• Nie Znaleziono Wyników

# I. Introduction. Let I = [a, b] be a given closed bounded interval.

N/A
N/A
Protected

Share "I. Introduction. Let I = [a, b] be a given closed bounded interval."

Copied!
8
0
0

Pełen tekst

(1)

1

n

n

i=1

i

1

2

2

n

n

i

0

i+1

i

i

n

−1

−1

i

i

[29]

(2)

−1

n

i=1

i

n

i=1

i

i

ν

ν

ν−1

j=0

j

k+1

k+1

k

k

k

k

k

k

k

k

k−1

j=0

j

k

j=0

j

(3)

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

0

0

0

−1

0

−1

0

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

k

k

k

1

k

k

k

(4)

x

x

n

i=1

i

i−1

0

x

x

0

00

x

−1

x

x

x

x

x

x

n

i=1

i

i−1

i−1

n

i=1

i

i−1

n

i=1

i−1

x

x

1

x

n

i=1

i−1

y

x

n

i=1

i

i

i−1

y

x

y

y−1

x

x−1

y

y−1

y

x−1

y

x−1

x

x−1

y−1

x−1

y−1

x−1

−1

y−1

x−1

−1

(5)

y−1

x−1

−1

x−1

y−1

x−1

y−1

x−1

x−1

x−1

−1

−1

−1

y−1

x−1

x−1

x−1

−1

−1

−1

x−1

−1x

x−1

x−1

−1

x

x

−1

t∈I n

i=2

i

i−1

i−1

−1

n

i=2

i

i−1

i−1

−1

n

i=2

i

i−2

j=0

j

−1

n−2

j=0

j

n

i=2

i

−1

n−2

j=0

j

1

−1

n−2

j=0

i

(6)

1

−1

n−2

j=0

j

00

n−1

j=1

j−1

j

1

n

n

i=1

i

1

k

k

n

k=1

k

k

−1

−1

n

i=1

i

i

x

x

λ

x

n

i=1

i

i−1

µ

x

−1

(7)

x

−1

x

−1

x

−1

x

−1

x

−1

x

−1

x

−1

x

−1

−1

−1

x

x

x

x

x

x

n

i=1

i

i−1

i

i−1

n

i=1

i

i

i−1

u

i=1

i

i−1

i−1

n

i=1

i

i

n

i=2

i

i−1

i−1

n

i=1

i

i

n

i=2

i

i−2

j=0

j

n

i=1

i

i

n

i=2

i

n−2

j=0

j

n

i=1

i

i

1

−1

n

i=1

i

i

−1

−1

n

i=1

i

i

n

i=1

i

i

n

i=1

i

n

i=1

i

(8)

1

1

n

## 3. What can be said in case F (0) = 1 and F (1) = 0?

n

i=1

i

i

n

i=1

i

i

n

i=1

i

i

### Re¸cu par la R´edaction le 18.8.1998

Cytaty

Powiązane dokumenty

As every plurisubharmonic function can be approximated by a de- creasing sequence of smooth plurisubharmonic functions, algebraic properties of the Monge–Amp` ere operator acting

Theorems about the existence, uniqueness and stability of solutions of the abstract evolution Cauchy problem (1.3)–(1.4) in the differential ver- sion were studied by Bochenek

The following lemma is an important tool for various constructions in Banach spaces.. It enables one to generalize constructions in Hilbert spaces

Paul Erd˝ os (Budapest), Melvyn B. All bases considered in this paper will be either asymptotic or strict asymptotic bases of order k. strict asymptotic basis) A is called minimal

The assumptions given there agree with our (i)–(iii) (in fact, in [8] they are given in a more general, though complicated setting), but the key assumption is that the measure

We would like to conclude this note showing that some of the results obtained for a ball extend to the general case.. We will restrict ourselves to the following very simple

O rlicz, Ein Satz über die Erweiterung von linearen Operational, Studia

The extension theorem is proven in the context of Boolean algebras; a measure on a sub- ring R of a Boolean algebra B is extended to a measure on the whole of B.. Theorems 1–3 below