Plat form in China (Shields et al., 1999).

In north west ern In dia, the Hanseran For ma tion (Ta ble 3), equiv a lent to the Salt Range For ma tion, is pres ent within a subsurface Neoproterozoic-early Cam brian evaporite ba sin.

This for ma tion re cords seven ha lite cy cles interbedded with marls and stromatolitic car bon ates (Dey, 1991; Banerjee et al., 1998). These evaporites are mainly com posed of anhydrite and ha lite and pos sess strongly pos i tive d34S sig na tures, rang ing from +27.5 to +35.6‰ (Strauss and Banerjee, 1998). Strauss et al. (2001) also re ported strongly pos i tive sul phur iso tope data (+27.5 to +39.7‰) from the Hanseran evaporites.

Both the Dengying and Hanseran for ma tions in China and In dia can be cor re lated with the Salt Range For ma tion based on their strati graphic po si tion, li thol ogy, age, and sul phur iso tope data. For ex am ple, gyp sum is pres ent in the mid dle of both the Dengying (Zhao et al., 1980) and the Salt Range for ma tions (Bhandar Kas Gyp sum Mem ber). More over, the Dengying For - ma tion in the Three Gorges area near Yichang can be cor re - lated lithologically with the Hongchunping For ma tion near Changning in Sichuan Prov ince (Zhang et al., 2004; Meng et al., 2011a). Sim i larly, the Lower Billianwala Salt Mem ber of the Salt Range For ma tion and the Lower Hongchunping For ma tion con tain ha lite de pos its. This lithological sim i lar ity sug gests that the Billianwala Salt Mem ber can be cor re lated with the Lower Hongchunping For ma tion in South China. Oil shales with highly al tered vol ca nic rocks (Khewra Trap) out crop at the top of the Salt Range For ma tion, while car bo na ceous cherts interbedded with do lo mite and black shale are as so ci ated with the lower Cam brian Maidiping For ma tion on the Yang tze Block, which sug gests that there is a cor re la tion be tween the Maidiping For - ma tion and the top of the Salt Range For ma tion (Zhang et al., 2004; Meng et al., 2011a).

Fan et al. (2013) cor re lated the pres ence of cherts on the Yang tze Block with hy dro ther mal ac tiv ity. A layer of vol ca nic rock at trib uted to the Khewra Trap can be found at the top of the Salt Range For ma tion (Shah, 2009). Ad di tion ally, the evapo - rites of the Salt Range For ma tion may be cor re lated with those of the Hanseran For ma tion (Dasgupta and Bulgauda, 1994; Pe - ters et al., 1995). From their sim i lar strati graphic de tails, in clud - ing lithologies, un con formi ties, and range of intertidal- supra - tidal - basinal fa cies ar chi tec ture in a rifted mar gin (Husseini and Husseini, 1990; Pe ters et al., 1995), it can be in ferred that the Yang tze Block in China and the Salt Range in north west ern In - dia were closely re lated palaeogeographically dur ing the Neo - proterozoic–early Cam brian (Jiang et al., 2003).

More over, or ganic geo chem i cal anal y ses of hy dro car bons from the Baghewala-1 oil trapped in the Hanseran Evaporite Group of In dia re vealed sim i lar i ties be tween these oils and the oil-bear ing suc ces sions in Huqf, Oman, and Karampura, Pa ki - stan (Pe ters et al., 1995). These or ganic geo chem i cal sim i lar i - ties of oils orig i nat ing from ter mi nal Neoproterozoic-early Cam - brian strata im ply close re la tion ships among the evaporite belts in Oman, Pa ki stan, and In dia (Pe ters et al., 1995). The or ganic car bon iso tope data for the Baghewala-II bore hole range from –37.1 to –33.0‰ (Ta ble 4). The d13Corg data from source rocks tend to be heavier from lower to up per (Mazumdar and Bhatta - cha rya, 2004).

The or ganic car bon iso to pic pat terns of the Baghewala-II well show sim i lar nu mer i cal ranges with those of the con tem po - ra ne ous oil and hy dro car bon source rocks in Pa ki stan, In dia,

(10)

and Oman, sug gest ing that they came from sim i lar sed i men tary en vi ron ments (Pe ters et al., 1995; Mazumdar and Bhatta cha - rya, 2004). The Oman oils also show that 13Corg val ues tend to be heavier from lower to up per. The Huqf oil of Oman co mes from the up per Neoproterozoic-lower Cam brian Huqf Group and show the heavier or ganic car bon iso tope ra tio. Oils come from youn ger early Cam brian source rocks (‘Q’ oils) show the lighter or ganic car bon iso tope sig na ture (Grant ham et al., 1990;

Grosjean et al., 2012; Ta ble 4).

Or ganic geo chem i cal sig na tures can pro vide clear ev i dence for cor re lat ing strati graphic units across large ar eas. For ex am ple, the sim i lar i ties of oils and source rocks be tween bas ins in West Af rica and Brazil (now

~6000 km apart) pro vide ev i dence for the open ing of the At lan tic Ocean dur ing the Cre ta ceous (Mello et al., 1991). The or ganic geo chem i cal char ac ter is tics of oils and solid asphalts from Oman, In dia, Pa ki stan, and the Sichuan Ba sin of South China show strong sim i lar i ties, im ply ing that they are re lated in terms of gen e sis and host rocks (Wang et al., 2015).

CONCLUSIONS

The strongly pos i tive sul phur iso to pic data from the gyp sum of the Salt Range For ma tion (+29.6 to +37.6‰;

mean = +33.9‰, n = 35) re ported in this study are sim i lar to those of ter mi nal Neoproterozoic and early Cam brian evaporites on the Yang tze Plat form, China, and NW In - dia. New data sup ports the re gional dis tri bu tion of the event. How ever, there are lim i ta tions when con sid er ing the use of evaporite re cords for stra tig ra phy (e.g., re - cords of d34S from evaporites are stratigraphically in ter - mit tent, and the spread of d34S data over each time in ter - val is very large, mak ing di rect strati graphic cor re la tions dif fi cult; Yao et al., 2019). De spite that, based on their strati graphic and or ganic geo chem i cal sim i lar i ties, it may be in ferred that the late Neoproterozoic Indo-Pa ki stan Plate and Yang tze Plat form were geo graph i cally ad ja - cent. This study also shows that the strati graphic po si tion of evaporites in north ern Pa ki stan is sim i lar to that in South China, dur ing the late Neoproterozoic-early Cam - brian. This re la tion ship should be ac counted for in fu ture stud ies on the geo log i cal evo lu tion of South China and Indo-Pa ki stan.

Ac knowl edg ments. We sin cerely ap pre ci ate G. Shields (Uni ver sity Col lege Lon don), A. Mazumdar (Na tional In sti tute of Ocean og ra phy, In dia) and an anon y mous re viewer for all the valu able com ments that helped us im prove the ar ti cle’s qual ity. This work was fi - nan cially sup ported by the Na tional Nat u ral Sci ence Foun da tion of China (grant no. 41672142 and 41561144009), the Ba sic Fron tier Sci en tific Re search Pro gram of the Chi nese Acad emy of Sci ences (grant no. ZDBS-LY-DQC021), AGH Uni ver sity of Sci ence and Tech nol ogy (grant no 16.16.140.315 for KB) and by the Bu reau of In ter na tional Co-op er a tion, Chi - nese Acad emy of Sci ences.

REFERENCES

Ahmad, W., Alam, S., 2007. Or ganic geo chem is try and source rock char ac ter is tics of Salt Range For ma tion, Potwar Ba sin, Pa ki - stan. Jour nal of Hy dro car bon Re search, 17: 37–59.

Ahsan, N., Mairaj, F.A., Rehman, S.U., Ali, A., 2013. Subsurface struc tural re con struc tion of Joya Mair struc ture, south east Pot -

war sub-ba sin, Pa ki stan. In ter na tional Jour nal of Ag ri cul ture and Ap plied Sci ences, 5: 17–26.

Alavi, M., 2004. Re gional stra tig ra phy of the Zagros fold-thrust belt of Iran and its proforeland evo lu tion. Amer i can Jour nal of Sci - ence, 304: 1–20.

T a b l e 4 Or ganic car bon iso tope ra tios in oil from Pa ki stan com pared to other

oils, source rock ex tracts, and kerogen from In dia and Oman

Bore hole Lo ca tion d13Corg

[‰] Type of sam ples

Karampur-1 Pa ki stan –37.0 tar

Baghewala-1 In dia –32.4 oil

Baghewala-II In dia (484.42 m in depth) –33.0 kerogen Baghewala-II In dia (484.63 m in depth) –33.6 kerogen Baghewala-II In dia (513.49 m in depth) –36.9 kerogen Baghewala-II In dia (517.45 m in depth) –37.1 kerogen Baghewala-II In dia (518.27 m in depth) –37.0 kerogen Baghewala-II In dia (519.31 m in depth) –37.1 kerogen Baghewala-II In dia (521.8 m in depth) –36.5 kerogen Baghewala-II In dia (522.08 m in depth) –37.1 kerogen Baghewala-II In dia (523.35 m in depth) –36.9 kerogen Baghewala-II In dia (548.8 m in depth) –37.1 kerogen Baghewala-II In dia (550.5 m in depth) –35.8 kerogen Baghewala-II In dia (551.705 m in depth) –35.5 kerogen Baghewala-II In dia (552.375 m in depth) –37.1 kerogen Baghewala-II In dia (553.26 m in depth) –36.7 kerogen

Amal S-1 Oman (Huqf oil) –35.9 oil

Nuham-1 Oman (Huqf oil) –37.2 oil

Rima-7 Oman (Huqf oil) –36.2 oil

Runib-1 Oman (Huqf oil) –36.5 oil

Amal-9 rock Oman (Huqf rock) –34.7 source rock Nimr-4 rock Oman (Huqf rock) –35.4 source rock Runib-1 rock Oman (Huqf rock) –35.2 source rock

Sayyala-1 Oman (‘Q’ oils) –30.3 oil

Bahja-1 Oman (‘Q’ oils) –30.4 oil

Bahja-1 Oman (‘Q’ oils) –30.9 oil

Zareef-1 Oman (‘Q’ oils) –31.0 oil

Oman (Huqf oil) come from Huqf Group, and Oman (‘Q’ oils) come from early Cam brian source rocks; Pa ki stan and Oman data from Grant ham et al.

(1990), Baghewala-1 data from Pe ters et al. (1995); Baghewala-II data from Mazumdar and Bhattacharya (2004)

(11)

Allen, P.A., 2007. The Huqf Supergroup of Oman: ba sin de vel op - ment and con text for Neoproterozoic gla ci ation. Earth-Sci ence Re views, 84: 139–185.

Asrarullah, P., 1967. Ge ol ogy of the Khewra Dome. Pro ceed ings of the 18th and 19th com bined ses sion of All Pa ki stan Sci ence Con fer ence, University of Sind, Hyderabad, Part–III, Ab stracts, F3–F4.

Banerjee, D.M., Strauss, H., Bhattacharya, S.K., Kumar, V., Mazumdar, A., 1998. Iso to pic com po si tion of car bon ate and sulphates, pot ash min er ali sa tion and ba sin ar chi tec ture of the Nagaur-Ganganagar evap o rate ba sin (north west ern In dia) and their im pli ca tions on the Neoproterozoic exo gen ic cy cle. Min er - al og i cal Mag a zine, 62A: 106–107.

Becker, S., Reuning, L., Amthor, J.E., Kukla, P.A., 2019. Diage - netic pro cesses and res er voir het er o ge ne ity in salt-en cased mi - cro bial car bon ate res er voirs (Late Neoproterozoic, Oman). Geo - fluids, Ar ti cle ID 5647857. https://doi.org/10.1155/2019/5647857 Ben i son, K.C., 1995. Sur face wa ter paleotemperatures from Perm - ian Nippewalla Group ha lite, Kan sas. Car bon ates and Evaporites, 10: 242–248.

Bottrell, S.H., New ton, R.J., 2005. Re con struc tion of changes in global sul fur cy cling from ma rine sul fate iso topes. Earth-Sci - ence Re views, 75: 59–83.

Bukowski, K., Galamay, A.R., Góralski, M., 2000. In clu sion brine chem is try of the Badenian salt from Wieliczka. Jour nal of Geo - chem i cal Ex plo ra tion, 69–70: 87–90.

Bukowski, K., Czapowski, G., Karoli, S., B¹bel, M., 2007.

Sedimentology and geo chem is try of the Mid dle Mio cene (Badenian) salt-bear ing suc ces sion from East Slovakian Ba sin (Zbudza For ma tion). Geo log i cal So ci ety, Spe cial Pub li ca tion, 285: 247–264.

Burke, A., Pres ent, T.M., Paris, G., Rae, E., Sandilands, G.H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W.W., McClelland, J.W., Spencer, R., Voss, B., Adkins, J.F., 2018.

Sul fur iso topes in rivers: in sights into global weath er ing bud - gets, py rite ox i da tion, and the mod ern sul fur cy cle. Earth and Plan e tary Sci ence Let ters, 496: 168–177.

Chaudhuri, S., Clauer, N., 1992. His tory of ma rine evaporites: con - straints from ra dio genic iso topes. Lec ture Notes in Earth Sci - ences, 43: 177–198.

Chen, C.X., Ni, P., Cai, K.Q., Zhai, Y.S., Deng, J., 2003. The minerogenic flu ids of magnesite and talc de pos its in the Paleo - proterozoic Mg-rich car bon ate for ma tions in East ern Liaoning Prov ince (in Chi nese with Eng lish sum mary). Geo log i cal Re - viewer, 49: 646–651

Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980.

The age curves of sul fur and ox y gen iso topes in ma rine sul fate and their mu tual in ter pre ta tion. Chem i cal Ge ol ogy, 28:

190–260.

Craig, J., Thurow, J., Thusu, B., Whitham, A., Abutarruma, Y., 2009. Global Neoproterozoic pe tro leum sys tems: the emerg ing po ten tial in North Af rica. Geo log i cal So ci ety Spe cial Pub li ca - tions, 326: 1–25.

Cui, H., Kaufman, A.J., Xiao, S., Zhu, M., Zhou, C., Liu, X.M., 2015. Re dox ar chi tec ture of an Ediacaran ocean mar gin: in te - grated chemostratigraphic (d13C–d34S–87Sr/86Sr–Ce/Ce*) cor re - la tion of the Doushantuo For ma tion, South China. Chem i cal Ge - ol ogy, 405: 4–62.

Cui, H., Kaufman, A.J., Xiao, S.H., Peek, S., Cao, H.S., Min, X., Cai, Y.P., Siegel, Z., Liu, X.M., Peng, Y.B., 2016. En vi ron men - tal con text for the ter mi nal Ediacaran biomineralization of an i - mals. Geobiology, 14: 344–363.

Dasgupta, U., Bulgauda, S.S., 1994. An over view of the ge ol ogy and hy dro car bon oc cur rences in the west ern part of Bikaner - -Nagaur Ba sin. In dian Jour nal of Pe tro leum Ge ol ogy, 3: 1–17.

Dey, R.C., 1991. Trans-Aravalli Vindhyan evaporites un der the semi-desertic plains of West ern In dia-sig nif i cance of depo - sitional fea tures. Jour nal of the Geo log i cal So ci ety of In dia, 37:

136–150.

Dong, A., Zhu, X.K., Li, S.Z., Kend all, B., Wang, Y., Gao, Z., 2016.

Gen e sis of a gi ant Paleoproterozoic strata-bound magnesite

de posit: con straints from Mg iso topes. Pre cam brian Re search, 281: 673–683.

Fan, H.F., Wen, H.J., Zhu, X.K., Hu, R.Z., Tian, S.H., 2013. Hy dro - ther mal ac tiv ity dur ing Ediacaran–Cam brian tran si tion: sil i con iso to pic ev i dence. Pre cam brian Re search, 224: 23–35.

Faramarzi, N.S., Amini, S., Schmitt, A.K., Hassanzadeh, J., Borg, G., Mckeegan, K., Mortazavi, S.M., 2015. Geo chron ol - ogy and geo chem is try of rhyolites from Hormuz Is land, south ern Iran: a new re cord of Cadomian arc magmatism in the Hormuz For ma tion. Lithos, 236: 203–211.

Fatmi, A.N., 1973. Lithostratigraphic units of the Kohat-Potwar Prov ince, Indus Ba sin. Geo log i cal Sur vey of Pa ki stan Mem oirs, 10: 1–80.

Fike, D.A., Grotzinger, J.P., 2008. A paired sul fate-py rite delta S-34 ap proach to un der stand ing the evo lu tion of the Ediacaran-Cam - brian sul fur cy cle. Geochimica et Cosmochimica Acta, 72:

2636–2648.

Fike, D.A., Grotzinger, J.P., Pratt, L.M., Sum mons, R.E., 2006.

Ox i da tion of the Ediacaran Ocean. Na ture, 444: 744–747.

Fox, J.S., Videtich, P.E., 1997. Re vised es ti mate of d34S for ma rine sul fates from the Up per Or do vi cian: data from the Williston Ba - sin, North Da kota, USA. Ap plied Geo chem is try, 12: 97–103.

Galamay, A.R., Bukowski, K., Czapowski, G., 2003. Chem i cal com po si tion of brine in clu sions in ha lite from clayey salt (zuber) fa cies from the Up per Ter tiary (Mio cene) evaporite ba sin (Po - land). Jour nal of Geo chem i cal Ex plo ra tion, 78–79: 509–511.

Galamay, A.R., Bukowski, K., Sydor, D.V., Meng, F., 2020. The ultramicrochemical anal y ses (UMCA) of fluid in clu sions in ha lite and ex per i men tal re search to im prove the ac cu racy of mea sure - ment. Min er als, 10: 823.

Gao, H.C., Chen, F.L., Zhao, G.R., Liu, Z.F., 2009. Ad vances, prob - lems and pros pect in stud ies of or i gin of salt rocks of the Paleogene Shahejie For ma tion in Dongpu Sag (in Chi nese with Eng lish sum mary). Jour nal of Palaeo ge ogra phy, 11: 251–264.

Gee, E.R., 1945. The age of sa line se ries of Punjab and Kohat. Pro - ceed ings of the Na tional Acad emy of Sci ences, In dia 14, Part 6:

269–310.

Gorjan, P., Veevers, J.J., Wal ter, M.R., 2000. Neoproterozoic sul - fur-iso tope vari a tion in Aus tra lia and global im pli ca tions. Pre - cam brian Re search, 100: 151–179.

Grant ham, P.J., Lijmbach, G.W.M., Posthuma, J., 1990. Geo - chem is try of crude oils in Oman. Geo log i cal So ci ety Spe cial Pub li ca tions, 50: 317–328.

Grelaud, S., Sassi, W., de Lamotte, D.F., Jaswal, T., Roure, F., 2002. Ki ne mat ics of east ern Salt Range and South Potwar Ba - sin (Pa ki stan): a new sce nario. Ma rine and Pe tro leum Ge ol ogy, 19: 1127–1139.

Grinenko, V.A., Krouse, H.R., 1992. Iso tope data on the na ture of riverine sul fates. Mitteilungen Geologisch-Paläontologisches Institut der Universität Ham burg, 72: 9–18.

Grosjean, E., Love, G.D., Kelly, A.E., Tay lor, P.N., Sum mons, R.E., 2012. Geo chem i cal ev i dence for an Early Cam brian or i gin of the ‘Q’ oils and some con den sates from north Oman. Or ganic Geo chem is try, 45: 77–90.

Halverson, G.P., Hurtgen, M.T., 2007. Ediacaran growth of the ma - rine sul fate res er voir. Earth and Plan e tary Sci ence Let ters, 263:

32–44.

Ha³as, S., Szaran, J., 1999. Low-tem per a ture ther mal de com po si - tion of sul fate to SO2 for on-line 34S/32S anal y sis. An a lyt i cal Chem is try, 77: 3254–3257.

He, T., Zhu, M., Mills, B.J.W., Wynn, P.M., Zhuravlev, A.Y., Toste - vin, R., Pogge von Strandmann, P.A.E., Yang, A., Poulton, S.W., Shields, G.A., 2019. Pos si ble links be tween ex treme ox y - gen per tur ba tions and the Cam brian ra di a tion of an i mals. Na - ture Geoscience, 12: 468–474.

Hoefs, J., 2004. Sta ble Iso tope Geo chem is try (5th edi tion).

Springer, Berlin.

Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998.

A Neoproterozoic Snow ball Earth. Sci ence, 281: 1342–1346.

Holser, W.T., 1977. Cat a strophic chem i cal events in the his tory of the ocean. Na ture, 267: 403–408.

(12)

Holser, W.T., 1984. Grad ual and abrupt shifts in ocean chem is try dur ing Phanerozoic time. In: Pat terns of Change in Earth Evo lu - tion (eds. H.D. Hol land and A.F. Trendall): 123–143. Springer- Verlag, Berlin.

Holser, W.T., Kaplan, I.R., 1966. Iso tope geo chem is try of sed i men - tary sul fates. Chem i cal Ge ol ogy, 1: 93–135.

Holser, W.T., Schidlowski, M., Mac ken zie, F.T., Maynard, J.B., 1988. Geo chem i cal cy cles of car bon and sul fur. In: Chem i cal Cy cles in the Evo lu tion of the Earth (eds. C.B. Gregor, R.M.

Garrels, F.T. Mac ken zie and J.B. Maynard): 107–173. Wiley, New York.

Hough, M.L., Shields, G.A., Evins, L.Z., Strauss, H., Henderson, R.A., Mac ken zie, S., 2006. A ma jor sul phur iso tope event at c.

510 Ma: a pos si ble an oxia–ex tinc tion vol ca nism con nec tion dur - ing the Early-Mid dle Cam brian tran si tion? Terra Nova, 18:

257–263.

Hought on, M.L., 1980. Geo chem is try of the Pro tero zoic Hormuz Evaporites, South ern Iran. M.Sc. The sis, Uni ver sity of Or e gon.

Hurtgen, M.T., Ar thur, M.A., Suits, N.S., Kaufman, A.J., 2002. The sul fur iso to pic com po si tion of Neoproterozoic sea wa ter sul fate:

im pli ca tions for a snow ball Earth? Earth and Plan e tary Sci ence Let ters, 203: 413–429.

Hurtgen, M.T.,Ar thur, M.A., Halverson, G.P., 2005. Neo protero - zoic sul fur iso topes, the evo lu tion of mi cro bial sul fur spe cies, and the burial efficience of sulfide as sed i men tary py rite. Ge ol - ogy, 33: 41–44.

Hussain, S.A., Han, F.Q., Han, J., Khan, H., Widory, D., 2020.

Chlo rine iso topes un ravel con di tions of for ma tion of the Neoproterozoic rock salts from the Salt Range For ma tion, Pa ki - stan. Ca na dian Jour nal of Earth Sci ence, 57: 698–708.

Hussain, S.A., Han, F.-Q., Ma, Z., Hussain, A., Mughal, M.S., Han, J., Alhassan, A., Widory, D., 2021. Un rav el ing sources and cli - mate con di tions pre vail ing dur ing the de po si tion of Neo - proterozoic evaporites us ing cou pled chem is try and Bo ron iso - tope com po si tions (d11B): the ex am ple of the Salt Range, Punjab, Pa ki stan. Min er als, 11: 161.

Husseini, M.I., Husseini, S.I., 1990. Or i gin of the Infracambrian Salt Bas ins of the Mid dle East. Geo log i cal So ci ety Spe cial Pub - li ca tions, 50: 279–292.

Jaworska, J., Wilkosz, P., 2012. An ox y gen and sul fur iso to pic study of gyp sum from the Mogilno Salt Dome cap-rock (Po land).

Geo log i cal Quar terly, 56: 249–250.

Jiang, G., Sohl, L.E., Chris tie-Blick, N., 2003. Neoproterozoic strati graphic com par i son of the Lesser Himalaya (In dia) and Yang tze block (south China): paleogeographic im pli ca tions. Ge - ol ogy, 31: 917–920.

Jones, C.L., 1970. Pot ash in halitic evaporite salt, west ern Pa ki - stan. United States De part ment of the In te rior, U.S. Geo log i cal Sur vey Pro fes sional Pa per, 770 D: 140–145.

Kadri, I.B., 1995. Pe tro leum Ge ol ogy of Pa ki stan. Pa ki stan Pe tro - leum Lim ited Pub li ca tion: 136–142.

Kampschulte, A., Strauss, H., 2004. The sul fur iso to pic evo lu tion of Phanerozoic sea wa ter based on the anal y sis of struc tur ally sub sti tuted sul fate in car bon ates. Chem i cal Ge ol ogy, 204:

255–286.

Khan, I., Zhong, N., Luo, Q., Ai, J., Yao, L., Luo, P., 2020. Maceral com po si tion and or i gin of or ganic mat ter in put in Neoproterozoic–Lower Cam brian or ganic-rich shales of Salt Range For ma tion, up per Indus Ba sin, Pa ki stan. In ter na tional Jour nal of Coal Ge ol ogy, 217: 103–319.

Knauth, L.P., 1998. Sa lin ity his tory of the Earth’s early ocean. Na - ture, 395: 554–555.

Knauth, L.P., 2005. Tem per a ture and sa lin ity his tory of the Pre cam - brian ocean: im pli ca tions for the course of mi cro bial evo lu tion.

Palaeo ge ogra phy Palaeoclimatology Palaeo ec ol ogy, 219:

53–69.

Kovalevich, V.M., Peryt, T.M., Petrichenko, O.I., 1998. Sec u lar vari a tion in sea wa ter chem is try dur ing the Phanerozoic as in di - cated by brine in clu sions in ha lite. The Jour nal of Ge ol ogy, 106:

695–712.

Kovalevych, V.M., Peryt, T.M., Carmona, V., Sydor, D.V., Vovnyuk S.V., Halas, S., 2002. Evo lu tion of Perm ian sea wa ter: ev i dence

from fluid in clu sions in ha lite. Neues Jahrbuch für Mineralogie Abhandlungen, 178: 27–62.

Kovalevych, V.M., Mar shall, T., Peryt, T.M., Petrychenko, O.Y., Zhukova, S., 2006. Chem i cal com po si tion of sea wa ter in Neoproterozoic: re sults of fluid in clu sion study of ha lite from the Salt Range (Pa ki stan) and Amadeus Ba sin (Aus tra lia). Pre cam - brian Re search, 144: 39–51.

Kovalevych, V.M., Paul, J., Peryt, T.M., 2009. Fluid in clu sions in ha lite from the Röt (lower Tri as sic) salt de posit in cen tral Ger - many: ev i dence for sea wa ter chem is try and con di tions of salt de po si tion and recrystallization. Car bon ates and Evaporites, 24: 45–57.

Li, Q.K., Fan, Q.S., Shan, F.S., Qin, Z.J., Li, J.S., Yuan, Q., Wei, H.C., Wang, M.X., Li, Y.Q., Shi, G.C., 2018. The vari a tion of sul - fur iso tope in ma rine-con ti nen tal evaporites and its geo chem i cal ap pli ca tions (in Chi nese with Eng lish sum mary). Jour nal of Salt Lake Re search, 26: 73–79.

Longinelli, A., 1989. Ox y gen-18 and sul phur-34 in dis solved oce - anic sul phate and phos phate. In: Hand book of en vi ron men tal iso tope geo chem is try, 3 (eds. P. Fritz and J.C., Fontes):

219–255. Elsevier, Am ster dam.

Losey, A., Ben i son, K.C., 2000. Si lu rian paleoclimate data through fluid in clu sions in the Sa lina For ma tion ha lite of the Mich i gan Ba sin. Car bon ates and Evaporites, 15: 28–36.

Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A., Demicco, R.V., 2001. Os cil la tions in Phanerozoic sea wa ter chem is try: ev i dence from fluid in clu sions. Sci ence, 294:

1086–1088.

Mazumdar, A., Bhattacharya, S.K., 2004. Sta ble iso to pic study of late Neoproterozoic-early Cam brian(?) sed i ments from Nagaur - -Ganganagar ba sin, west ern In dia: pos si ble sig na tures of global and re gional C-iso to pic events. Geo chem i cal Jour nal, 38:

163–175.

Mazumdar, A., Strauss, H., 2006. Sul fur and stron tium iso to pic com po si tions of car bon ate and evaporite rocks from the late Neoproterozoic-early Cam brian Bilara Group (Nagaur Ba sin, In - dia): con straints on intrabasinal cor re la tion and global sul fur cy - cle. Pre cam brian Re search, 149: 217–230.

Mazumdar, A., Goldberg, T., Strauss, H., 2008. Abiotic ox i da tion of py rite by Fe (III) in acidic me dia and its im pli ca tions for sul fur iso - tope mea sure ments of lat tice-bound sul fate in sed i ments.

Chem i cal Ge ol ogy, 253: 30–37.

Mello, M.R., Mohriak, W.U., Koutsoukos, E.A.M., Figueira, J.C.A., 1991. Bra zil ian and West Af ri can oils: gen er a tion, mi gra - tion, ac cu mu la tion and cor re la tion. Pro ceed ings of the Thir - teenth World Pe tro leum Con gress, New York, John Wiley:

153–164.

Meng, F.W., Zhang, Z.L., Schiffbauer, J.D., Zhuo, Q.G., Zhao, M.J., Ni, P., Liu, W.H., Ahsan, N., Rehman, S.U., 2019. The Yudomski event and sub se quent de cline: new ev i dence from d34S data of lower and mid dle Cam brian evaporites in the Tarim Ba sin, west ern China. Car bon ates and Evaporites, 34:

1117–1129.

Meng, F.W., Ni, P., Schiffbauer, J.D., Yuan, X.L., Zhou, C.M., Wang, Y.G., Xia, M.L., 2011a. Ediacaran sea wa ter tem per a ture:

ev i dence from in clu sions of Sinian ha lite. Pre cam brian Re - search, 184: 63–69.

Meng, F.W., Ni, P., Wang, T.G., Yan, K., Wang, G.G., Zhao, C., Song, W.M., 2011b. Chem i cal com po si tion of the an cient lake at Jintan Salt Mine: ev i dence from fluid in clu sions in ha lite (in Chi - nese with Eng lish sum mary). Acta Micropalaeontologica Sinica, 28: 324–328.

Meng, F.W., Liu, C.L., Ni, P., 2012. To fore cast sylvite de pos its us - ing the chem is try of fluid in clu sions in ha lite (in Chi nese with Eng lish sum mary). Acta Micropalaeontologica Sinica, 29:

62–69.

Meng, F.W., Galamay, A.R., Ni, P., Yang, C.H., Li, Y.P., Zhuo, Q.G., 2014. The ma jor com po si tion of a mid dle-late Eocene salt lake in the Yunying de pres sion of Jianghan Ba sin of Mid dle China based on anal y ses of fluid in clu sions in ha lite. Jour nal of Asian Earth Sci ences, 85: 97–105.

(13)

Meng, F., Zhang, Y., Galamay, A.R., Bukowski, K., Ni, P., Xing, E., Ji, L., 2018. Or do vi cian sea wa ter com po si tion: ev i dence from fluid in clu sions in ha lite. Geo log i cal Quar terly, 62 (2): 344–352.

Misi, A., Veizer, J., 1998. Neoproterozoic car bon ate se quences of the Una Group, Irece Ba sin, Brazil: chemostratigraphy, age and cor re la tions. Pre cam brian Re search, 89: 87–100.

Och, L.M., Cremonese, L., Shields-Zhou, G.A., Poulton, S.W., Struck, U., Ling, H., Strauss, H., Zhu, M., 2016. Palaeoceano - graphic con trols on spa tial re dox dis tri bu tion over the Yang tze Plat form dur ing the Ediacaran-Cam brian tran si tion. Sedimento - logy, 63: 378–410.

Paytan, A., Gray, E.T., Ma, Z., Erhardt, A., Faul, K., 2012. Ap pli ca - tion of sul phur iso topes for strati graphic cor re la tion. Iso topes in En vi ron men tal and Health Stud ies, 48: 195–206.

Peryt, T.M., Ha³as, S., Kovalevych, V.M., Petrychenko, O.Y., Dzhinoridze, N.M., 2005. The sul phur and ox y gen iso to pic com po si tion of Lower Cam brian an hyd rites in East Si be ria.

Geo log i cal Quar terly, 49 (2): 235–242.

Pe ters, K.E., Clark, M.E., Das Gupta, U., Lee, C.Y., 1995. Rec og - ni tion of an Infracambrian source rock based on biomarkers in the Baghewala-1 oil, In dia. AAPG Bul le tin, 79: 1481–1494.

Petrychenko, Y., Peryt, T.M., 2004. Geo chem i cal con di tions of de - po si tion in the Up per De vo nian Prypiac’ and Dnipro-Donets evaporite bas ins (Belarus and Ukraine). Jour nal of Ge ol ogy, 112: 577–592.

Petrychenko, O.Y., Peryt, T.M., Chechel, W.I., 2005. Early Cam - brian sea wa ter chem is try from fluid in clu sions in ha lite from Si - be rian evaporites. Chem i cal Ge ol ogy, 219: 149–161.

Pres ent, T.M., Adkins, J.F., Fischer, W.W., 2020. Vari abil ity in sul - fur iso tope re cords of Phanerozoic sea wa ter sul fate. Geo phys i - cal Re search Let ters, 47. Art. No. e2020GL088766.

Raab, M., Spiro, B., 1991. Sul fur iso tope vari a tions dur ing sea wa ter evap o ra tion with frac tional crys tal li za tion. Chem i cal Ge ol ogy, 86: 323–333.

Sakai, H., 1972. Ox y gen iso tope ra tios of some evaporites from Pre cam brian to Re cent ages. Earth and Plan e tary Sci ence Let - ters, 15: 201–205.

Satterfield, C.L., Lowenstein, T.K., Vreeland, R.H., Rosenzweig, W.D., 2005. Paleobrine tem per a tures, chem is tries, and paleo - environments of Si lu rian Sa lina For ma tion F-1 Salt, Mich i gan Ba sin, USA, from pe trog ra phy and fluid in clu sions in ha lite.

Jour nal of Sed i men tary Re search, 75: 534-546.

Schröder, S., Schreiber, C., Amthor, J.E., Mat ter, A., 2004. Stra - tig ra phy and en vi ron men tal con di tions of the ter mi nal Neo - proterozoic–Cam brian pe riod in Oman: ev i dence from sul phur iso topes. Jour nal of the Geo log i cal So ci ety, 161: 489–499.

Schröder, S., Bekker, A., Beukes, N.J., Strauss, H., van Niekerk, H.S., 2008. Rise in sea wa ter sul phate con cen tra tion as so ci ated with the Paleoproterozoic pos i tive car bon iso tope ex cur sion: ev - i dence from sul phate evaporites in the ~2.2–2.1 Gyr shal - low-ma rine Lucknow For ma tion, South Af rica. Terra Nova, 20:

108–117.

Shah, S.M.I., 1977. Stra tig ra phy of Pa ki stan. Mem oir of Geo log i cal Sur vey of Pa ki stan, 12: 1–138.

Shah, S.M.I., 2009. Stra tig ra phy of Pa ki stan. Mem oir of Geo log i cal Sur vey of Pa ki stan, 22: 1–381.

Shields, G.A., Strauss, H., Howe, S.S., Siegmund, H., 1999. Sul - phur iso tope com po si tion of sed i men tary phosphorites from the basal Cam brian of China: im pli ca tions for Neoproterozoic- Cam -

brian biogeochemical cy cling. Jour nal of the Geo log i cal So ci ety, 156: 943–956.

Shields, G.A., Mills, B.J.W., 2019. Sul fur cy cle im bal ance and en vi - ron men tal change dur ing the Ediacaran Pe riod. Estudios Geológicos, 75, https://doi.org/10.3989/egeol.43605.569 Shields, G., Kimura, H., Yang, J.D., Gam mon, P., 2004. Sul phur

iso to pic evo lu tion of Neoproterozoic-Cam brian sea wa ter: new francolite-bound sul phate d34S data and a crit i cal ap praisal of the ex ist ing re cord. Chem i cal Ge ol ogy, 204: 163–182.

Spear, N., Hol land, H.D., Gar cia-Veígas, J., Lowenstein, T.K., Giegengack, R., Pe ters, H., 2014. Anal y ses of fluid in clu sions in Neoproterozoic ma rine ha lite pro vide old est mea sure ment of sea wa ter chem is try. Ge ol ogy, 42: 103–106.

Strauss, H., 1993. The sul fur iso to pic re cord of Pre cam brian sul - fates: new data and a crit i cal eval u a tion of the ex ist ing re cord.

Pre cam brian Re search, 63: 225–246.

Strauss, H., 2003. Sul phur iso topes and the early Archaean sul phur cy cle. Pre cam brian Re search, 126: 349–361.

Strauss, H., Banerjee, D.M., 1998. The sul phur iso to pic com po si - tion of Neoproterozoic to early Cam brian sea wa ter – ev i dence from the cy clic Hanseran evaporites, NW In dia. Min er al og i cal Mag a zine, 62A: 1467–1468.

Strauss, H., Banerjee, D.M., Kumar, V., 2001. The sul fur iso to pic com po si tion of Neoproterozoic to early Cam brian sea wa - ter—ev i dence from the cy clic Hanseran evaporites, NW In dia.

Chem i cal Ge ol ogy, 175: 17–28.

Swee ney, R.E., Kaplan, I.R., 1980. Sta ble iso tope com po si tion of dis solved sul fate and hy dro gen sul fide in the Black Sea. Ma rine Chem is try, 9: 145–152.

Thode, H.G., Mon ster, J., Dunford, H., 1961. Sul phur iso tope geo - chem is try. Geochimica et Cosmochimica Acta, 25: 159–174.

Tostevin, R., He, T., Turchyn, A.V., Wood, R.A., Penny, A.M., Bowyer, F., Ant ler, G., Shields, G.A., 2017. Con straints on the late Ediacaran sul fur cy cle from car bon ate as so ci ated sul fate.

Pre cam brian Re search, 290: 113–125.

Wang, G.L., Wang, T.G., Han, K.Y., Wang, L.S., Shi, S.B., 2015.

Rec og ni tion of a novel Pre cam brian pe tro leum sys tem based on iso to pic and biomarker ev i dence in Yang tze plat form, South China. Ma rine and Pe tro leum Ge ol ogy, 68: 414–426.

War ren, J.K., 2016. Evaporites: a Geo log i cal Com pen dium (2nd edi tion). Springer, Berlin.

Wynne, A.B., 1878. Ge ol ogy of the Salt Range in the Punjab. Mem - oirs of the Geo log i cal Sur vey of In dia, 14: 1–313.

Yao, W.Q., Wortmann, U.G., Paytan, A., 2019. Sul fur iso topes – use for stra tig ra phy dur ing times of rapid per tur ba tions. Stra tig - ra phy and Timescales, 4: 1–33.

Zhang, T.G., Chun, X.L., Zhang, Q.R., Feng, L.J., Huo, W.G., 2003. Vari a tions of sul fur and car bon iso topes in sea wa ter dur - ing the Doushantuo stage in late Neoproterozoic. Chi nese Sci - ence Bul le tin, 48: 1375–1380.

Zhang, T.G., Chun, X.L., Zhang, Q.R., Feng, L.J., Huo, W.G., 2004. The sul phur and car bon iso tope re cords in car bon ates of the Dengying For ma tion in the Yang tze Plat form, China. Acta Petrologica Sinica, 20: 717–724.

Zhao, Z.Q., Xing, Y.S., Ma, G.G., Yu, W., Wang, Z., 1980. The Sinian Sys tem of East ern Yang tze Gorges, Hubei (in Chi nese with Eng lish sum mary). In: Re search on Pre cam brian Ge ol ogy:

Sinian Suberathem in China (ed. Y.L. Wang ): 31–55. Tianjin Sci - ence and Tech nol ogy Press, Tianjin.

Cytaty

Powiązane dokumenty

The research findings obtained in the research indicate that there is a need for a systematic assessment of a mental state of patients attending a medical consultation,

The se cond (blue) goes by busy shop ping stre ets; on the cen tral bri d ge we can have open views.. The third (gre en) be gins like the

The type and amount of salt efflorescence ( Fig. 6 a) varied according to the procedure followed and type of stone used: a lower amount of NaCl efflorescence developed in the

The information presented above show that: (a) digital transformation can be measured from a strategic perspective, (b) the main strategic directions for digital transformation

Silicon bulk micromachining techniques have been employed for the fabrication of an integrated grating plus detector array in silicon for operation as a microspectrometer in the

As has already been emphasised several times, the transition period from the Neolithic to the Bronze Age marks a stage in the history of Europe which laid the foundations of

Aopposite tendency was reported in case of the power lost on the rolling resistance – at both levels of a vertical load, higher values of this power concerned a wheel exploited

problems of these banking groups would lead to disrup� ons not only in the group’s home country, but in the host countries (including Poland) as well