• Nie Znaleziono Wyników

3-D modeling of triple junction solar cells on 2-D gratings with optimized intermediate and back reflectors

N/A
N/A
Protected

Academic year: 2021

Share "3-D modeling of triple junction solar cells on 2-D gratings with optimized intermediate and back reflectors"

Copied!
2
0
0

Pełen tekst

(1)

JM5A.11.pdf Renewable Energy and the Environment © 2012 OSA

3-D Modeling of Triple Junction Solar Cells on 2-D Gratings

with Optimized Intermediate and Back Reflectors

O. Isabella, M. El-Shinawy, S. Solntsev, M. Zeman

Photovoltaic Materials and Devices/Dimes, Delft University of Technology, Feldmannweg 17, 2628 CT Delft, e-mail: olindo.isabella@gmail.com

Abstract: Superstrate thin-film silicon triple-junction solar cells on 2-D gratings were optimized

using opto-electrical modeling. Tuning the thickness of intermediate and back reflectors and the band gap of the middle cell resulted in 17% initial efficiency.

OCIS codes: 050.1755, 050.1950, 310.6845

Light trapping in thin-film silicon solar cells is accomplished by light scattering at internal interfaces and reflection at the rear side. We introduced glass-based 2-D pyramidal gratings (P = 1500 nm) for light scattering at the front side of a

superstrate triple-junction solar cell structure and a ZnO/Ag stack for reflection at the back side. We optimized both i) a thin design for a high stability and throughput (target: JPH-TOT = 27.9 mA/cm2) and ii) thick design for a high efficiency

(target: JPH-TOT = 30 mA/cm2). The investigated triple junction solar cells had the following structure: glass-based

textured substrate coated with a thin film of In2O3:H (IOH) [2] on which three p-i-n junctions were stacked on top of

each other with a-Si:H, a-SiGe:H, and nc-Si:H absorber layers, respectively. The rear side was completed with ZnO/Ag reflector/electrode. SiOx films (nSiOx = 2.1 at 770 nm) were used as n-type layer for the top and middle component cells

and as intermediate reflectors (IR1 and IR2, respectively) at the same time. Optical simulations were carried out with 3-D finite element method package (HFSS) [1] . The calculated optical generation rate was used as input for opto-electrical simulations carried out by the ASA software.

We carried out optimization of the current-matched solar cell structure in order to achieve a higher JPH-TOT with

respect to the specified target. The results of the optimization are reported in Fig. 1. We tuned (i) the thickness of intermediate and back reflectors (series 1-3), (ii) the thickness of front IOH and top p-layer (series 4), and (iii) the pyramid shape (series 5-8). In order to obtain current-matching after changing the band gap of a-SiGe:H absorber layer, we varied the thickness of absorber layers (series 9 and 10). We found two structures (denoted #2 and #3) fulfilling our requirements and their details are reported in Fig. 1. We show in Fig. 2 that using our light trapping scheme in a single junction nc-Si:H solar cell (inc-Si:H = 2.8 μm) the absorption limit predicted by 4n2 enhancement using ideal scattering is

approached. In Fig. 3 the spectral absorption rate profile in the triple-junction cell is shown. From these absorption rate profiles the optical generation rates were calculated and used in electrical simulations. Modeling enables us to visualize the spatial distribution of the magnitude of electric field inside the complete cell at different wavelengths that helps us to study the contribution of the textured back contact to scattering (see Fig. 4). Analysis of the total reflectance and absorptance in absorber and supporting layers guides us in further optimization of triple junction devices (see Fig. 5).

To evaluate external parameters from electrical simulations we used structures #2 and #3 in both current-matched and current-mismatched conditions. The latter was achieved by using not-optimized thicknesses for IR’s and back ZnO. The fill factor was found to be higher for thinner and mismatched structures, while the open circuit voltage resulted slightly higher only for thinner structures. An interplay between short circuit current density and fill factor occurred in case of structures #3, for which the current-mismatched structure presented slightly higher efficiency. Current matched thin (thick) design resulted in 16.3% (17.1%) potential initial efficiency.

Fig. 1 Total photo-current density in simulated triple junction cells. From left to right results of the subsequent optimization series are reported. Circled dots indicate current-matched triple junction devices above at least one of the two targets.

Number of simulations 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 To ta l JPH [mA /cm 2] 25.5 26.5 27.5 28.5 29.5 30.5 31.5 Intial structure 1 - IR1 thickness 2 - IR2 thickness 3 - BAZO thickness 4 - Supp. layers tuning 5 - Height series 6 - Angle series () 7 - Skewed pyramid 8 - Truncated pyramid 9 - For thin design 10 - For thick design Matching target #1 Matching target #2 Egi-a-SiGe:H = 1.55 eV Egi-a-SiGe:H = 1.5 eV #1 #2 #3 1: P = 1500, h = 450, 120 / 150 / 900 nm ( = 30.9°) 2: P = 1500, h = 450, 130 / 105 / 1100 nm ( = 30.9°) 3: P = 1500, h = 450, 175 / 175 / 2800 nm ( = 30.9°) 20 nm 70 nm 30 nm 100 nm 60 nm 150 nm 562 nm 750 nm 900 nm 50.2° 45° 36.8° 24.4° 17.75° Best IR1: 30 nm Best IR2: 80 nm Best BAZO: 70 nm #1 Symmetric pyramid Skewed pyramid #1 h = 250 nm h = 350 nm JPH-TOT = 30 mA/cm 2 JPH-TOT = 27.9 mA/cm 2

(2)

JM5A.11.pdf Renewable Energy and the Environment © 2012 OSA   Fig. 2 Abso sola Fig.   Fig. 5 Absor photocurrent   Reference [1] O. Isabe Photovo [2] T. Koid Solar C 10.1143 Abso rp tance [-] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A b sorptance and opt ic al l o sses [-] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ag (100 nm IR2 (80 nm IR1 (30 nm IOH (125 nm G

orption limits and a ar cell (ibottom = 2.8

4 (a) Structure of

rptance and optica density of compon es ella, S. Solntsev, D oltaics: Research a da, H. Fujiwara, M ells by High-Mob 3/APEX.1.041501 400 500 600 25 31.30 mA/cm2 Schockley-Que 43.33 mA (350 - 111 No light trapping ( Tiedje-Yablonovitc Deckman-Wronsk nc-Si:H on 2-D gra 400 500 600 Reflectance Front IOH p+n IR1 IR2 Back ZnO Ag

itop + imiddle + ibottom

Jtop 10.55 mA/cm m) ibottom (2800 nm m) m) m) Glass (a) absorptance of nc-μm) related to thic thick design #3 an

al losses of the thi nent cells equals 1

D. Caratelli, M. Ze and Applications 2 M. Kondo, “Reducti ility Hydrogen-Do . Wavelength [nm] 0 700 800 5.43 mA/cm2 35.32 30.66 mA eisser limit A/cm2 10 nm) (2 passes) ch limit ki limit atings Wavelength [nm] 700 800 9 m2 Jmiddle 10.04 mA/cm2 10.2 BAZO (7 m) imiddle (17 itop (175 n

-Si:H single juncti ck design #3.

nd electric field ma

ick design #3. Imp 0 mA/cm2.

eman, “3-D optical 2012; DOI: 10.100 ion of Optical Los oped In2O3 Transp

900 1000 1100 2 mA/cm2 A/cm2 900 1000 1100 Jbottom 23 mA/cm2 70 nm) 5 nm) nm) (b) on Fig. 3 (from bo agnitude spatial di plied Fig. 6 J-V #3. In the l modeling of thin-02/pip.1257. ss in Hydrogenated parent Conductive Current density [ m A /c m 2] Spectral absorptio ottom to top: top c

istribution at 610 n

V characteristics o inset simulated in

-film silicon solar d Amorphous Silic e Oxide,” Applied -0.5 0.0 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 3 2 #3 misma #3 (thick d #2 misma #2 (thin d Struct type (c)

on rate profile rela ell / IR1 / middle c

nm (b), 680 nm (c)

of matched / mism nitial external param

cell on diffraction con/Crystalline Sil Physics Express 2 Voltage [V] 0.5 1.0 #2 (thin design) #2 mismatched #3 (thick design) #3 mismatched atched 2.223 9.82 0 design) 2.222 10.04 0 2.253 9.06 0 atched design) 2.257 9.32 0 VOC [V] JSC [mA/cm2] ture e (d)

ated to thick design cell / IR2 / bottom

) and 833 nm (d).

matched structures meters are reported

n gratings,” Progre licon Heterojunctio 2008; 1: 041501, D 1.5 2.0 2.5 0.784 17.11 0.766 17.09 0.795 16.23 0.777 16.34 FF [-]  [%] n #3 m cell). #2 and d. ess on DOI: 5

Cytaty

Powiązane dokumenty

W dniu 14 stycznia 2015 roku w auli Wydziału Teologicznego Uniwersytetu Śląskiego odbyła się uroczystość nadania tytułu doktora honoris causa Uniwer- sytetu Śląskiego

Figures 10, 11, 12 and 13 show the ice sheet mask for the selected regions at 11 km (red cells) and 1 km (orange cells) as well as peripheral glaciers and ice caps at 1 km (blue

ży do uchwycenia sensu, muzyki, harmonii realności, czyli pragnie uchwycić piękno przyrody w jej różnych przejawach, które ustawicznie wymykają się utrwaleniu, bo piękno

In order to quantify the grain rotations, the angle and the axis of rotation was calculated for the above-mentioned embedded austenite grains (numbered in the band contrast maps

Fringe and speckle patterns recorded from back-scattered light off the scattering beads solution (top) and off the spheroid sample (bottom). These images were observed by the WFS

Wniebowzięcie mówi nam bardzo konkretnie, że człowiek w świecie jest rzeczywiście bytem skończonym i przygodnym i że po­ winien być świadomy wszystkich tego konsekwencji,

kładem obrazującym tę sytuację są dzieci z rodzin powracających, które wie- lokrotnie, mimo tego że prawidłowo komunikują się w języku polskim w ży- ciu codziennym,

Próbą odpow iedzi na pytanie, czy istniała alternatywa dla kształtującej się więzi między Europą Środkow o-W schodnią a Zachodem jest artykuł „Handel lew antyński Polski