• Nie Znaleziono Wyników

Geopetal structures as indicators of top and bottom

N/A
N/A
Protected

Academic year: 2022

Share "Geopetal structures as indicators of top and bottom"

Copied!
9
0
0

Pełen tekst

(1)

V o l . X L I X — 3/4: 215— 221 K r a k ó w 1979

Józef

W i e c z o r e k *

GEOPETAL STRUCTURES AS INDICATORS OF TOP AND BOTTOM

(PI. I— II and 2 Figs.)

Struktury geopetalne jako wskaźniki stropu i spągu

(PI. I — I I i 2 fig.)

A b s t r a c t . The geological significance of intraisketotal geoipetal structures has been examined. It has been proved that the possibility of an early lithifica- tion of internal sediments questions the diagnostic value of partial sedimentary infillings of fossils as indicators of to,p and bottom.

Numerous criteria of defining the top and bottom of beds are known (Shrock, 1948) but the geopetal structures (the term introduced by Sander, 1936) belong to the more often used in the field practice. The partial sedimentary infillings of rock cavities are considered the more useful and the partial ilnfilings of fossils are commonly used to de­

fine the top and the bottom (Shrock, 1948; Shamov, Hecker, 1966; Rich­

ter, 1968; Seilacher, 1973).

In general partially infilled are the shell's of brachiopods (Muller, 1951, Richter, 1968; Eder, 1971) and borings of lithophags (PI. 2). Geopetal structures are also characteristic for fossils of complicated inner struc­

tures e.g. shells of ammonites (Seilacher, 1971, Wendt, 1973), skeletons of sponges (Krantz, 1972), shells of rudists (Bein, 1976) but other fossils may also be partially infilled (see e.g. Horowitz, Potter, 1971).

Particulary favourable conditions for the formation of intraskeletal geopetal structures are created by minimal sedimentation which is why in stratigraphically condensed sequences partial infillings of shells are very common (the author’s observations on the Callovian deposits in Cracow Upland). Rapid burying of fossils in sediment (e.g. during storms) may also be the cause of incomplete sedimentary infillings. It must be added that partially infilled are mainly fossils buried in coarse­

grained sediments.

* Institute of Geological Sciences, Jagiellonian University, 30-063 Kraków, Oleandry 2a, Poland.

1*

(2)

Intraskeletal geopetal structures are used in defining the top and bottom according to the assumption that the upper part of the cavities (empty or usually filled with sparry caleite) indicates the top of the bed (Shrock, 1948). It has been repeatedly justified that these structures are usuful in determining the tops and 'bottoms of rock complexes void of (bedding (see Cu'llison, 1938, Shamov, Hecker, 1966). With the help of the detailed analysis of the orientation of geopetal struc­

tures the re-interpretation of geological structure of areas of compli­

cated tectonics has been carried out (Richter, 1968).

The partial infillings are w idely used as fossil „Wasserwage” (Rich­

ter, 1968) and as depositional paleoslope indicators, too (Broadhourst, Simpson, 1967; Eder, 1971; Playford et al. 1976).

The application o f partial sedimentary infiillings o f fossils in deter­

mining of tops and bottom and in solving other geological problems is in the question however and the possibility o f mistakes w ill be ta­

ken into account. It is taken for granted that the intraskeletal sediment is lithified during diagenesis before any likely deformations of beds, but it is seldom taken into account that there is the possibility of an early lithification of internal sediment still before or soon after the buryial of a shell in a sediment (Wendt, 1973). The early submarine lithification or carbonate sediments is already w ell documented (see Bathurst, 1976; Milliman, 1974a, b) and evidence of this is known both from recent environments (Taft et al., 1968; Shinn, 1969) and from ancient ones (Purser, 1969; Kaźmierczak, 1974). Most sugge­

stive are examples of the early lithification of internal sediments infilling the voids in reef structures (Ginsburg, Shroeder, 1973).

The early lithification of carbonate sediments in the shallow water environments is w ell known but examples of the submarine lithification of deep water sediments are also observed (Fischer, Garrisson, 1967, Gevirtz, Friedman, 1969, Milliman, Müller, 1973, Bathurst, 1974, Schla­

ger, James, 1978). It has been assumed that with suitable parame­

ters of temperature and salinity it is not so much the depth as the very slow sedimentation is the most important factor favouring the lithification of sediments (Milliman, 1974a Milliman, Müller, 1975; Mül­

ler, Fabricius, 1971). It is worth mentioning that the lithification of intraskeletal sediments comes aibout more quickly in comparison with the lithification of the surrounding sediments (Seilacher, 1971) and ad­

ditionally the intraskeletal spaces filled with sediment may very quickly be filled with aragonite or Mg-calcite (Mofoerly, 1973; Focke, Geibelein 1978).

If the 'inner sediment is lithified the gravitational displacement in­

side the shell is not possible and in the case of the re-deposition of the shell it can be expected that the intraskeletal geopetal structures w ill be arranged variously, not parallel either to itself or to the bedding.

(3)

Thus the possibility of the early lithification of sediments questions the diagnostic value of partial fossil infillings in defining the top and bot­

tom.

A number of examples questioning the unequivocal interpretation of intraskeletal geopeftal structures has been provided by strat [graphically condensed sediments of Middle Callovian from Rudno region near K rze­

szowice, Cracow Upland. These sediments are w ell dated stratigraphi- cally, horizontally imbedded and they are normally stratified. The top of beds is shown by stromatolitic structures which are good geopetal structures (Playford et al., 1976). Numerous ammonite shells which occur below the stromatolite bed in marls with Fe-ooids are usually partially filled w ith carbonate sediment. The geopetal intraskeletal structures sometimes show the diagonal arrangement both in relation to one another and to the surface of bedding (Fig. 1, Pl. 1, figs. 1 - 3 ) and some of them represent ,/t'he reversed geopetal structures” (Pl. 1, fig. 1, 2) which are characterized by the filling of the low er part of the shell by the sparry calcite and the upper part by sediment! The inference that the shells were redeposited after the partial sedimentary infilling and its early lithification, is justifiable.

S

Fig. 1 Diagram showing the relation of geopetal structures in shells of ammonites to the bedding. Middle Callovian, Rudno, Cracow Upland, dense stippling — inter­

nal sediment, white — calcite, S — stromatolite layer

Fig. 1. Diagram obrazujący stosunek struktur geopetainych w muszlach amonitów do uławicenia. Środkowy kelowej, Rudno, Wyżyna Krakowska gęsto punktowa­

ne —- osad wewnętrzny, bez szrafury — kalcyt, S — struktury stromatolitowe

Still another but particularly suggestive example of the limited appli­

cation of intraskeletal geopetal structures for defining the top and bottom o f beds is shown in fig. 2. In different parts of an ammonite phragmocone from pelagic limestones of the Upper Callovian of Zalas quarry in the Cracow Upland are observed geopetal structures reversed in relation to one another. From different parts of the some phragmocone different stratification of beds can be defined. In this case, the formation of successive generations of interskeletal carbonate sediments was divided by lithification processes and the reversing of shells during their rede­

position.

It is noteworthy that shells may be redeposided even under very calm sedimentary conditions in consequence of the burrowing ac­

tivity of organisms (see Clifton, 1974, Toots, 1965). A t last, it must be mentioned that the upper surface of the infillings need not indicate the original horizontal surface. The gravitational displacement of se-

(4)

Fig. 2. Geopetal structures in a phragmocone of an ammonite, Upper Cadilovian, Z a - las, Cracow Upland, dense stippling — internal sediment, white — calcite, S —

rstromatolite layer

Fig. 2 Struktury geopetalne w muszli amonita, górny kołow ej, Zalas, Wyżyna Krakowska, gęsto punktowane — osad wewnętrzny, bez szrafury — kalcyt

diment within the shell may be hindered if the inner walls of the shell or the surface of inner sediment are covered by mucilage film (see Sherman, Skipwith, 1965).

Therefore caution is justifiable in the application of intraskeletal geopetal structures in defining the top and bottom and in interpretating the depositional paleoslope.

Manustoript received June 1Ô78; accepted Aiugust 1878

STRESZCZENIE

W pracy rozpatrzono geologiczne znaczenie wewnątrzmuszlowych struktur geopetalnych (Sander, 1936; Shrock, 1948) używanych często do określania stropu i spągu warstw zaburzonych tektonicznie (Richter, 1968) oraz sposobu zalegania kompleksów skalnych pozbawionych uła- wicenia (Cullison, 1938; Shamov, Hecker, 1966). Struktury geopetalne stosowane są też jako kopalne poziomice i służą do określenia pierwot­

nego nachylenia powierzchni depozycyjnej (Broadhourst, Simpson, 1967;

Eder, 1971).

Stosowanie wewnątrzmuszlowych struktur geopetalnych do rozwią­

zywania problemów geologicznych wymaga jednak dużej ostrożności. Na ogół uważa się, że osad wypełniający częściowo muszle ulega lityfikacji w procesie diagenezy przed ewentualnymi tektonicznymi deformacjami warstw, ale rzadko brana jest pod uwagę możliwość wczesnej lityfik a­

cji osadu wewnętrznego jeszcze przed pogrzebaniem lub wkrótce po po­

grzebaniu muszli w osadzie (Wendt, 1971).

Wczesna podmorska lityfikacja osadów wapiennych dobrze już udo­

kumentowana zarówno w środowiskach płytkowodnych (Shinn, 1969;

Ginsburg, Schroeder, 1973; Bathurst, 1976) jak i głębokowodnych (M il- liman, Müller, 1973) podważa diagnostyczną wartość wewnątrzmuszlo-

(5)

wych struktur geopetalnych do określania stropu i spągu warstw.

W przypadku redepozycji muszli częściowo wypełnionych osadem już zlityfikowanym struktury geopetalne nie muszą być równoległe ani do siebie, ani do uławicenia (fig. 1). Szereg takich przykładów, w tym „od­

wrócone struktury geopetalne” (osad znajduje się w górnej części muszli zamiast w dolnej!) zostały stwierdzfone przez autora w osadach środko­

wego i górnego keloweju w rejonie Krzeszowic (fig. 1, 2, Pl. 1, Fig. 1-3).

W Y K A Z L IT E R A T U R Y — REFER ENCES

B a t h u r s t R. G. C. (1974), M arine diagenesis of shallow water calcium car­

bonate sediments. A nn. R ev. Earth. Planet. S d ., 2: 257— 274, Palo Alto.

B a t h u r s t R. G. C. (1975), Carbonate sediments and their diagenesis. Develop­

ments in Sedimentodogy, 12. 658 p. Elsevier. Amsterdam.

B e i n A . (1976), Rudistid fringing reefs of Cretaceous shallow carbonate platform of Israel. B u ll. A A P G , 60, 2: 258— 272. Tulsa.

B r o a d h o u r s t F. M.., S i m p s o n I. M. (1967), Sedimentary intfildinigts of fossils and cavities in limestone at Treak Cliff, Derbyshire. Geol. Mag., 104, 5: 443—

— 448. Cambridge.

C l i f t o n H. E. (1971), Orientation of empty pelecypod shells and shell fragments in quiet water. J. Sed. P e tro l., 41, 3: 671— 682. Menasha.

C u l l i s o n J. S. (1938), Origin of composite and incomplete internal moulds and their possible use as criteria of structure. B u ll. Geol. Soc. A m ., 49, 6: 981— 988.

N ew York.

E d e r F. W. (1971), R iff-nahe detriitische K alke beu Balve iim Rheinischen Schiefer­

gebirge (Mittel-Devon, Garbeoker Kalk). G ö ttin g e r A rb . Geol. Paläont. 10, 66p. Göttingen.

F i s c h e r A. G., G a r r i s o n R. E. (1967), Carbonate lithification on the sea floor. J. G eol. 75: 488—496. Chicago.

F o c k e J. W., G e b e l e i n C. D. (1978), M arine lithification of reef rock and rhodolites at a fore-reef 'shape locality (— 50 m) off Bermuda. Geol. M ijn o - bouw, 57, 2: 16'3—7il. Amsterdam.

G e v i r t z J. L., F r i e d m a n G. M. (1966), Deep-sea carbonate sediments of the Red Sea and their implications on marine lithification. J. Sed. P e tro l. 36:

143—<151. Menasha.

G i n s b u r g R. N., S c h r o e d è r J. H. (1973), Growth and submarine fossiliza- tion of algal cup reefs, Bermuda. S ed im en tology, 20: 575— 614, Oxford.

H o r o w i t z A. S., P o t t e r P. E. (1971), Introductory petrography of fossils.

Springer. Berlin.

K a ź m i e r c z a k J, (1974), Crustacean associated hiatus concretions and eogenetic

■cementation in the Upper Jurassic of Central Poland. N . Jb. Geol. Paläont.

Abh., 147; 3: 329— 342. Stuttgart.

K r a n t z R. (1972), Die Sponge-Graveis von Farington (England). N. Jb. Geol.

Paläont. Abh. 140, 2, 207— 231. Stuttgart.

M i l l i m a n J. D. i(1974a), Precipitation and cementation of deeip-isea carbonate .sediments, in Deep sea sediments, Inderbitzen A. L. (ed.), 463— 476. N ew York.

M i l l i m a n J. D. (1974b), Marine carbonates. 375 p. Springer. Heidelberg.

M i l l i m a n J. D., M ü l l e r J. (1973), Precipitation and lithification of magne- sian caleite in the deep-sea sediments of the eastern Mediterranean Sea. Se­

d im entology, 20, 1 : 29— 45. Oxford.

(6)

M o b e x 1 y R. (1973), Rapid chamber-filling growth of marine aragonite and M g calcite. J. Sed. P e tro l., 43, 3: 634— 635. Menasha.

M ü l l e r A. H. (1951), Grundlagen der Biostratinomie. 147 p. Akadem ie-Verlag.

Berlin.

M ü l l e r J., F a b r i c i u s F. (1974), Magnesian-oalaite nodules in the Ionian deep sea: an actualistic model for the formation of some nodular limestones, in Pelagic Sediments on Land and under the Sea, H sü K. J., Jenkyns H. C.

(eds.), Spec, Pubis, int. Ass. Sedim ent. 1: 235— 247. Oxford.

P l a y f o r d P. iE., C o c k b a i n . A, E., D r u c e E. C., W r a y J. L . (1976), Devonian stromatolites from the Canning Basin, Western Australia, in Stro­

matolites, W alter M. R. (ed.). Developments in Sedimentology, 20: 543— 563.

Elsevier. Amsterdam.

P u r s e r B. H. (1969), Syn-sediimentary marine lithification of Middle Jurassic limestones in the Paris Basin. S ed im en tology, 12, 3/4: 205—-230.

R i c h t e r D. 1968, N u r teilweise mit Sediment gefüllte Brachiopodenschalen als

„fossile W asserwaagen” — ein Hinweis au f die Lagerungsverhältnisse massiger Kalkabfolgen. N. Jb. Geol. Paläont. M h. 1: 32— 37. Stuttgart.

S a n d e r B. (1936), Beiträge zur Kenntnis der Anlagerungsgefüge. (Rhytmische Kalke und Dolomite aus der Trias). I. Nordalpine Beispiele. M in era l. P e tro g r.

M itte il. B. 48: 28— 139. Leipzig.

S c h l a g e r W., J a m e s N. P. (1978), Low-m agnesian calcite limestones for­

ming at the deep-sea floor, Tongue of the Ocean, Bahamas, Sed im entology, 25, 5: 675— 702. Oxford.

S e i l a c h e r A. (1971), Preservational history of ceratite shells. Palaeontology, 14: 116— 12,1. London.

S e i l a c h e r A. (1973), Biostratinomy: the sedimentology of biologically stan- darized particles in Evolving concepts in sedimentology, Ginsburg R. N. (ed.),

159—177* The Johns Hopkins University Presis. Baltimore.

S h e a r m a n D. J., Skipwith P. A. d’E. (1965), Organic matter in recent and ancient limestones and its role in their diagenesis. N a tu re, 208: 1310— 1311, London.

S h i n n E. A. (1969), Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sed im entology, 12, 1/2: 109— 144. Amsterdam.

T a f t W. H., A r r i n g t o n F., H a i m o v i t z A., M a c D o n a l d C., W o o 1- h e a t e r Oh. (1&68), Lithification of modern marine carbonate sediments at Y ello w Bank, Bahamas. B u ll. M ar. Sei., 18, 4: 762— 828. Miami.

T o o t s H. (1965), Random orientation of fossils and its significance. C on tr, to G eology, 4, 2: 59— 62. Wyoming.

W e n d t J. (1973), Cephalopod accumulation in the Middle Triassic Haillstatt-Lime- stone of Jugoslavia and Greece. N. Jb. Geol. Paläont. M h 10: 624— 640. Stutt­

gart.

S h a m o v D. F., H e c k e r R. F. — III a m o b Æ. <ï>., T e K K e p P. O. (1966), OKaMeHeJiocTH BaTepnacTbi h no^ocTH -B aTepnacTbi. B OpraHH3M h cpe^a b reojrorn- necKOM npouiJiOM. 255— 262. Hayna. MocKBa.

O B J A Ś N IE N IA P L A N S Z — E X P L A N A T IO N O F P L A T E S

Plate — Plansza I

Fig. 1— 3. Shells of ammonites (Pseudoperisphinctidae) geopetally infilled by sedi­

ments. A rrow s indicate the parts of shells filled with spary calcite. V i­

sible stromatolitic structures encrusting the shells of ammonites. Middle

(7)

Rocznik P oi Tow. Geo i. t. XL/X, z. 3-4

(8)

Rocznik PoL Tow. Geol. t. XLIX, z. 3-4

(9)

Callovian, Rudno, Cracow Upland. Natural size. 1— 2 „reversed geopetal structures” ; 3 — normal geopetal structure

Fig. 1— 3. Muszle amonitów (Pseudoperisphinctidae) ze strukturami geopetalnymi.

Strzałki wiskazuiją partie imuszli wypełnione kailcytem. Widoczne struktury stromatolitowe inkrustujące muszle amonitów. Środkowy kelowej, Rudno, Wyżyna Krakowska, wielkość naturalna. 1— 2 „odwrócone struktury geo- petalne” ; 3 — normalna struktura geopetalna

Plate — Plansza II

Geopetal structures in lithophags iborings 'Cutting the structures of solenoporacean algae

Geopetalne struktury w wydrążeniach małży-skałotoczy przecinających struk­

tury glonu z nad rodziny Sole napo racea

Photo iby K. Fedorowicz

Cytaty

Powiązane dokumenty

The structure of definable sets and maps in dense elementary pairs of o-minimal expansions of ordered abelian groups is described.. It turns out that a certain notion of

For example, every compact total order X (viewed ei- ther as a lattice or as a semilattice) is self-compactifying, since the only possible compact topology is the usual LOTS

The method applied here does not differ from that used previously (22), and consists in: a) most careful exploration of the greatest possible number of lichen stations with regard

ITE LAUNCH MARKS BEGINNING OF NEW ERA ++ RACURS UNVEILS 2014 CONFERENCE VENUE ++ COPERNICUS MASTERS CONTEST SEEKS NEW IDEAS FOR SATELLITE DATA ++ HEXAGON TAKES AX UNVEILS ZIPP10

The condition for a liberal democracy to be stable is therefore the existence of sustainable social stratification, opposing interests and forces among social entities..

The percentage of newly created genotypes that passed the life test fell from 82 (90% of the deadline set) to 36 (60% of the deadline set). However, it did not influence the

Therefore, at the end of our remarks about scientific research connected with gen- eral scientific language and the role that it plays in management and generally in sci- ence, there

A shopping center competes with its home city for the attractive urban and suburban areas and the dominating role, especially in terms of a trade, service and public space.. On the