• Nie Znaleziono Wyników

Proposal of symbols and quantities in shipbuilding based on the recommendations of the ITTC, the ISSC and the International System of Units

N/A
N/A
Protected

Academic year: 2021

Share "Proposal of symbols and quantities in shipbuilding based on the recommendations of the ITTC, the ISSC and the International System of Units"

Copied!
57
0
0

Pełen tekst

(1)

AFDELING DER SCHEEPSBOUW- EN SCHEEPVAARTKUNDE C E N T R A L E W E R K G R O E P W I S K U N D E

R a p p o r t C W W - 1

PROPOSAL OF SYMBOLS AND Q U A N T I T I E S I N S H I P B U I L D I N G BASED ON THE RECOMMANDATIONS OF THE I T T C , THE I S S C AND THE I N T E R N A T I O N A L S Y S T E M OF U N I T S

I n o p d r a c h t v a n :

"De C o i n m i s s i e v a n W e t e n s c h a p s b e o e f e n i n g "

A . P . d e Zwaan

Delft University of T e c h n o l o g y Ship Hydromechanics Laboratory Mekelweg 2

Delft 2208

(2)

CONTENTS Page 1 . G e n e r a l 1 1.1 D e f i n i t i o n o f t h e s y s t e m o f a x e s 1 1.2 I n t e r n a t i o n a l s y s t e m o f u n i t s 1 1.2.1 O t h e r names f o r t h e i n t e r n a t i o n a l s y s t e m o f u n i t s 1 1.2.2 F u n d a m e n t a l u n i t s o f t h e S l - s y s t e m 1 1.2.3 N o t e s 1 1.3 R e f e r e n c e s 2 l . ^ f C o n v e r s i o n o f u n i t s 3 1.5 L i s t o f main s y m b o l s 5 1.6 L i s t o f G r e e k s y m b o l s 5 1.7 G e n e r a l s y m b o l s 6 2. R e s i s t a n c e , p r o p u l s i o n and m e c h a n i c s 10 2.1 R e s i s t a n c e and p r o p u l s i o n 10 2.2 M e c h a n i c s 17 2.2.1 Symbols and t h e i r a p p l i c a t i o n 17 2.2.2 Q u a n t i t i e s and u n i t s i n t h e S l - s y s t e m o f u n i t s 19 3. Geometry o f s h i p and s h i p d e s i g n ( i n c l . p r o p e l l e r ) 2k k, S e a k e e p i n g 3if 5. M a n o e u v r a b i l i t y if3 6. S t r e n g t h o f s t r u c t u r e s '+5 6.1 G e n e r a l if 5 6.2 G e o m e t r i c a l p r o p e r t i e s k6 6.3 L o a d s and r e l a t e d l o a d s k7 6. k D e f o r m a t i o n s and r e l a t e d q u a n t i t i e s 6.5 o t h e r q u a n t i t i e s '+9 7. V i b r a t i o n s 51 7.1 G e n e r a l 51 7.1.1 C h a r a c t e r i z a t i o n o f time dependent v a l u e s 51 7.1.2 C h a r a c t e r i z a t i o n o f modes i n n a t u r a l h u l l v i b r a t i o n by Roman n u m e r a l s 51 7.1.2.1 V e r t i c a l o r l a t e r a l v i b r a t i o n s 51 7.1.2.2 T o r s i o n a l v i b r a t i o n 51 7.1.3 R e f e r e n c e t o e n g i n e - o r p r o p e l l e r - s p e e d i n e n g i n e - o r p r o p e l l e r - f o r c e d v i b r a t i o n s 51 7.1.'+ E x c i t a t i o n s 5 1 7.2 S p e c i f i c d e n o m i n a t i o n s 52 7.3 Damping 52 7. '+ N o t a t i o n i n s h i p h u l l v i b r a t i o n c a l c u l a t i o n s 52 7.'f.1 S t i f f n e s s v a l u e s 52 7.^.2 I n e r t i a v a l u e s 53 7.'+•3 Hydrodynamic i n e r t i a v a l u e s 53 8. E c o n o m i c s * 9. N a v i g a t i o n * 10. P r o d u c t i o n * 1 1 , Acknowledgement 5 5 To be c o m p l e t e d i n t h e n e a r f u t u r e .

(3)

1.1 D e f i n i t i o n o f t h e r i g h t hand o r t h o g o n a l s y s t e m o f axes» F i g . 1 : System o f c o o r d i n a t e s . 1.2 I n t e r n a t i o n a l s y s t e m o f u n i t s . 1.2.1 O t h e r names f o r t h e i n t e r n a t i o n a l s y s t e m o f u n i t s ; S I p r a c t i c a l G i o r g i MKS MKSA s y s t e m o f u n i t s 1.2.2 F u n d a m e n t a l u n i t s o f t h e S l - s y s t e m : mass ! 1 kg ( k i l o g r a m ) l e n g t h 1 m ( m e t e r ) t i m e ! 1 S ( s e c o n d ) s t r e n g t h o f c u r r e n t 1 A (ampère) t e m p e r a t u r e ; 1 K ( k e l v i n ) l i g h t i n t e n s i t y : 1 cd ( c a n d e l a ) q u a n t i t y o f m a t t e r 1 raol (mol) 1.2.5 N o t e s - z e r o p o i n t f o r t e m p e r a t u r e : 2 7 3 . 1 5 K ( m e l t i n g p o i n t o f i c e a t a p r e s s u r e o f 1 0 1 3 2 5 N/m2=1 n o r m a l o r p h y s i c a l a t m o s p h e r e ; v a l u e of s t a t e number i n o c e l s i u s . : u n i t s , w h i c h can be e x p r e s s e d i n v a l u e o f number 1 , i n t h e mentioned s y s t e m o f u n i t s ; e.g. 1 N = 1 newton - c o h e r e n t u n i t s = 1 - up to and i n c l u d i n g - a g r e e w i t h p r o p o r t i o n a l to about e q u a l to p l u s o r minus kgm . .. e.g. ^ e.g. :: e.g. «: e.g. ± e.g. s e c - 2 , 10 . . . ifOOQ 1 cm 10 mm m :: Gn g « 10 m/sec2 X = 10 ± 2

(4)

1.3 R e f e r e n c e s N 1268 * ) Symbols f o r p h y s i c s I ( g e n e r a l q u a n t i t i e s - p a r t i c u l a r q u a n t i t i t e s , mas t i m e , f o r c e , e n e r g y , h e a t ) kth p r i n t , s e p t , 1953 N 1259 * ) Symbols f o r p h y s i c s I I Sound, l i g h t , magnetism, e l e c t r i c i t y . kth p r i n t , s e p t , 1953 NEN 1221 Q u a n t i t i e s , S l - u n i t s and t h e i r s y m b o l s 1 , S p a c e and time 2, P e r i o d i c a l and e x p o n e n t i a l phenomena 2nd p r i n t i n g 1970 of the 2nd p r i n t , j a n , I 9 6 8 NEN 1222 Q u a n t i t i e s , S l - u n i t s and t h e i r s y m b o l s 1, Dynamics and s t a t i c s 2, D e f o r m a t i o n s 3, F r i c t i o n 2nd p r i n t i n g 1970 of the 2nd p r i n t , j a n , I 9 6 8 NEN 1223 Q u a n t i t i e s , S l - u n i t s and t h e i r s y m b o l s I 0 E l e c t r i c i t y 2, Magnetism and i n d u c t i o n 3. Impedance and c a p a c a t y 2nd p r i n t i n g 1970 of t h e 2nd p r i n t , j a n . I 9 6 8 NEN Q u a n t i t i e s , S l - u n i t s and t h e i r s y m b o l s 1 . T e m p e r a t u r e 2, Heat 3» P r o p a g a t i o n of h e a t k. M a t t e r 5. T r a n s p o r t o f m a t t e r 2nd p r i n t i n g 1970 o f t h e 2nd p r i n t , j a n . I 9 6 8 NEN 1225 Q u a n t i t i e s , S l - u n i t s and t h e i r s y m b o l s 1, E l e c t r o m a g n e t i c r a d i a t i o n 2, L i g h t 3, Sound

NEN 3021 C o n v e r s i o n of some m e t r i c a l and r e l a t e d u n i t s to u n i t s of t h e I n t e r n a t i o n a l s y s t e m ( S l - u n i t s ) J u l y 1965 NEN 1000 R u l e s f o r t h e I n t e r n a t i o n a l s y s t e m of u n i t s ( S I ) Aug, 1 9 7 2 , 1 s t p r i n t f e b r , 1957 NEN 3 3 5 7 D e f i n i t i o n s of t h e power of p r o p u l s i o n e n g i n e s f o r the c o a s t i n g t r a d e Dec, 1966 Computer c o m p a t i b l e s y m b o l s by G, C o l l a t z I T T C September I 9 6 9 S t a n d a r d t e c h n i c a l s y m b o l s I s s u e d by I S S C September 1973 * ) I f not up d a t e d by new N E N - s h e e t s ,

(5)

E n g l i s h M e t r i c a l / t e c h n i c a l S I 1 i n = 1 i n c h 1 f t = 1 f o o t 1 yd = 1 y a r d 1 inHg = 1 i n c h Hg 1 Imp, g a l l o n 1 US g a l l o n 1 b b l = b a r r e l 1 l o n g ton 1 s h o r t t o n 1 oz = 1 ounce ( a v d p ) 1 m i l e 1 mph = 1 m i l e p e r hour 1 knot = 1 z e e m i j l p e r u u r 1 l b = 1 pound 1 I b f = 1 pound f o r c e 1 l b / i n 2 = 1 p s i 1 l b / f t 2 1 B t u = 1 B r i t i s h t h e r m a l u n i t 1 B t u / l b 1 hp = 1 h o r s e power 2 5 , ^ mm 3 0 , if8 cm 9 1 , 4 i f cm 33,5'+'+ cm H2O it, 5^+61 1 3,785'f 1 158,8 1 ( v o o r o l i e ) 1016 kg 907,2 28,35 g 1609 m 1,609 km/uur 1,852 km/uur 0,^+536 kg 0,07 kg/cm2 0,5 76 k c a l / k g kgm/sec 0,025*+ m 0,30^+8 m 0 , 9 1 ^ m 3386 N/m2(=Pa) 0,00'+5'+6l m5 0,003785'+ ra^ 0,1588 m3 1016 kg 907,2 kg 0,02835 kg 1609 m 0,'+'+70 m/sec 55? 0,51'+'+5 m/sec '+,'+'+82 N 689'+, 8 N/m2(Pa) '+7,88 N/m2(Pa) 1,055 k J 2,326 k J / k g 7'+6 w a t t

(6)

C o n v e r s i o n o f u n i t s ( c o n t . ) M e t r i c a l / t e c h n i c a l S l - s y s t e i t i S l - e q u i v a l e n t Q u a n t i t y «; 1 a t = 1 t e c h n . a t m o s f e e r = 1 kgf/cm^ 9 8 0 6 6 , 5 P a = 98066,5 N/m2 p r e s s u r e 1 atm = 1 p h y s i s c h e a t m o s f . = 7 6 0 mmHg 1 0 1 3 2 5 P a = 101325 N/m2 p r e s s u r e 1 b a r 105 P a = 1 b a r p r e s s u r e p 1 c a l if,1868 J q u a n t i t y o f h e a t Q 1 dyn 10-5 N f o r c e 1 e r g = 1 dyne-cm 10-7 Nm e n e r g y A 1 k g f = 1 kg k r a c h t o f f o r c e = 1 kp 9,80665 N f o r c e F 1 t f = 1 t o n f o r c e 9 8 0 6 , 6 5 N f o r c e V' . kwh 3,6 MJ e n e r g y A 1 mmHg = 1 t o r r 133,3 P a p r e s s u r e ]' 1 mmHgO 9,80665 P a p r e s s u r e J> 1 pk = 75 kgm/sec 7 3 5 , 5 W ( a f g e r o n d : 7 3 5 W) power P 1 pkh = 632 k c a l 2 6 i f 7 , 8 k J e n e r g y A 1 P = p o i s e 0,1 P a . s dyn. v i s -c o s i t y 1 S t = 1 s t o k e s 10-*+ m2/s k i n . v i s -c o s i t y g e w i c h t k r a c h t ( I S O JB/3I) f o r c e F S.go k r a c h t / m 3 s p e c f o r c e 1 z e e m i j l 1852 m d i s t a n c e F o r h e a t h F o r s t r e s s e t c . F o r v a p o u r / l i q u i d p r e s s u r e F o r power ( m e c h . / e l e c t r . ) 1 J = 1 Nm = 1 w a t t s e c W Pa W Note: 1 P a = 1 N/m2 = 10"5 b a r

(7)

A A r e a ACC A c c e l e r a t i o n L! B r e a d t h , beam BN B o u s s i n e s q number C C o e f f i c i e n t CIRC C i r c l e c o e f f i c i e n t u D i a m e t e r DE Depth DR Drag E Modulus o f e l a s t . EN E n e r g y ]}• F o r c e FN F r o u d e Number FR F r e q u e n c y G A c c e l e r a t i o n due to g r a v i t y H Head, p r e s s u r e Ï Moment o f i n e r t i a L L e n g t h M Moment MA Mass IM R a t e o f r e v o l u t i o n 1.6 L i s t o f G r e e k l e t t e r s ALF a ( a l p h a ) BET P ( b e t a ) CAP u ( k a p p a ) CHI X ( c h i ) DEL ( d e l t a ) i n c r e m e n t DLT 5 ( d e l t a ) a n g l e , e t c . EPS e ( e p s i l o n ) ETA T) ( e t a ) GAM Y (gamma) Ij25T L ( j o t a ) LAM X ( l a m b d a ) MU \l (mu) 0 O r i g i n P Power PR P r e s s u r e Q Torque R R e s i s t a n c e RD R a d i u s RN R e y n o l d s number S Wetted s u r f a c e SM S p e c t r u m moment SN S t r o u h a l number S I ,S2 S p e c t r a l d e n s i t y T Draught TC P e r i o d ; t i m e f o r c y c l e TEM T e m p e r a t u r e T F T u n i n g f a c t o r TH T h r u s t T I Time U, V V e l o c i t y VjÓL V, volume W Weight WN Weber number X,Y,Z C o - o r d i n a t e s Y F r e q u e n c y r e s p o n s e f u n c t i o n NAB V ( n a b l a ) NU V ( n u ) jZlMG CO (omega) PY TC ( p i ) PHI q) ( p h i ) P S I ^ ( p s i ) RH^ P ( r h o ) S I G 0" ( s i g m a ) TAU T ( t a u ) TET -ö" ( t h e t a ) X I 1 ( x i ) ZET C ( z e t a )

(8)

1.7 G e n e r a l s y m b o l s Symbol CC Symbol T i t l e D e f i n i t i o n D i m e n s i o n s O r i g i n a A A T D.d E •I: F g h h II 1, l ! l M n 'V ACC A AT CO EN FC FR F G DE H HT S K I, LW MA M PR L i n e a r a c c e l e -r a t i o n A r e a i n g e n e r a l C r o s s - s e c t i o n a l a r e a o f an e x -p e r i m e n t t a n k o r t u n n e l B r e a d t h i n g e n e r a l V e l o c i t y o f sound D i a m e t e r i n g e n e r a l E n e r g y i n g e n e r a l F r i c t i o n c o e f f i -c i e n t d v / d t F r e q u e n c y F o r c e i n g e n e r a l A c c e l e r a t i o n due to g r a v i t y Depth i n g e n e r a l Head, p r e s s u r e , i n g e n e r a l T o t a l head, B e r n o u l l i Sand r o u g h n e s s L e n g t h i n g e n e r a l Wave l e n g t h Mass Moment i n g e n e r a l R a t e o f r e v o l u t i o n P r e s s u r e i n t e n s i t y R a t i o o f t a n g e n -t i a l f o r c e -to n o r m a l f o r c e b e tween two s l i -d i n g b o -d i e s o r p l a n e s h + p/ w + q/ w Mean d i a m e t e r o f t h e e q u i v a l e n t sand g r a i n s c o -v e r i n g a s u r f a c e From c r e s t t o c r e s t L T - 2 L 2 L ^ L L T - 1 L L 2 M T - 2 1-1 L M T -2 L T L L L L L I, M L 2 M T - 2 F o r c e p e r u n i t a r e a R E V S . T L~''MT-2 • >1 I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C

(9)

Symbol c c Symbol T i t l e Pc PRC P r e s s u r e i n a c a v i t y PRV Vapour p r e s s u r e o f w a t e r Pu PRU Ambient p r e s s u r e i n u n d i s t u r b e d f l o w P P Power i n g e n e r a l M PRD Dynamic p r e s s u r e Q QF R a t e o f f l o w r,R RD R a d i u s i n g e n e r a l

%

RDC R a d i u s o f c u r v a -t u r e RDH R a d i u s , h y d r a u l i c G SP L e n g t h a l o n g p a t h t T I Time i n g e n e r a l TEM T e m p e r a t u r e i n g e n e r a l '1' TC P e r i o d o f time f o r a c o m p l e t e c y c l e u,v,w VX, VY VZ V e l o c i t y compo-n e compo-n t s i compo-n d i r e c t i o compo-n o f X, y, z a x e s U, V U, V L i n e a r v e l o c i t y V

V0L

Volume i n g e n e r a l 17 WPVjÖL Weight d e n s i t y W W Weight i n g e n e r a l

x , y , z X,Y,Z Body a x e s and C a r t e s i a n c o -o r d i n a t e s D e f i n i t i o n D i m e n s i o n s O r i g i n L - ' I M T - ^ I T T C L - 1 M T- 2 I T T C L"''MT-2 I T T C E/t L2M T- 5 I T T C i p u 2 L-1MT-2 I T T C Volume o f f l u i d p e r u n i t t i m e L^T""^ I T T C L I T T C L I T T C A r e a o f s e c t i o n d i v i d e d by w e t t e d p e r i m e t e r L I T T C L I T T C T I T T C I T T C T I T T C LT"'' I T T C d s / d t L T - ' ' I T T C L 3 I T T C p g L - ^ M T " ^ I T T C L M T- 2 I T T C R i g h t hand o r -t h o g o n a l s y s -t e m o f a x e s f i x e d i n t h e body w i t h t h e z - a x i s v e r t i c a l l y downwards. The X - a x i s i s f o r w a r d and p a r a l l e l t o r e f e r e n c e o r b a s e l i n e u s e d to d e t e r m i n e body's s h a p e . The o r i g i n s h o u l d , i n g e n e r a l , be a t t h e c e n t r e o f g r a v i t y o f t h e body, a n y o t h e r p o i n t u s e d must be c l e a r l y d e f i n e d L I T T C

(10)

8„ Symbol CC Symbol T i t l e D e f i n i t i o n D i m e n s i o n s G r i g i n yo' ^o-a u Y Y r 5 P cr xo, YO, zo. CTHEX ACCA SPECG ADEX C I R DLT CDAM TETP GAP MU NU RHj25 CAPC F i x e d a x e s and c o r r e s p o n d i n g C a r t e s i a n c o -o r d i n a t e s C o e f f i c i e n t o f t h e r m a l expan-s i o n ( l i n e a r ) A n g u l a r a c c e l e -r a t i o n S p e c i f i c g r a v i t y A d i a b a t i c e x -ponent C i r c u l a t i o n T h i c k n e s s o f a b o u n d a r y l a y e r i n g e n e r a l Damping c o e f f i -c i e n t A n g l e o f p i t c h o r t r i m C o e f f i c i e n t o f k i n e m a t i c c a p i l l a r i t y C o e f f i c i e n t o f dynamic v i s c o -s i t y C o e f f i c i e n t o f k i n e m a t i c v i s -c o s i t y Mass d e n s i t y C a p i l l a r i t y c o n s t a n t R i g h t hand o r -t h o g o n a l s y s -t e m o f a x e s n o m i n a l l y f i x e d i n r e l a t i o n to t h e e a r t h , t h e p o s i t i v e z - a x i s i s v e r t i c a l l y downwards and t h e X - a x i s l i e s i n t h e g e n e r a l d i r e c t i o n o f i n i -t i a l mo-tion E l o n g a t i o n p e r u n i t l e n g t h p e r d e g r e e change i n t e m p e r a t u r e dtJÜ/dt Weight o f a s u b -s t a n c e d i v i d e d by t h e w e i g h t o f an e q u a l volume o f d i s t i l l e d wa-t e r a wa-t ifOC ds a l o n g a c l o s e d l i n e 1-2 L^T-'' When F i s a f u n c -t i o n o f -t i m e g i v e n by F ( t ) = A e - 5 t s i n ^ i i ^ 5 i s t h e damp-i n g c o e f f damp-i c damp-i e n t S h e a r s t r e s s p e r u n i t v e l o c i t y g r a d i e n t M/P Mass p e r u n i t volume S u r f a c e t e n s i o n p e r u n i t l e n g t h L 5 T - 2 L - ^ M T - I L 2 T - 1 ML-3 MT-2 I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C

(11)

Symbol CC Symbol T i t l e D e f i n i t i o n D i m e n s i o n s O r i g i n 0 V^TF 0 PHIR 4) STRF 0) P S I Y 0MG P o t e n t i a l f u n c -t i o n , s u c h a s v e l o c i t y p o t e n -t i a l Angle o f r o l l , h e e l o r l i s t S t r e a m f u n c t i o n Angle o f yaw A n g u l a r v e l o c i -t y o r c i r c u l a r f r e q u e n c y = c o n s t a n t i s t h e e q u a t i o n of a s t r e a m l i n e Angle p e r u n i t t i m e L 2 T - 1 L J T - I ,-1 I T T C I T T C I T T C I T T C I T T C

(12)

10. 2. RESISTANCE. PROPULSION AND MECHANICS

2.1 R e s i s t a n c e and p r o p u l s i o n Symbol CC Symbol T i t l e a RAUG BN B J i , J] U C A C A A C D C F BP BU CA CAA CD CF R e s i s t a n c e aug-ment f r a c t i o n B o u s s i n e s q number T a y l o r ' s p r o p e l -l e r c o e f f i c i e n t b a s e d on d e l i -v e r e d h o r s e p o w e r T a y l o r ' s p r o p e l -l e r c o e f f i c i e n t b a s e d on t h r u s t h o r s e p o w e r I n c r e m e n t a l r e s i s t a n c e c o e f f i -c i e n t f o r model-s h i p c o r r e l a t i o n * * A i r o r wind r e s i s t a n c e c o e f f i -c i e n t D e f i n i t i o n ( T - R T ) / R T U / l / g R H n P D V V / ^ where n i s i n r e v s / m i n , P D i n h o r s e p o -wer* , V A i n k n o t s n PrpVvA^^ where n i s i n r e v s / m i n , P T i n horsepower* , V A i n k n o t s R A / * P V ^ S R A A / * P "^r h Drag c o e f f i c i e n t D/ipV^k S p e c i f i c f r i c t i o n a l r e s i -s t a n c e o r d r a g c o e f f i c i e n t D i m e n s i o n s O r i g i n I T T C I T T C I T T C Rp/* P V'^S I T T C I T T C I T T C I T T C I T T C * 1 Horsepower = 550 f t l b / s e c = 7^+5,7 W ** F o r t h e s h i p - m o d e l c o r r e l a t i o n a l l o w a n c e , t h e r e s i s t a n c e c o e f f i c i e n t o f t h e form C A c o r r e s p o n d i n g to t h e r e s i s t a n c e form RA, t h e s u f f i x A i s to d e n o t e t h e a d d i t i o n a l r e s i s t a n c e t o be added t o t h e smooth s h i p p r e d i c t i o n to c o m p l e t e t h e s h i p model b a l a n c e . T h i s a l l o w a n c e c o v e r s n o t o n l y s u c h i t e m s a s r o u g h n e s s a l l o w a n c e b u t a l s o t h e method o f e x t r a p o l a t i o n u s e d and t h e s c a l e e f f e c t s on r e s i s t a n c e , wake, t h r u s t d e d u c t i o n and o t h e r p r o p u l s i v e f a c t o r s . A c o e f f i c i e n t o f t h i s k i n d l e n d s i t s e l f t o s u b - d i v i s i o n i n t o d i f f e r e n t components s u c h a s t h o s e due to s t r u c t u r a l r o u g h n e s s ( C A S ) > p a i n t r o u g h n e s s ( C A P ) and so on.

(13)

Symbol CC Symbol T i t l e S G-p DELCF Cp Cpv 'Th 'TL 'TQ ' T V

©

CFO CL CP CPV CR CT CTH CTL CTQ CTVjÖL CV CW CIRCC DR FD D e f i n i t i o n ( O b s o l e s c e n t , see C A ) Roughness a l l o w -a n c e F r i c t i o n a l r e s i s t a n c e c o e f f i -c i e n t i n two dimen-s i o n a l f l o w L i f t c o e f f i c i e n t L / ^ p V ^ A Power l o a d i n g c o e f f i c i e n t S p e c i f i c p r e s s u r e r e s i s t a n c e c o e f f i c i e n t ( o f v i s -c o u s o r i g i n ) S p e c i f i c r e s i -d u a r y r e s i s t a n c e c o e f f i c i e n t S p e c i f i c t o t a l r e s i s t a n c e c o e f f i -c i e n t T h r u s t l o a d i n g c o e f f i c i e n t T e l f e r ' s r e s i s t a n c e c o e f f i -c i e n t Q u a l i f i e d r e s i s t a n c e c o e f f i -c i e n t R e s i s t a n c e d i s p l a c e m e n t c o e f -f i c i e n t S p e c i f i c t o t a l v i s c o u s r e s i s t a n c e c o e f f i -c i e n t S p e c i f i c wave-making r e s i s t a n c e c o e f f i c i e n t R.E. F r o u d e ' s r e s i s t a n c e c o e f f i -c i e n t Drag ( a f r o c e ) Towing f o r c e i n a s e l f p r o p u l -s i o n t e -s t P D / * P V A5I ^ Rpv/* P v ^ s R R/ IP V ^ S R ^ ^ P V 2 s T / ^ P V A ^ ^ g R L/ A v 2 C T V / ^ H ^ R R T / ? P V ^/'^ R^/-^ p v ^ s Rw/1P v ^ s 1000 R / A ® ^ F o r c e i n t h e d i r e c t i o n o f motion, g e n e r a l l y f o r a c o m p l e t e l y immersed body A p p l i e d t o model i n p r o p u l s i o n t e s t c a r r i e d o u t a t t h e s h i p p r o -p u l s i o n -p o i n t D i m e n s i o n s O r i g i n I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C -2 I T T C LMT I T T C

(14)

12. Symbol CG Symbol T i t l e D e f i n i t i o n D i m e n s i o n s O r i g i n 'nh nV '1/ k 2 K r j i P D FN FNH FNVjZJL C I R C F ADVC ADVCV C3 01 C 2 KQ KR KT CIRCK F L C I R C L N PB PD F r o u d e number F r o u d e d e p t h number Speed d i s p l a c e m e n t c o e f -c i e n t R.E. F r o u d e ' s f r i c t i o n a l r e s i -s t a n c e c o e f f i c i e n t Advance c o e f f i -c i e n t o r a d v a n -c e number o f p r o p e l -l e r A p p a r e n t o r s h i p speed a d v a n c e c o e f f i c i e n t T h r e e d i m e n s i o -n a l form f a c t o r on f l a t p l a t e f r i c t i o n S h i p m o d e l c o r r e -l a t i o n f a c t o r f o r p r o p u l s i v e e f f i -c i e n -c y S h i p m o d e l c o r r e -l a t i o n f a c t o r f o r p r o p e l l e r r a t e o f r e v o l u t i o n s T o r q u e c o e f f i c i e n t R e s i s t a n c e c o e f f i c i e n t c o r r e s p o n -d i n g t o Kq and K ^ T h r u s t c o e f f i -c i e n t R.E, F r o u d e ' s s p e e d - d i s p l a c e m e n t c o e f f i c i e n t L i f t ( a f o r c e ) R,E, F r o u d e ' s s p e e d - l e n g t h c o e f f i c i e n t R a t e o f r e v o -l u t i o n B r a k e power D e l i v e r e d power a t p r o p e l l e r V / l / g v V 3 1000 Rp/ A ® ^ V A/ i i D V / n D ( C y - C P Q ) / C J . Q DM Q/p n^D^ R/ p n^D^ T / p n^D^ l A^ ^ , V / 7 V 6 F o r c e i n a d i r e c t i o n p e r p e n d i c u -l a r t o motion LMT - 2 V/ ]/gL/i+Jt 2 JTQn REVS.T L2M T- 3 L2M T- 3 I T T C ITTC I T T C ITTC ITTC I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C

(15)

Symbol CC Symbol T i t l e 'T q Q R A A A P ^ A R R F ll FO PV P, P E P I PS PT R3 K' RN RA RAA RAP RAR RF RFO RPV RR E f f e c t i v e power I n d i c a t e d power S h a f t power T h r u s t power Dynamic p r e s s u r e Torque T h r e e d i m e n s i o -n a l form f a c t o r on f l a t p l a t e f r i c t i o n R e s i s t a n c e i n g e n e r a l R e y n o l d s number M o d e l s h i p c o r r e -l a t i o n a -l -l o w a n c e A i r o r wind r e s i s t a n c e Appendage r e s i s t a n c e Roughness r e s i s t a n c e F r i c t i o n a l r e s i s t a n c e F r i c t i o n a l r e s i -s t a n c e i n two d i m e n s i o n a l f l o w P r e s s u r e r e s i s t a n c e o f v i s -c o u s o r i g i n R e s i d u a r y r e s i -s t a n c e D e f i n i t i o n R V D e t e r m i n e d from mean p r e s s u r e on p i s t o n P£) p l u s t h e l o s s e s a l o n g t h e s h a f t i n g T V A * P U 2 C o r r e s p o n d i n g to d e l i v e r e d power P D C V / C F O = 1 + k F o r c e o p p o s i n g motion F o r s h i p V L / V . F o r p r o p e l l e r Uc/V , where U and c r e f e r to t h e s e c t i o n a t 0,7 R A d d i t i o n a l r e s i -s t a n c e to be added to t h e smooth s h i p pre-d i c t i o n t o com-p l e t e t h e model-s h i p Due t o f l u i d f r i c t i o n on a s u r f a c e P r e s s u r e r e s i -s t a n c e due to v i s c o s i t y Rrji - R F D i m e n s i o n s L2M T- 3 L2M T- 3 L2M T- 3 L2M T- 3 L - I M T- 2 L^MT"3 L M T -2 L M T -2 L M T L M T L M T- 2 L M T -2 L M T -2 O r i g i n I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C -2 I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C

(16)

Symbol CC Symbol T i t l e Rrp

%

SR S I)

H

U T Uu V V A V R Vs V T RT RV RW SRA SRR S SN THD TH IJ UA UT UU V VA VR VS VT WT

\>ny

WTQ T o t a l r e s i s t a n c e T o t a l v i s c o u s r e s i s t a n c e Wavemaking r e -s i -s t a n c e A p p a r e n t s l i p r a t i o R e a l s l i p r a t i o Wetted s u r f a c e S t r o u h a l number T h r u s t d e d u c t i o n f r a c t i o n T h r u s t V e l o c i t y o f a f l u i d A x i a l v e l o c i t y i n d u c e d by p r o -p e l l e r C i r c u m f e r e n t i a l v e l o c i t y i n d u c e d by p r o p e l l e r V e l o c i t y o f u n d i s -t u r b e d f l o w Speed o f s h i p Speed o f a d v a n c e o f p r o p e l l e r Wind v e l o c i t y , r e l a t i v e S e r v i c e speed o f s h i p T r i a l speed o f s h i p T a y l o r wake f r a c -t i o n i n g e n e r a l F r o u d e wake f r a c t i o n T a y l o r wake f r a c -t i o n d e -t e r m i n e d from t o r q u e i d e n -t i -t y D e f i n i t i o n T o t a l towed r e s i s t a n c e Rp + Rpv Due t o t h e f o r m a t i o n o f s u r -f a c e waves 1 - V/n P 1 - V^/n P n L / U where n i s t h e eddy f r e -quency ( T - R T ) / T At p r o p e l l e r D i m e n s i o n s LMT-2 LMT-2 -2 l2 LMT -2 L T " LTL T L T -Speed i n r e l a t i o n t o w a t e r f l o w L T " L T L T -L T " (V - V^)/V ( V - V A ) / V A Speed V A d e t e r -mined by a com-p a r i s o n between an o p e n - w a t e r p r o p e l l e r t e s t and a s e l f p r o -p u l s i o n t e s t , Q and n h a v i n g t h e same v a l u e s i n b o t h t e s t s O r i g i n ITTC I T T C I T T C ITTC I T T C I T T C ITTC I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C T.H. T.H. r'ri'(; I T T C I T T C

(17)

Symbol CC Symbol T i t l e D e f i n i t i o n D i m e n s i o n s O r i g i n WTT W, a a a o a s P P P l Y R WN XLO AIRW ALFA A L F I ALFO AIRWS APSF BET I GAMR T a y l o r wake f r a c -t i o n d e -t e r m i n e d from t h r u s t i d e n -t i -t y Weber number Load f r a c t i o n A i r c o n t e n t o f w a t e r A n g l e o f a t t a c k or i n c i d e n c e Hydrodynamic a n g l e o f a t t a c k Angle o f a t t a c k a t z e r o l i f t S a t u r a t e d a i r c o n t e n t o f w a t e r Appendage s c a l e e f f e c t f a c t o r Advance a n g l e of a p r o p e l l e r b l a d e s e c t i o n Hydrodynamic p i t c h a n g l e o f a p r o p e l l e r b l a d e s e c t i o n Wind d i r e c t i o n , r e l a t i v e Speed V A d e t e r -mined by a com-p a r i s o n between an open w a t e r p r o p e l l e r t e s t and a s e l f -p r o -p u l s i o n t e s t , T and n h a v i n g t h e same v a l u e s i n b o t h t e s t s U2 L/K; U and L r e l a t e t o t h e f l u i d and s p e c i -f i e d s e c t i o n I n power p r e d i c -t i o n l o a d f a c -t o r (1+x) g i v e n by ( 1 +x) P E = 7) 0 P Di x = l o a d f r a c t i o n Weight o f a i r c o n t a i n e d i n w a t e r , p e r u n i t of volume Angle between t h e d i r e c t i o n o f un-d i s t u r b e un-d f l o w anun-d t h e s u r f a c e o r l i n e r e f e r r e d t o I n r e l a t i o n t o t h e p o s i t i o n a t z e r o l i f t I n r e l a t i o n t o t h e c h o r d Weight o f a i r c o n t a i n e d i n wa-t e r , p e r u n i wa-t o f volume a t s a t u r a -t i o n p o i n -t S h i p appendage r e s i s t a n c e / m o d e l appendage r e s i -s t a n c e a r c t g (VA/2jTRn) F l o w a n g l e t a k i n g i n t o a c c o u n t i n d u c e d v e l o c i t y ITTC I T T C L-^MT"^ I T T C I T T C I T T C I T T C I T T C L - 2mT - 2 I T T C I T T C I T T C I T T C I T T C

(18)

Symbol CC Symbol T i t l e 6 ADVCT T a y l o r ' s a d v a n c e c o e f f i c i e n t T] ETA E f f i c i e n c y i n g e n e r a l T I B E T A B P r o p e l l e r e f f i -c i e n -c y b e h i n d s h i p 1f]D ETAD P r o p u l s i v e e f f i c i e n c y o r q u a s i -p r o -p u l s i v e c o e f f i c i e n t T Ig E T A G G e a r i n g e f f i -c i e n -c y E T A H H u l l e f f i c i e n c y T]j E T A I I d e a l p r o p e l l e r e f f i c i e n c y 1f]M ETAM M e c h a n i c a l e f f i c i e n c y Tlo ETAjZ! P r o p e l l e r e f f i c i e n c y 1flR ETAR R e l a t i v e r o t a -t i v e e f f i c i e n c y Tls ETAS S h a f t i n g e f f i -c i e n -c y QT E T A T T h e r m a l e f f i -c i e n -c y X ADVR Advance r a t i o o f a p r o p e l l e r CT C A W C a v i t a t i o n num-b e r num-b a s e d on a v a p o u r p r e s s u r e CTq C A V C C a v i t a t i o n num-b e r num-b a s e d on a c t u a l c a v i t y p r e s s u r e D e f i n i t i o n nD/VA where n i s i n r e s v / m i n , D i n f e e t , V A i n k n o t s P T / P D = TVA/2JtQn T , V A , Q, n measured i n p r o -p u l s i o n t e s t P E / P D ( l - t ) / ( 1 - w ) = l / ( 1 - w ) ( l + a ) = ( l + W F ) / ( 1 + a ) E f f i c i e n c y i n n o n - v i s c o u s f l u i d P g / P i o r P g / P i P T / P D = T V A / 2 Qn T, V A , Q, n measured i n an o p e n - w a t e r t e s t T I B A I O P D / P S VA/^nD ( p - P y V q (p-PG^/q 16. D i m e n s i o n s O r i g i n I T T C ITTC ITTC I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C

(19)

2o2 M e c h a n i c s 2.2.1 Symbols and t h e i r a p p l i c a t i o n Symbol Q u a n t i t y Symbol Q u a n t i t y D u t c h E n g l i s h * ) Dutch E n g l i s h ) A A r b e i d E n e r g y S S c h i j n b a a r v e r - A p p a r e n t power O p p e r v l a k t e S u r f a c e mogen ( e l e c t . ) C C a p a c i t e i t '1' Mom. v / e k o p p e l Moment o f a ( e l e c t r . ) C a p a c i t y c o u p l e W a r m t e - c a p a c i - P e r i o d e P e r i o d t e i t Heat c a p a c i t y T e m p e r a t u u r T e m p e r a t u r e j) A a n z w e n g e l i n g T r i l l i n g s t i j d Time o f v i b r a -D r a a i s t o o t t i o n E E l a s t i c i t e i t s - Modulus o f Ï) S p a n n i n g T e n s i o n modulus e l a s t i c i t y ( e l e c t . ) E l e k t r i s c h e S t r e n g t h o f I n w e n d i g e e n e r - I n t e r n a l e n e r g y v e l d s t e r k t e e l e c t r i c f i e l d g i e E n e r g i e E n e r g y V Inhoud Volume

I'' K r a c h t F o r c e Volume Volume

i A f s c h u i v i n g s - Modulus o f w W e e r s t a n d s - Moment o f r e -modulus s h e a r i n g moment s i s t a n c e G e w i c h t Weight X Dampfase K E n t h a l p i e E n t h a l p y T A a n z e t = I m p u l s a V e r s n e l l i n g A c c e l e r a t i o n Atr b B r e e d t e ( d i k t e ) B r e a d t h I m p u l s / F d t = 0-' n S o o r t e l i j k e S p e c i f i c h e a t K r a c h t s t b o o t warmte I m p u l s / F d t = O-/ °P Idem b i j k o n s t . S p e c , h e a t a t I m p u l s / F d t = O-/ d r u k c o n s t a n t p r e s -a -a n z e t s u r e K r a c h t s t o o t = C v Idem b i j k o n s t . S p e c , h e a t a t i m p u l s I m p u l s e volume c o n s t a n t volume K w a d r a a t o p p e r - S q u a r e s u r f a c e d D i a m e t e r D i a m e t e r v l a k moment moment R e l a t i e v e R e l a t i v e M a s s a t r a a g h e i d s R e a l moment o f d i c h t h e i d d e n s i t y -moment i n e r t i a E l e m e n t a i r e E l e m e n t a r y S t o o t l a d i n g c h a r g e Stroom ( e l e c . ) C u r r e n t r F r e q u e n t i e F r e q u e n c y J S t r o o m d i c h t h e i d C u r r e n t d e n s i t y g V e r s n e l l i n g v / d A c c e l e r a t i o n ( e l e c t . ) z w a a r t e k r a c h t due t o g r a v i t y B u i g e n d moment B e n d i n g moment l l D i k t e ( h o o g t e ) T h i c k n e s s M o l a i r e massa ( h e i g h t ) Moment v / e Hoogte H e i g h t k r a c h t F o r c e moment S o o r t e l i j k e S p e c i f i c Wringend moment Moment o f t o r - e n t h a l p i e e n t h a l p y

s i o n k Warmtedoorgangs- C o e f f i c i e n t o f

1' Vermogen C a p a c i t y c o e f f i c i e n t h e a t c o n d u c t i o n

Werkzaam v e r - A c t i v e power 1 L e n g t e L e n g t h

mogen ( e l e c t . ) l!l Massa Mass

Q B l i n d vermogen Dead power 1' Druk P r e s s u r e

( e l e c t . ) H o e v e e l h e i d Q u a n t i t y o f H o e v e e l h e i d Q u a n t i t y o f beweging m o t i o n warmte h e a t I m p u l s i e I m p u l s e L a d i n g C h a r g e S p a n n i n g ( g a s P r e s s u r e .1.' E l e c t r . weer- R e s i s t a n c e o f v l o e i s t o f ) s t a n d T o e r e n t a l Number o f r e -s E n t r o p i e E n t r o p y v o l u t i o n s

(20)

18. Symbols and t h e i r a p p l i c a t i o n ( c o n t . ) Q u a n t i t y Symbol r r; t X. (i) 0m 0 v D u t c h Warmtestroom-d i c h t h e i Warmtestroom-d S t r a a l A f s t a n d Weglengte S o o r t e l i j k e en-t r o p i e T i j d S o o r t e l i j k e i n -wendige e n e r g i e S n e l h e i d , v o lume s t r o o m -d i c h t h e i -d V l o e i s t o f f a s e M a s s a s t r o o m -d i c h t h e i -d Warmtestroom Massastroom O p b r e n g s t Volume stroom E n g l i s h * ) Flow o f h e a t d e n s i t y R a d i u s D i s t a n c e D i s t a n c e S p e c i f i c e n t r o p y Time S p e c i f i c i n t e r -n a l e -n e r g y V e l o c i t y , f l o w o f volume d e n s i ¬ t y Flow o f mass d e n s i t y F l o w o f h e a t F l o w o f mass P r o d u c e F l o w o f volume Symbol 0 I q) 0) c o s q) Q u a n t i t y Dutch E n g l i s h * ) t r e k s p a n n i n g s c h u i f s p a n n i n g f a s e v e r s c h i l h o e k s n e l h e i d r u i m t e b o e k a r b e i d s f a c t o r ( e l e c t . ) t e n s i l e s t r e s s s h e a r i n g s t r e s s p h a s e d i f f e r e n c e a n g u l a r v e l o c i t y s p a c e a n g l e power f a c t o r CC hoek, h o e k v e r -s n . , l i n . u i t z . c o e f f . , warmteo v e r d r a c h t s -c o e f f . Y hoek v a n a f ¬ s c h u i v i n g , ku-b i e k e u i t z , c o e f f , , s o o r t e l i j k gew, v e r -h o u d i n g Cp/Cv 7] dyn, v i s c o s i -t e i -t n u t t i g e f f e c t rendement £ r e l a t i e v e r e k X g o l f l e n g t e w a r m t e g e l . c o e f f i c i e n t [I p o i s s o n v e r h . w r i j v i n g S C O e f f . V k i n e m a t i s c h e v i s c o s i t e i t d i c h t h e i d P s o o r t , massa CT d r u k s p a n n i n g n o r m a a l s p a n . O n t b r e k e n d e E n g e l s e t o e g e v o e g d . Angle, A n g u l a r a c c , l i n e a r c o e f f . o f expan-s i o n , c o e f f . o f h e a t t r a n s m i s -s i o n s h e a r i n g a n g l e , c u b i c c o e f f . o f e x p a n s i o n , s p e c , w e i g h t , r a t i o Cp/cy dynamic v i s c o -s i t y , e f f i c i e n c y e f f i c i e n c y r e l a t i v e e l o n -g a t i o n w a v e - l e n g t h h e a t c o e f f i c i e n t o f c o n -d u c t i v i t y P o i s s o n r a t i o c o e f f . o f f r i c -t i o n k i n e m a t i c v i s -c o s i t y d e n s i t y s p e c i f i c mass i n t e n s i t y o f c o m p r e s s i v e s t r e s s normal s t r e s s benamingen worden i n de e v e n t u e l e v o l g e n d e e d i t i e

(21)

2.2.2 Q u a n t i t i e s and u n i t s i n t h e S I s y s t e m o f u n i t s

Q u a n t i t y

Symbol Name ( D u t c h ) Name ( E n g l i s h ) *

h C f A r b e i d O p p e r v l a k t e V e r s n e l l i n g D i k t e C a p a c i t e i t Warmte-capaci-t e i Warmte-capaci-t S o o r t e l i j k e warmte S.W. b i j kon-s t a n t e d r u k S.W, b i j kon-s t a n t volume A a n z w e n g e l i n g D r a a i s t o o t D i a m e t e r R e l a t i e v e d i c h t h e i d E l a s t i c i t e i t s -modulus E l e k t r i s c h e v e l d s t e r k t e E n e r g i e E l e m e n t a i r e l a d i n g K r a c h t F r e q u e n t i e A f s c h u i v i n g s -modulus G e w i c h t E n e r g y S u r f a c e A c c e l e r a t i o n T h i c k n e s s C a p a c i t y H e a t - c a p a c i t y S p e c i f i c h e a t S p e c , h e a t a t c o n s t , p r e s s u r e S p e c , h e a t a t c o n s t , volume D i a m e t e r R e l a t i v e d e n s i t y Modulus o f e l a s t i c i t y S t r e n g t h o f e l e c t r , f i e l d E n e r g y E l e m e n t a r y c h a r g e F o r c e F r e q u e n c y Modulus o f s h e a r i n g Weight Name j o u l e = newton meter s q u a r e meter m e t e r / s q u a r e s e c o n d meter f a r a d (= cou-l o m b / v o cou-l t ) j o u l e / k e l v i n j o u l e / k i l o g r a m k e l v i n j o u l e / k i l o g r a m k e l v i n j o u l e / k i l o g r a m k e l v i n newton meter s e c o n d newton meter s e c o n d meter n e w t o n / s q u a r e meter newton/coulomb j o u l e = newton-meter newton h e r t z newton/ s q u a r e meter newton Symbol-i-D i r a e n s i o n J = N.ra ( M L 2 T - 2 m2 ( L 2 ) m/s2 ( L T - 2 ) m ( L ) F = C/V ( M - ^ L - ^ T V ) J/K ( M L 2 T - 2 K - 1 ) J/kg.K ( L 2 T - 2 K - ' ' J/kg.K ( L 2 T - 2 K - 1 ) J/kg.K ( L 2 T - 2 K - 1 ) N.m.s. ( M L ^ T - I ) N.m.s« ( M L ^ T - I ) m ( L ) N/m2 ( M L - l T - 2 ) N/C = V/m (MLT-3A-1) J = N.m ( M L 2 T - 2 ) N ( M L T - 2 ) Hz ( T - 1 ) N/m^ (ML-'1T-2) N = kgm/sec2 ( M L T - 2 ) O r i g i n NEN 1222 NEN 1221 NEN 1 2 2 1 NEN 1 2 2 5 NEN 122if NEN 122*+ N 1 2 6 8 N 1 2 6 8 NEN 1222 NEN 1 2 2 2 NEN 1 2 2 1 NEN 1 0 0 0 NEN 1223 NEN 1222 N 1269 NEN 1222 NEN 1 2 2 1 NEN 1000 NEN 1222

(22)

Q u a n t i t y

Symbol Name ( D u t c h ) Name ( E n g l i s h ) '

U n i t Name ji 1 M 111 n V e r s n e l l i n g v / d A c c e l e r a t i o n z w a a r t e k r a c h t due t o g r a v i t y E n t h a l p i e Hoogte S o o r t e l i j k e e n t h a l p i e A a n z e t I m p u l s K r a c h t s t o o t K w a d r a t i s c h opp, moment M a s s a t r a a g -h e i d s moment S t o o t Stroom S t r o o m d i c h t -h e i d Warmtedoor-gangs c o e f f . L e n g t e B u i g e n d moment M o l a i r e massa E n t h a l p y H e i g h t S p e c i f i c ent-h a l p y I m p u l s e S q u a r e s u r f a c e moment R e a l moment o f i n e r t i a C u r r e n t C u r r e n t d e n s i t y C o e f f , o f h e a t c o n d u c t i o n L e n g t h B e n d i n g moment Moment v / e F o r c e moment k r a c h t

Wringend moment Moment o f t o r

-s i o n Massa Mass T o e r e n t a l Number o f r e v o -l u t i o n s Vermogen C a p a c i t y m e t e r / s q u a r e second j o u l e meter j o u l e / k i l o g r a m newton s e c o n d newton second newton s e c o n d k i l o g r a m s q u a r e meter newton s e c o n d ampère ampère/ s q u a r e meter w a t t / s q u a r e meter k e l v i n meter newton meter k i l o g r a m / k i l o ( m o l ) newton meter newton m e t e r k i l o g r a m / s e c o n d Symbol+ D i m e n s i o n m/s2 ( L T - 2 ) ,1 ( M L 2 T - 2 ) m ( L ) J / k g ( L 2 T - 2 ) N,s. ( M L T - 1 ) N,s, ( M L T - 1 ) N,s, (MLT-'') m^ ( L ^ ) kgm2 ( M L 2 ) N,s. (MLT-'') A ( A ) A/m2 ( L - 2 A ) W/m2K (MT-3K-1) m ( L ) N,mo (ML^T-2) k g / ( k ) mol (M Moll N,m. ( M L 2 T - 2 ) N.fflo ( M L 2 T - 2 ) kg (M) / s ( T - 1 ) 2 0 , O r i g i n NEN 1 2 2 1 NEN 1 2 2 4 NEN 122 if NEN 1222 NEN 1 2 2 2 NEN 1 2 2 2 NEN 1 2 2 1 NEN 1 2 2 2 NEN 1 2 2 2 NEN 1 2 2 3 NEN 1 2 2 3 NEN 122if NEN 1 2 2 1 NEN 122if NEN 1 2 2 2 NEN 1 2 2 2 NEN 1 2 2 2 w a t t = j o u l e / s e c , W ( M L 2 T - 3 ) NEN 1 2 2 2

(23)

Symbol Name ( D u t c h ) Name ( E n g l i s h ) * Name Symbol+ D i m e n s i o n

O r i g i n

P

Werkzaamver-raogen

A c t i v e power watt=voltarapère w ( M L 2 T - 3 ) NEN 1223

P Druk P r e s s u r e p a s c a l Pa(= N/m2) ( M L - 1 T - 2 ) NEN 1222 H o e v e e l h e i d b e - Q u a n t i t y o f k i l o g r a m m e t e r / kg.m/S NEN 1222 weging motion s e c o n d ( M L T - 1 ) I m p u l s i e I m p u l s e k i l o g r a m m e t e r / s e c o n d kg,m/S ( M L T - 1 ) NEN 1222 S p a n n i n g P r e s s u r e p a s c a l Pa(=N/m2) ( M L - I T - 2 ) NEN 1222

Q B l i n d vermogen Dead power v a r ( = w a t t ) v a r (=W)

( M L 2 T - 3 ) NEN 1223 H o e v e e l h e i d Q u a n t i t y o f j o u l e J ( M L 2 T - 2 ) NEN 122if warmte h e a t L a d i n g C h a r g e coulomb = (am-p e r e s e c . ) C = A . s . ( I T ) NEN 1223 q Warmte-stroom- F l o w o f h e a t w a t t / s q u a r e W/m^ NEN d i c h t h e i d d e n s i t y meter MT-3) u W e e r s t a n d ( e l e c t . ) R e s i s t a n c e ohm Q= V/A ( M L 2 T - 3 A - 2 ) NEN 1223 X' S t r a a l R a d i u s meter m ( L ) S E n t r o p i e E n t r o p y j o u l e / k e l v i n J / K ( M L 2 T " 2 K - 1 ) NEN ^22k

S c h i j n b a a r v e r - A p p a r e n t power v o l t ampère V.A. (= W) NEN 1223

mogen (= w a t t ) ( M L 2 T - 3 ) S A f s t a n d D i s t a n c e meter m ( L ) S o o r t e l i j k e S p e c i f i c e n - j o u l e / J / k g K NEN 122*+ e n t r o p i e t r o p y k i l o g r a m k e l v i n ( L 2 T - 2 K - 1 ) W e g l e n g t e D i s t a n c e meter m ( L ) T Moment v / e k o p p e l Moment o f a c o u p l e newton meter N.m. ( M L 2 T - 2 ) NEN 1222 P e r i o d e P e r i o d s e c o n d s ( T ) NEN 1221 T e m p e r a t u u r T e m p e r a t u r e k e l v i n K ( K ) NEN 1224 T r i l l i n g s t i j d Time o f v i b r a -•i;io:i< s e c o n d s ( T ) NEN 1221 t T i j d 'rl.iut; s e c o n d s ( T ) NEN 1221

(24)

2 2 . Q u a n t i t y

Symbol Name ( D u t c h ) Name ( E n g l i s h ) * Name

U n i t Symbol-H D i m e n s i o n O r i g i n ll S p a n n i n g T e n s i o n v o l t = w a t t / V = W/A ( e l e c t . ) ampere ( M L 2 T - 5 T- 1 ) NEN I n w e n d i g e e n e r - I n t e r n a l e n e r - j o u l e J ( M L 2 T - 2 ) NEN g i e gy >:> S o o r t e l i j k e i n -wendige e n e r g i e S p e c i f i c i n t e r -n a l e -n e r g y j o u l e / k i l o g r a m J / k g ( L 2 T - 2 )

V Inhoud Volume c u b i c meter m5 ( L 3 ) NEN Volume Volume c u b i c meter m3 ( L 3 ) NEN V S n e l h e i d V e l o c i t y m e t e r / s e c o n d ra/sec NEN Volume stroom- F l o w o f volume c u b i c m e t e r / m3/ra2s NEN d i c h t h e i d d e n s i t y s q u a r e meter s e c ( L T- 1 )

W W e e r s t a n d s -moment

Moment o f r e -s i -s t a n c e

c u b i c meter ra3 ( L 3 ) NEN

X F r a c t i e damp-f a s e

N

X F r a c t i e v l o e i -s t o f f a -s e

a Hoek Angle r a d i a n r a d (-) NEN

H o e k v e r s n e l l i n g A n g u l a r a c c e l e -r a t i o n r a d i a n / s q u a r e s e c o n d r a d / s e c 2 ( T - 2 ) NEN L i n . u i t z . L i n e a r c o e f f . / k e l v i n /K ( K - l ) NEN c o e f f i c i e n t of e x p a n s i o n Warmte-over- C o e f f , o f h e a t w a t t / s q u a r e W/m^K NEN d r a c h t s c o e f f . t r a n s m i s s i o n meter k e l v i n (MT-3K-1) e R e l a t i e v e r e k R e l a t i v e e l o n -g a t i o n NEN

10 Dynamische v i s - Dynamic v i s c o - newton s e c o n d / Ns/m2

c o s i t e i t s i t y s q u a r e meter ( M L - ^ T - I ) NEN Rendement E f f i c i e n c y NEN Y Hoek v a n a f -s c h u i v i n g S h e a r i n g a n g l e r a d i a n r a d (-) NEN K u b i e k e u i t z . C u b i c c o e f f , o f / k e l v i n /K (K-'') NEN c o e f f . e x p a n s i o n S o o r t e l i j k ge- S p e c i f i c w e i g h t newton/ c u b i c N/m3 w i c h t meter ( M L - 2 T - 2 ) V e r h o u d i n g R a t i o Cp/cv NEN Cp/ Cy

(25)

Quantity-Symbol Name ( D u t c h ) Name ( E n g l i s h ) * Name

U n i t V Ca) (!) m 0 v Warmte g e l e i -d i n g s c o e f f . G o l f l e n g t e P o i s s o n v e r -h o u d i n g W r i j v i n g s c o e f f . K i n e t i s c h e v i s c o s i t e i t H o e k s n e l h e i d Ruimteboek Massa stroom-d i c h t h e i stroom-d Warmte-stroom Massa stroom O p b r e n g s t (= volume stroom) F a s e v e r s c h i l coscp A r b e i d s f a k t o r P S o o r t e l i j k e d i c h t h e i d (= s o o r t e l i j k e m a s s a ) C J D r u k s p a n n i n g Normaal s p . T r e k s p a n n i n g S c h u i f s p a n n i n g Heat c o e f f i c i e n t w a t t / m e t e r o f c o n d u c t i v i t y k e l v i n Wave l e n g t h meter P o i s s o n r a t i o C o e f f . o f f r i c -t i o n K i n e t i c v i s c o -s i t y A n g u l a r v e l o c i ¬ t y Space a n g l e F l o w o f mass d e n s i t y F l o w o f h e a t F l o w o f mass s q u a r e m e t e r / s e c o n d r a d i a n / s e c o n d s t a r r a d i a n k i l o g r a m / s q u a r e meter s e c o n d w a t t k i l o g r a m / s e c o n d P r o d u c e (= c u b i c m e t e r / f l o w o f volume) s e c o n d P h a s e d i f f e r e n c e r a d i a n Power f a c t o r S p e c i f i c g r a v i t y k i l o g r a m / c u b i c meter n e w t o n / s q u a r e meter I n t e n s i t y o f c o m p r e s s i v e s t r e s s Normal s t r e e s T e n s i l e s t r e s s S h e a r i n g s t r e s s n e w t o n / s q u a r e meter Symbol+ D i m e n s i o n W/mK ( M L T - ^ K - I ) m ( L ) m^/sec ( L S T - I ) r a d / s e c ( T - 1 ) s r (-) kg/m^sec ( M L - 2 T - 1 ) W ( M L 2 T - 3 ) k g / s e c ( M T - 1 ) m V s e c ( L 3 T - 1 ) r a d (-) kg/m3 ( M L - 3 ) N/m2 ( M L - 1 T - 2 ) O r i g i n NEN 1224 NEN 1 2 2 1 NEN 1222 NEN 1222 NEN 1222 NEN 1 2 2 1 NEN 1 2 2 1 NEN 1222 NEN 1224 NEN 1222 NEN 1 2 2 1 N 1 2 6 8 N 1269 NEN 1 2 2 2 NEN 1 0 0 0 N/m2 ( M L - I T - 2 ) NEN 1 0 0 0 * O n t b r e k e n d e E n g e l s e benamingen worden i n de e v e n t u e l e v o l g e n d e e d i t i e t o e g e v o e g d .

(26)

3. GEOMETRY OF SHIP AND SHIP DESIGN ( I N C L . PROPELLER) 2h Symbol ^BL CC Symbol ACC A ABL ^BT ABT AD W: AE AM

A0

AM AJZ5 AP T i t l e L i n e a r a c c e l e r a -t i o n A r e a i n g e n e r a l A r e a o f ram bow i n l o n g i t u d i n a l p l a n e A r e a o f t r a n s v e r -s e c r o -s -s - -s e c t i o n o f a b u l b o u s bow ( f u l l a r e a p o r t and s t a r b o a r d ) AR Mi D e v e l o p e d b l a d e a r e a Expanded b l a d e a r e a A r e a , m i d s h i p s e c t i o n D i s c a r e a P r o j e c t e d b l a d e a r e a A r e a o f r u d d e r D e f i n i t i o n d v / d t The a r e a o f t h e ram p r o j e c t e d on t h e m i d d l e l i n e p l a n e f o r w a r d o f t h e f o r e p e r p e n -d i c u l a r * The c r o s s s e c t i o -n a l a r e a a t t h e f o r e p e r p e n d i c u -l a r . Where t h e w a t e r l i n e s a r e rounded so a s t o t e r m i n a t e on t h e f o r w a r d p e r -p e n d i c u l a r , AgT i s measured by c o n t i n u i n g t h e a r e a c u r v e f o r ward t o t h e p e r p e n d i c u l a r , i g -n o r i -n g t h e f i -n a l r o u n d i n g * D e v e l o p e d b l a d e a r e a o f a s c r e w p r o p e l l e r o u t -s i d e t h e b o -s -s o r hub Expanded b l a d e a r e a o f a s c r e w p r o p e l l e r o u t -s i d e t h e b o -s -s o r hub Midway between f o r e and a f t p e r p e n d i c u l a r s P r o j e c t e d b l a d e a r e a o f a s c r e w p r o p e l l e r o u t -s i d e t h e b o -s -s o r hub D i m e n s i o n O r i g i n L T - 2 L 2 L 2 L 2 L 2 L 2 I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C * Below t h e l o a d w a t e r l i n e t h e s t e r n c o n t o u r sometimes r e c e d e s a f t o f t h e f o r e p e r p e n d i c u l a r b e f o r e p r o j e c t i n g f o r w a r d t o d e f i n e t h e o u t l i n e o f t h e ram o r f o r e end o f t h e b u l b . I n s u c h i n s t a n c e s t h i s a r e a s h o u l d be c a l c u l a t e d u s i n g a s datum t h e a f t e r most v e r t i c a l t a n g e n t t o t h e c o n t o u r i n s t e a d o f t h e f o r e p e r p e n d i c u l a r .

(27)

Symbol CC Symbol T i t l e D e f i n i t i o n D i m e n s i o n O r i g i n Aw Ax AB*' A F * ' AG*^ h B B ( D B B B H A B O A AT AV AW AX XAB*** XAF* * * XAG*** BF B PCB CIRCB BB BHA BOA A r e a o f t r a n s o m ( f u l l a r e a p o r t and s t a r b o a r d ) A r e a exposed to wind A r e a , w a t e r p l a n e A r e a , maximum t r a n s v e r s e s e c -t i o n L o n g i t u d i n a l c e n -t r e o f b u o y a n c y from a f t p e r p e n -d i c u l a r D i s t a n c e o f c e n -t e r o f f l o -t a -t i o n form a f t e r p e r -p e n d i c u l a r L o n g i t u d i n a l c e n -t r e o f g r a v i -t y from a f t p e r p e n -d i c u l a r Span o f an a i r -f o i l o r h y d r o -f o i l Beam o f b r e a d t h , moulded o f s h i p P o s i t i o n o f c e n -t e r o f b u o y a n c y R.E. F r o u d e ' s b r e a d t h c o e f f . B r e a d t h o f b u l b (maximum) B r e a d t h o f h a t c h B r e a d t h , o v e r a l l C r o s s - s e c t i o n e d a r e a o f t r a n s o m s t e r n b e l o w t h e l o a d w a t e r l i n e A r e a o f p o r t i o n o f s h i p above w a t e r l i n e p r o -j e c t e d n o r m a l l y to t h e d i r e c t i o n o f r e l a t i v e wind I T T C D i s t a n c e o f cen-t e r o f b u o y a n c y from a f t perpen-d i c u l a r D i s t a n c e o f cen-t r e o f g r a v i cen-t y from a f t p e r -p e n d i c u l a r T i p to t i p o r s u p p o r t t o t i p when c a n t i -l e v e r e d B / V V 3 L ^ L2 L B B L B I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C I T T C T.H, T.H, T,H, ** A l t e r n a t i v e l y , t h e p o s i t i o n o f t h e c e n t r e o f b u o y a n c y B may be e x p r e s s e d i n t e r m s o f t h e c o - o r d i n a t e a x e s v/ith an a p p r o p r i a t e s u f f i x e,g, Xg, Yg and Zg. The p o s i t i o n o f o t h e r i t e m s s u c h a s t h e c e n t r e o f g r a v i t y G, raetacentre M and c e n t r e o f f l o t a t i o n F c o u l d a l s o be t r e a t e d i n t h e same way.

(28)

26 Symbol O, Bu BWL BM* BML^ B E T C A D C B C B W L ° B A C i L ' I T CG Symbol BP BU BWL ZBM Z B M L B R T C H C A D C B C B W L C B D L C I L C I T T i t l e T a y l o r ' s p r o p e l -l e r c o e f f i c i e n t b a s e d on d e l i -v e r e d h o r s e power T a y l o r ' s p r o p e l -l e r c o e f f i c i e n t b a s e d on t h r u s t h o r s e power B r e a d t h i n w a t e r -l i n e M e t a c e n t r e above c e n t r e o f buoy-a n c y L o n g i t u d i n a l metac e n t r e above metac e n -t r e o f b u o y a n c y G r o s s R e g i s t e r Tonnage Chord l e n g t h o f an a e r o f o i l o r h y d r o f o i l A d m i r a l t y c o e f f o B l o c k c o e f f i c i e n t B l o c k c o e f f i c i e n t on w a t e r p l a n e B l o c k c o e f f i c i e n t on d i s p l a c e m e n t l e n g t h C o e f f i c i e n t o f i n e r t i a o f w a t e r p l a n e , l o n g i t u d i -n a l C o e f f i c i e n t o f i n e r t i a o f w a t e r p l a n e , t r a n s -v e r s e D e f i n i t i o n where n i s i n r e v s / m i n , Pp i n h o r s e p o w e r * i n k n o t s n P ^ D i m e n s i o n O r i g i n where n i s i n r e v s / m i n , P T i n h o r s e power * VA i n k n o t s D i s t a n c e from t h e c e n t r e o f b u o y a n c y B t o t h e t r a n s v e r s e m e t a c e n t r e M A / L B T A / L W L B T A / L ^ B T 12 I L / B L5 12 I T / B ^ L I T T C I T T C I S S C I T T C I T T C I T T C ToH. I T T C ToH. I T T C T.Ho T.H. I T T C I T T C * 1 h o r s e power / 550 f t l b / s e c = 745.7 W ** A l t e r n a t i v e l y , t h e p o s i t i o n o f t h e c e n t r e o f b u o y a n c y B may be e x p r e s s e d i n t e r m s o f t h e c o - o r d i n a t e a x e s w i t h an a p p r o p r i a t e s u f f i x e.go XB, Yg and Z B . The p o s i t i o n o f o t h e r i t e m s s u c h a s t h e c e n t r e o f g r a v i t y G, meta-c e n t r e M and meta-c e n t r e o f f l o t a t i o n F meta-c o u l d a l s o be t r e a t e d i n t h e same way.

Cytaty

Powiązane dokumenty

Formuła ta pozwala nie tylko na pogłębienie wiedzy i umiejętności, ale też dokładnie zapoznanie się ze specyfi- ką Wydziału, przyjrzenie się wykładowcom podczas pracy,

W orientacyjnym oszacowaniu znacznej czçsci monet obcych posiikowano siç tabelarycznymi zestawieniami miçdzy innymi: ordy­ nacji menniczej Rzeszy z 1559 roku;

Można byłoby przypuszczać, że świat ludzki i  zwierzęcy dzieli przepaść, co przekładałoby się także na odmienność wytwarzanych odgłosów i rozdzielność

Th e reaction could be either an anticipa- tory reaction common in a Peak of Tension format, or a spot reaction when question 5 is compared with questions 4, which refers to lying

Dla przezwyciężenia kryzysu globalnego konieczne są wielkie siły poli­ tyczne świadom e nie tylko zagrożeń, lecz także m ożliw ości i popraw ­ nych działań

Sierros dé antilégon- tos - ën gàr tèn phÿsin akampès kai metà tou authádous ameiliktos -, anebóesan: mè stasiaze, mè polemopoiei, mè katâlye ten eirénen (...).

Modeling a ring array by ensemble averaging over a Gaussian distribution of energy-level positions, we predict slow conductance oscillations as a function of the Rashba interaction

Buckling loads obtained using simulation; the leaf spring flexure lf ( ) buckles due to lateral loads, whereas the wire flexures wf ( ) buckle due to axial loads.. lateral