• Nie Znaleziono Wyników

Heuristic Solving Linear Programming Problems

N/A
N/A
Protected

Academic year: 2021

Share "Heuristic Solving Linear Programming Problems"

Copied!
15
0
0

Pełen tekst

(1)

Władysław Tomaszewski

Heuristic Solving Linear

Programming Problems

Annales Universitatis Mariae Curie-Skłodowska. Sectio H, Oeconomia 18,

285-298

(2)

A N N A L E S

U N I V E R S Î T A T I S M A R I A E С U R I Ë - S К Ł O D O W S К A

L U B L I N — P O L O N I A

W ł a d y s ł a w T O M A S Z E W S K I

H e u ristic S o lv in g L in e a r P ro g ra m m in g P ro b le m s

H eu rystyczn e ro zw iązyw an ie p roblem ów program ow ania lin iow ego Э вристическое реш ение проблем линейного программирования

T he e x a c t so lu tio n s of lin e a r p ro g ra m m in g p ro b lem s a re o b tain ed b y m ean s of sim p le x m e th o d an d th e elec tro n ic ca lc u la tin g m achines. T h e p a p e r is aim ed a t sho w in g th a t fin d in g th e a p p ro x im a te so lu tio n s of c e rta in im p o rta n t p ra c tic a lly lin e a r p ro g ra m m in g p ro b lem s by m ean s of h e u ris tic ap p ro a c h re q u ire s u sin g n e ith e r th e so p h istic a te d a lg o rith m n o r th e e le c tro n ic co m p u ter. L e t us n o tice th a t th e a d v is a b ility of su ch a n a p p ro a c h to solv ing lin e a r p ro g ra m m in g p ro b lem s as w e ll as th e p ra c tic a l u se fu ln e s s of th e a p p ro x im a te so lu tio n s h ad b een fir s t e m p h a ­ sized by L. V. K a n to ro w ic z (1).

T he p a p e r is d iv id ed into tw o p a rts. T he g e n e ra l ex p o sitio n of th e h e u ris tic a p p ro a c h is fo llo w ed b y sev e ral e x a m p le s o f its ap p lica tio n .

1. L e t u s c o n sid er th e fo llo w in g lin e a r p ro g ra m m in g pro b lem :

m ax im iz e th e o b je c tiv e fu n c tio n

VOL. X V III, 15 SECTIO H 1984

Z a k ła d Z a sto so w a ń M a te m a ty k i W y d z ia ł E k o n o m ic z n y U M CS S = X TR (

1

) s u b je c t to A X + Y = P0 (2) (

3

) (

4

) w h e re

X — th e co lu m n v e c to r ( n X l ) of th e decision v aria b les, X T — th e tra n sp o sitio n of th e v e c to r X,

(3)

286 W. T om aszew sk i

Y — th e c o lu m n v e c to r ( m X l ) of th e slack v a ria b le s,

R — th e co lu m n v e c to r ( n X l ) of th e o b je c tiv e fu n c tio n p a ra m e te rs , A — th e m a tr ix ( m X n ) of th e coefficien ts,

P 0 — th e co lu m n v e c to r ( m X l ) of th e co n stan ts.

A ssu m in g t h a t som e co e fficien ts in th e m a trix A a re eq u al to zero 1 th e a p p ro x im a te s o lu tio n of th e p ro b le m (1)— (4) can be fo u n d b y m ean s of th e fo llo w in g h e u r is tic p ro c ed u re :

a) F in d in g th e f irs t so lu tio n :

— cho osing th e fir s t seq u e n ce of th e decision v a ria b le s:

on th e basis of w h e re ajj — th e e le m e n t of th e m a tr ix A s ta n d in g in th e i- th ro w a n d th e j- t h co lu m n , bi — th e i- th e le m e n t of th e v e c to r P Q. — fin d in g th e v e c to r of th e co n sta n ts: w h e re Pj — th e j- t h co lu m n v e c to r of th e m a tr ix A co rre sp o n d in g w ith th e v a ria b le xf

1 Let us n o tice th at it das not pay to u se the h eu ristic approach w h en there are all c o efficien ts bigger th a n zero in th e m a trix A.

w h e re

j e N

N — th e se t of th e d ecisio n v a ria b le s s u b sc rip ts rj — th e j - t h e le m e n t of th e v e c to r R.

(4)

H eu ristic Solvin g L inear Program m ing Problem s — fin d in g th e m a x im u m v a lu e of th e v a ria b le x2 : 2 I K b 2 b m' \ max. x : = ---, ... \ a ] j a 2j mj I w h e re w h e re P? — th e j- th co lu m n v e c to r of th e m a trix A co rre sp o n d in g to th e v a ria b le xf — fin d in g th e m a x im u m v a lu e of th e v a ria b le x ? w h e re Pj1 — th e j- th co lu m n v e c to r of th e m a tr ix A co rre sp o n d in g to th e v a ria b le xj1

— fin d in g th e v a lu e s of th e slack v aria b les:

b) F in d in g th e second solution:

— choosing th e se c o n d .s e q u e n c e of th e decision v a ria b le s on th e b a ­ sis of th e f ir s t seq u e n ce a n d th e re s u lts of th e firs t so lu tio n 2

2 The w a y of p erform ing that operation w ill be further e x p la in ed w h en so lv in g an ex a m p le below .

w h e re

(5)

2 8 8 W. T om aszew sk i

— p e rfo rm a n c e of th e o p e ra tio n s sh o w n abo ve w h e n lo o king fo r th e fir s t solution.

(s) Finding the s-th solution 3 in th e w a y sh o w n above.

( s + 1 ) C hoosing th e a p p ro x im a te so lu tio n of th e p ro b le m (1)— (4): — fin d in g th e a p p ro x im a te m a x im u m v a lu e of th e o b je c tiv e fu n c tio n on th e basis of

pXt (p = 1, 2, ..., s) — th e v e c to r ( lx n ) of th e v a lu e s assig n ed to th e decision v a ria b le s in th e p - th so lu tio n

— d e fin in g th e a p p ro x im a te so lu tio n : a ssu m in g th a t th e ap p r. m ax . S h a s b e e n ac h ie v e d in th e p -th so lu tio n th e n th e a p p ro x im a te so lu tio n is g iv en b y th e v e c to rs: pXt an d Y = P q p " w h e re P q p-" ls th e v e c to r of th e c o n s ta n ts o b ta in e d in th e p -th so lu tio n 3. A n exam ple.

M axim ize th e o b je c tiv e fu n c tio n

a p p r. m ax . S = m ax . ^X TR , 2X t R, ..., SX TR) w h e re 4 j =1 s u b je c t to an xi + a i 3x 8 + ai4x4+y1 &22x 2 a 32X2 “t- a.34x 4 a « x i 353X3+ a54X4 + y2 = bj = b2 + Y3 = b3 + y4 = b4 + y5 = b5 Xj > 0 (j = 1 ... 4) y 3+k > 0 (k = 1 ... 5)

3 A s our e x p e r ie n c e sh o w s, at le a st tw o so lu tio n s are n ecessa ry for ch oosin g an ap p roxim ate so lu tio n sa tisfa cto ry p ractically.

(6)

H eu ristic S o lv in g L inear P rogram m ing Problem s 2 8 9

(a) F inding th e first solution:

— assum ing th a t z4 > z3 > zi > z2, th en the firs t sequence of the decision variables is as follows:

x 4 x 3 Xi x 2

— assum ing also th a t

. / bx b3 b6 \ bx

max. x4 = mm. --- , ---, 1 =

---\ a14 a34 a54 / a14

“ 0 W a14 b’ b, 0 b3- a 31A — then P01 = P0—X4P4 = b3 a34 = ai4 b4 a*4 0 b4 bs a 54 , W - —* U J b5 a54 ----— a 14 — . / 0 b5—a54 — \ — m ax. x3 = mm. ---, a14 I = L) \ 3,13 I

\

a 53 / . / 0 b4 \ — m ax. Xj = m m. ---, 1 = 0 \ an a41

I

I

bj \ b x / b2 b3—a34 \ b3—a34

— assum ing th a t m ax. x2 = mm. I , a14 = a14

\ a 32 / a 32 0 b2 , r 0 1 k u 1 b —a 1 b3 ~ a 34 — a 22

,,

„ u3 d34 a14 — th en P01 = P01- x 2P2 = a1 4 --- a32 = b4 a32 0

,

b i

Lo _

a 54 ---_ a 14 _ - 0 -1 r y r b2 a22x2 y2 = 0 = y3 b4 y4 - b5 —a54x4 J L y 5 _ 19 — Annales..,

(7)

290 W. T om aszew sk i

(b) F inding the second solution:

— as th e second s e q u e n c e of th e decision v a ria b le s w e assum e: x 3 x 4 Xi x 2 b ec au se in th e f ir s t so lu tio n x 2 > 0 a n d x 3 = x j = 0 in s p ite of th a t z3 > Zi > z2. — a ssu m in g th a t x / bl b5 \ b5 m ax. x 3 : m m. --- , 1 = ---' a l 3 a 53 / a 53 bi a13 bj a13x3 b2 ^ 0 b 2 then Pq2 = Pо x3P3 = b3 0 = b3 b4 a53 0 b4 - b5 _ _ a53 _ _ 0 / W а 1зх з b s 0 \ — m ax. x 4 = m m. ---, --- , = 0

\ a14 a34 a54 /

— a ssu m in g n e x t th a t

/ b j—a13x3 b4 \ b4

m ax. Xi — mm. I --- , =

---\ a14 a41 / a41

” bi—a13x3 “i r ai i “| Г bi —(а^Хз+ацХ!)" b2 b 0 b2 — then P”2 = Pq2—XlPj b3 --- -- 0 = b3 b4 &41 a4l 0

_o

J

Lo J

Lo

— an d a s su m in g la s tly th a t ■ ^ - ( a j a x a + a n x j - j Г О ~ b2 ^ a22 t h e n P 0 2 = P 02 x 2 ^ 2 = ^ 3 a 32 = 0 a22 0

_o

J

Lo _

. / b2 b3 \ b2 m ax. x 2 — mm. I , 1 =

(8)

H eu ristic S o lv in g L inear P rogram m ing Problem s 291

(c) C hoosing th e a p p ro x im a te solu tio n : — a ssu m in g th a t

ap p r. m ax . S = m ax . 0 X TZ, 2X TZ) = 2X *Z — th e n th e a p p ro x im a te so lu tio n is as follow s:

L e t us n o tice th a t th e re ^ a re e x a c tly fiv e v alu es la rg e r th a n zero in th e a p p ro x im a te so lu tio n w h ich sig n ify th a t th e so lu tio n is basic.

2. W e s h a ll n o w tu r n to th e a p p lica tio n s of th e p re s e n te d h e u ris tic ap p ro ach . T he n a tu r e of th e f irs t p ro b le m w e a re going to d eal w ith is as follow s:

to fin d su ch p ro d u c tio n p ro g ra m X T = [x1( x 2, ..., x n] w h ich m ax im iz es a p p ro x im a te ly th e o b je c tiv e fu n c tio n an d fu lfills th e co n d itio n s A X < P,O w h e re Wj , nj — th e u n it o u tp u t, in p u t, re s p e c tiv e ly W j ---th e u n it effe c tiv e n e ss n j 19*

(9)

2 9 2 W. T om aszew sk i n

E w'x->

j-1 n

Z *

-fzi

w

E = — --- = — — the average effectiv en ess

\ n z , 11^ i = » i ________ n

S-.

j = i w here

w, n — th e average output, input, resp ectiv ely Thus

w h ere

Ea — the m axim um va lu e of the ob jective function,

I Wj V / Wj \ "

^ J ^— - J — the sm allest, largest u nit effectiv en ess, resp ectively

L et us n ow consider the fo llow in g n um erical exam ple: m axim ize the ob jective fu n ction

37xx + 2 8x2+ 30x3+ 2 5x4 + 1 7x5 + 1 8x6 148x2+ 1 22xa + 1 4 0 x 5 + 1 36x4 -f100x5 + 120x6 su bject to Xi + y i r = 8 000 x 2 + y2 = 25 000 90xi + 80x2 + 75x3+ 5 0 x 4+ 5 2 x 5+ 6 0 x 6 + y 3 = 2 870 000 30x! + 20x2 + 20x3+ 18x4+ 4 6x5+ 3 4x6 + y 4 = 775 000 x 3 (j = 1, 2 ... 6 ) > 0 y k (k = 1, 2 ... 4) > 0 (a) F in d in g t h e firs t solution:

— the first seq u en ce of the decision variables is

(10)

H eu ristic S o lv in g L inear P rogram m ing Problem s 293

because the u nit effectiven ess indicators rj are

w here

j 1 2 3 4 5 6 rj 25 23 21 18 17 15

rj = [wj/nj] 100

/ 8000 2 870000 775000 — then m ax. xj — min. 1— -— , --- —--- = 31 889, — ——

= 25 833) = 8000 then P01 = Pc- x 1P1 8000 1 0 25 000 - 8 000 0 25 000 2 870000 90 2 150000 775 000 30 535 000

— then m ax. x 2 = min. ^— -/2 5 0 0 0 2150000

80 = 26875 , 535 000 20 ~ = 26750) = 2 5 0 0 0 then P01 P01 x2P2 — 0 0 0 250 00 1 0 —25000 -2 150 000 80 150 000 535 000 20 35000 150000 35000

then m ax. x 3 = min. I— —— = 20000 , ——— = 1 750) = 1750

75 20 then P01 P01 x3P3 —

0

0 150000 35 000 - 1 7 5 0 0 0 75 20 0 0 18 750 0 t h e n x 4 = x 5 = xg = 0 a n d yi 0 y2 0 y3 18 750 y* 0

(11)

294 W. T om aszew sk i

A s can be in fe r re d fro m th e fo reg o in g d iscussion th e so lu tio n ju s t o b ta in e d can b e a lre a d y c o n sid ered as th e one looked for. T he c o rre s ­ p o n d in g v a lu e of th e o b je c tiv e fu n c tio n is th e m a x im u m v a lu e Ea, assu m in g th a t th e v a lu e s of th e slack v a ria b le s are m in im ized .

T he n e x t p ro b le m to b e co n sid ered h e re is giv en in T ab le 1. W hen so lv in g it, le t u s f ir s t n o tic e an d ta k e a d v a n ta g e of its sp ecific s tru c tu re . N a m e ly , th e s e t of 16 decisio n v a ria b le s can be d iv id ed in to tw o p a rts. To th e f ir s t p a r t belong th o se v a ria b le s v a lu e s of w h ic h m a y be d e te r ­ m in e d in d e p e n d e n tly on th e b asis of o n ly one a p p ro p ria te c o n stra in t:

x5

(2)

x 6, x 7, x 8^ x 10, X u , x 16 ( 3 ) 4>

Xl2 (5)

a n d to th e second p a r t th o se re m a in in g , v a lu e s of w h ic h ca n n o t be fo u n d in s u c h a w ay :

(a) F inding th e valu es of th e decision variables belonging to the first category:

120

— m ax . x5 = - ^ - = 2 an d y 3 = 0

322

— m ax . x 12 = = 10 a n d y 5 = 0

— th e se q u e n c e of th e v a ria b le s x 6, x 7, x 8, x i0, Xn, x i6 is as follow s:

j 16 6 7 8 11 10

b ec au se th e s ta n d a rd iz e d p a r a m e te rs of th e o b je c tiv e fu n c tio n are

j 6 7 8 • 10 11 16

ej 0,028 0,025 0,0224 0,016 0,0215 0,085

w h e re ej = r-j/a2j

w h e re rj — th e j - t h p a r a m e te r in th e o b je c tiv e fu n c tio n ,

a2j — th e j - t h c o e ffic ie n t in th e second c o n stra in t. 2430

— h e n c e m ax . x 16 — ——— — 30

a n d x 6 = x 7 = x 8 = xio = x u = 0 a n d y 2 = 0

(12)

H eu ristic S o lv in g Linear P rogram m ing P roblem s 2 9 5

(b) D eterm ining the values of the variables belonging to the second category: — to m a x im iz e F ' = 0,88x 1+ 1 ,9 4 x2 + 3 ,8x3 + 5, 4 4 x 4 + 6 ,8 6 x 9 + l , 9 4 x 134 - 1 0 ,5 x i4 + 1 0 ,9 3 x i5 s u b j e c t to (1) 8 9 , 3 x ! + 1 6 4 x 2+ 1 3 2 , 2 x 3+ 1 9 9 ,7x4+ 5 0 1x9 + 6 7 ,6 x ia + 6 0 3 ,6 x i4 + 4 6 9 ,3 x 15+ + y i = 3424 (

4

) (6) ( 7 ) 1 6 X i + 49,93x9 1 6 , 1 1x3 + 3 3 , 8 3x4 + 2 6 ,0 4x i4+ 2 6,04 xi5+ + y 4 = 4 6 + Ye = 35 + y 7 == 20 — t h e s e q u e n c e o f t h e d e c is io n v a r ia b le s is X3 Xi 3 X4 X15 x14 x9 X2 X i b e c a u s e t h e s ta n d a r d iz e d p a r a m e te r s o f t h e o b je c t iv e f u n c t io n a re j 1 2 3 4 9 1 3 1 4 1 5 f j 0 , 0 1 0 0 , 0 1 2 0 , 0 3 0 , 0 2 7 0 , 0 1 4 0 , 0 2 8 0 , 0 1 7 0 , 0 2 3 v w h e r e fj = rj/aij w h e r e aij — th e j - t h c o e f fic ie n t in t h e f ir s t c o n s t r a in t / 3 424 35 \ — m ax. x 3 = m in. --- = 25,9 , = 2,17 = 2,17 \ 132,2 16,11 / 3 424 132,2 3 137,13 _ P' = P _ x P = 46 - 2 1 7 ° = 46 o 0 3 3 35 16,11 O 20 O 20

(13)

2 9 6 W. T om aszew sk i с о ■+•>о С 3 чч и О) 0 r Q cd f-t 1 Л+-> шN 1 Й Л а о Еч

(14)

H eu ristic S o lv in g L inear Program m ing P roblem s IQZ — m a x . x 13 = 3 137,13 67,6 = 46,41

P

0

Po

Xi3Pi3 — 3 137,13 46 0 20 -46,41 67,5 0 0 46 0 0 0 20 — h en c e x j = x 2 = x 4 == x 9 = X u == x 15 = 0 Vi 0 y4 46 y6 0 y? 20 T a k in g in to ac co u n t th e sho w n specific s tr u c tu r e of th e p ro b le m an d th e p e rfo rm e d s ta n d a rd iz a tio n of th e o b jectiv e fu n c tio n p a r a m e te rs w e s h a ll assu m e as th e a p p ro x im a te so lu tio n th e one ju s t o b tain ed :

x 3 = 2,17 x 3 = 2 X12 = 10 x 13 = 46,41 x 16 = 30

y4 = 46 y 7 = 20

L e t u s n o tice m o re o v e r th a t th e o u tlin e d h e re g e n e ra l id e a of th e h e u r is tic so lv in g lin e a r p ro g ra m m in g p ro b lem s h a s — as o u r e x p e rie n c e p ro v e s — m a n y a p p lic a tio n s of p ra c tic a l im p o rta n c e , e. g. in fin d in g th e p ro d u c tio n a s s o rtm e n t a t th e fa c to ry level.

BIBLIO G R A PH Y

1. K a n t o r o w i c z L. W.: M ath em atical M ethods of P roduction P la n n in g and O rganization [In:J C hajtm an S. (ed): M athem atical M ethods in E conom y and O rganization of F actory. PW E, W arszaw a 1960.

2. P o l y a G.: H ow to S o lv e It? P rin ceto n U n iv ersity P ress, 1945.

3. T o m a s z e w s k i W.: On N on -A lgorith m ic S olu tion s of L inear P rogram m ing Problem s, S ta tistica l R ev iew 2, W arszaw a 1961.

4. T o m a s z e w s k i W.: H eu ristic M athods of O ptim ization, P rob lem s of O rgani­ zation 1, W arszaw a 1980,

(15)

2 9 8 W. T om aszew sk i S T R E S Z C Z E N I E

Celem tego artyk u łu je s t u kazanie, że aby znaleźć przybliżone rozw iązan ia p e w ­ n y ch p rak tyczn ie isto tn y ch p rob lem ów program ow an ia lin io w eg o za pom ocą po­ dejścia h eu rystyczn ego, nie je s t k on ieczn e sto so w a n ie ani sk o m p lik o w a n eg o a lgo­ rytm u, ani k om putera elek tron iczn ego.

A rtyk u ł d zieli się na d w ie części. Po ogólnym p rzed sta w ien iu proponow anej procedury h eu rystyczn ej n a stęp u je k ilk a przyk ład ów jej zastosow an ia.

Р Е З Ю М Е Ц ель статьи — п оказать, что для того, чтобы найти п р и бл и ж ен н ое реш ение некоторы х сущ ествен н ы х с практическ ой точки зрени я п реблем минейного про­ граммирования с помощ ью эвристического п одхода, н еобя зательн о применять ни сл ож н ы й логариф м , ни электронны й компьютер. Статья состоит из д в у х частей. П осле общ его представлен и я п редлагаем ой эв ристи ческой п р оц едур ы приводятся примеры е е прим енения.

Cytaty

Powiązane dokumenty

We use the well-known Blocks World domain [?] to explore and present evidence for the usefulness of adding expressive programming constructs that allow the specification

Characterization of the Old Yellow Enzyme Homolog from Bacillus subtilis (YqjM).. Pesic, Milja; Fernández-Fueyo, Elena;

The traditional time stepping procedure fails in general to reach to a converged solution while the GMRES technique with the previously described preconditioning is able to supply

The carpenter should specify how many tables, chairs, desks and cabinets should be produced so that the pro…t from their sale is maximal.. Two types of boards are used

Razem z Jej śmiercią, kończy się działalność fundatorów klasztoru, a siostry Katarzyna, Anna i Krystyna, jako kolejne przełożone, znajdują miejsce spoczynku w podziemiach

Этот Указ установил, что за преступления, наказуемые по действующим законам смертной казнью, в мирное время применяется заключение

W obecnym stanie prawnym brak jest mechanizmu chroniącego wprost podat­ nika - spadkobiercę przed powyższą do­ legliwością (może on tylko prosić Urząd Skarbowy

The first proposition of the case reads as follows: “(1) IoT data infrastructures are composed of data, agents, and technology.” The case study shows that asset management