• Nie Znaleziono Wyników

Wpływ procesu torfotwórczego na zmiany w składnikach azotowych i fenolowych torfów

N/A
N/A
Protected

Academic year: 2021

Share "Wpływ procesu torfotwórczego na zmiany w składnikach azotowych i fenolowych torfów"

Copied!
16
0
0

Pełen tekst

(1)

ROCZNIKI GLEBOZNAWCZE T. XXXVI, NR 2, S. 5-20, WARSZAWA 1985

FRANCISZEK MACIAK, HORST SÖCHTIG

INFLUENCE OF PEAT-FORMING PROCESS ON THE CHANGES

OF NITROGEN AND PHENOLIC COMPOUNDS IN PEATS

W arsaw A gricultural U niversity,

Institut of Plant N utrition and Soil Science

Braunschweig — Volkenrode, RFG

INTRODUCTION

The form ation of peat involves the biochemical process of plant m ate­

rial, in which both lesses and increase of certain substances in peat occur,

substances w hich had been previously in peat-form ing plants. Diuring

the process of decomposition of the plan t residues, large quantities of

new chemical compound are synthesized by various groups of m icro­

organisms and therefore in peat a distinction betw een microbial and

plant residue is largely difficult [2, 3, 11, 24].

In the process of peat form ation and hum ification of plant residues

m any factors, especially environm ental conditions, play an im portant

role.

Among the factors of peat formation, the most im portant is the com­

position of plans, because only specific species of plants are able to form

a certain kind of peat. The com parative chemical analyses of peats and

peat-form ing plants [1, 12, 21, 22] show th a t there is an increase in the

content of nitrogen, lignin fraction and humic substances, but a decrease

of cellulose and hemicellulose content in the course of the decomposition

of plan t m aterial. These changes are distinctly evident in the analysis

of nitrogen compounds (II). According to previous investigations [12]

the process of peat form ation involves a decrease in the amine nitrogen

content and an increase in hydrolysis-resistant nitrogen content. The

increase in amide nitrogen content is characteristic, especially in case

of low peats [11, 12]. Also the lignins or its degradation products of

different species of peat-form ing plants are chiefly concentrated in the

nonhydrolysable fraction of peat and humic acids [3, A, 6, 7, 14, 18,

19, 20].

(2)

6

F. Maciak, H. Söchtig

In the present work various kinds of low and high peats as well

as different species of peat-form ing plants were analysed for nitrogen

and phenolic compounds, with the aim to determ ine

a relationship

betw een individual plant species and the kind of peat formed.

MATERIAL AND METHODS

The low-peat samples were taken from upper 0— 20 cm and from

the layer below 50 cm from the deposits peatbog of the area of Biebrza

(Poland), which has been under cultivation since long time.

The high-peat samples w ere taken from the profile of the unculti­

vated highmoor at Ramsloh (Fed. Rep. of. Germany). The peat-form ing

p lants were collected from low and high-m oor in the province of Warsaw.

Botanical compostion and the degree of peat decomposition was de­

term ined w ith microscopic method: pH value of peat (in H20) — w ith

potentiom etric method using a glass electrode; ash — by ignition of peats

or plant at the tem perature of 550°. Acid hydrolysis of peat-form ing

plants and peats was in the solution of 6 N HC1 at the tem perature

of 120°C for 18 hours. Analyses of particu lar nitrogen forms were accom­

plished by B r e m n e r ’ s [5] method. The am ount of lignin fraction

in peats and plants was estim ated by hydrolysis of the air-dry samples

in 72ю/о H2S 0 4 — R i 11 e r et al. [23] w ithout p retreatm ent w ith organic

solvents.

The phenolic substances w ere determ ined in the hydrolysates and

residues obtained in hydrolysis of peat w ith 6 N HC1. The acid hydro­

lysates were extracted three tim es w ith peroxide free ether and the

residues were reducted w ith sodium amalgam under nitrogen atm osphere

as an in ert gas according to the m ethod of B u r g e s et al. [7]. The

raction m ixture was acidified and extracted w ith peroxide-free ether.

The phenols w ere identified in the concentrated ether extracts from

both by two demensional thin layer chrom atography (Silician gel CF

254 F. Merck, Darmstad) chloroform — acetic acid (8:2) and dibuty-

lether-acetic acid (10:1) as selvents. Well separated phenol-spots were

isolated by scraping the support-areas from the glass plate, after elution

w ith methanol, the absorbance was m easured for registering ultraviolet

absorbtion spectra (190—350

/Lira).

S tandard samples of phenols were

utilised for identification. The am ount of phenols was calculated in

mg per 100 g of dry m atter.

INVESTIGATIONS RESULTS

1.

G e o b o t a n i c a l c h a r a c t e r i s t i c s o f t h e p e a t - f o r -

m i n g p l a n t s a n d t h e p e a t s a m p l e s . It follows from the

data presented in Table 1 th a t peat samples represent almost all im

(3)

por-Zmiany w składnikach azotowych i fenolowych w torfach

7

ta n t kinds, of low and high peats. The proportion of peat-form ing plant

residues in the peat samples determ ines the kind of peats. The residues

of Phragmites communis in the reed peat am ount to 90%. The sedge

peat consists in 75% of residues of sedges. The woody peats are built in

25-65°/o from rem nants of Alnus glutinosa wood. The sphagnum peat

consists m ainly of Sphagnum sec. Pałustria w ith a large proportion of

Sphagnum sec. Palustria w ith a large proportion of Sphagnum sec. Cus-

pidata.

Ta b l e 1

G o o b o t a n i c a l c h a r a c t e r i s t i c o f p e a t s S a m p l e No. D e p t h o f b o ­ x i n g a cm S i t e b o t a n i c a l c o m p o s i t i o n K i n d o f p e a t Decompo­ s i t i o n Ash i n % o f d . r a . pH d e c r e e c r u d e p u r e 1 2 3 4 5 6 7 3 9 1 a 0 - 2 0 Wi zn a С а г е х з р . 75 B r y a l e a 15 J a l i x з р . 7 M e n y u n t h e s t r i f o l i a t a 3 s o d g e - p e a t 40 1 3 , 7 4 1 6 , 3 3 6 , В 1 b b e l o w 50 A' izna С а г е х з р . <35 B r j r a l e s 25 Morg an t h o u t r i f o ï i a t a 3 A r i o p h o r u m a n ^ u p t i f o l i u m 2 a e d ę e - m o s s P ^ a t 20 7 , 1 5 3 , 16 - , 4 2 a 0 - 1 7 Ko-:;i?y Garez" p . JO nryult -T. 15 i r i o p h o r u r i a n r n r . t i f o l i u m ’ 5 .•jedre-.-noss 45 15, 5 1 1 , 5 5 •:, о 2 b bo l ow 50 K o u i ł y С а г е х з р . 65 Br у и l e s У- M c n y a n t h o s t r i f o l i a t a 3 J r i o p h o r u m a n ' r u s t i f o l i u m 2 p e a t 15 1 ^ 20 5 , Л9 - , 4 3 a - 1 7 B i e b r z a f i o l d 44 P h r a g r n i t e s comrruinir: 50 А1пиз f j l u t i n o s a 15 С а г е х з р . 5 5r a m i n e a s 30 m ; c k d e v e l o ­ pe d f r o m r e e d po a t Э7 0 Г d , 51 5 , 5 3 b 1.10 low 50 Bio Ьг'^а f i _ - I d \Ą P h r a ^ m i t e n c oi .- .- un is 65 A l n u o r i - j l i n o o ^ 25 C a r o x з р . 10 r e e d p o a t 45 1 3 , : : ^ 1 1 , 4 2 0 , 1 4 a 0 - 1 9 B i e b r : : a f i e l d 9 A l n u s g l u t i n o j a 15 P h r a g m i t ô 3 com: nuni 3 25 C i r t x s p . 10 G r a m i n e a e 50 .т.'.: с к do vo l o ­ pe d f Г 0 !Л г е е d р оa t o v e r 15, ~ 1 10, . H 5 , i 4 b bo l ow 50 B i e b r z a f i a I d 9 P h r a ^ n i t e o c o mm u ni s 30 G a r e x з р . 2 A l n u s . ; l u t i n o 3 a 3 5С 7 , 0 5 ^ , 2 5 a 0 - 1 7 '.„od :;o 1 j .\ . A l : : r a g i t e s c o mm u ni s 5 A l n u s g l u t i r . o s a 10 C a r e x s p . 10 J r < m i n e a e 7 5 70 r , > ; 5 b b e l o w 50 M o d z el ó w k a Phrui.7r»it0 3 c o a : » u n i » 75 C a r e : : : p . 20 A l n u s ~ ' : u t i n c 3 a 5 r e e d p e a t 70 K V ; : , ■■',37 ••-,3

(4)

8

F. Maciak, H. Söchtig

1 2 3 4 5 6 7 8 ? 6 a 0 - 1 7 K o s i ł y f i e l d 2 A l n u s g l u t i n o s a . 50 C a r e x s p . 10 G r a m i n e a e 40 muck d e v e l o p e d f r o m wood p e a t o v e r 60 1 8 , 1 2 1 0 , 7 1 6 , 6 6 b b e l o w 50 K o s i ł y f i e l d 2 A l n u s g l u t i n o s a 60 S a l i x s p . 10 C a r e x s p . 15 P h r a g m i t e s c o n m u r . i s 15 a l d e r p e a t 50 1 4 , 6 7 8 , 5 4 6 , 1 7 a 0 - 1 7 Łamane G r a d y A l n u s G l u t i n o s a 25 P h r a g n i t e s c o m n u n i s 10 G r a m i n e a e 65 muck d e v e l o p e d f r o n wood p e a t 50 l 6 , 7 4 1 0 , 4 2 6 , 2 7 b b e l o w 50 Łamane G r a d y A l n u s g l u t i n o s a 65 S a l i x s p . 17 C a r e x s p . 3 P h r a g m i t e s c o mm u ni s 15 a l d e r p e a t 60 1 5 , 3 0 1 3 , 2 4 5 , 9 8 0 - 1 5 R e r a z l oh S p h a gn um s e c . P a l u s t r i a 3 5 S ph a gn um s e c . C u s p i d a t a 10 E r i c a c e a e 2 E r i o p h o r u m v a g i n a t u m 3 s p h a g n u m p e a t 5 . 1, 4 С - 3 , 7 9 1 5 - 3 0 Rumz lo li Sph a gn um s e c . P a l u s t x i a 53 Sp ha g nu m s e c . C u s p i d a t a 30 E r i c a c e a e 7 E r i o p h o r u m v a g i n a t u m 4 P i c e a e x c e l s a 1 s ph a g n u m p e a t 5 1*24 - 3 , 7 10 1 5 0 - 1 6 5 R a m z l o h S ph a gn um s e c . P a l u s t r i a 65 S ph a gn um s e c . C u s p i d a t a 15 Sp ha g nu m s e c . A c u t i f o l i a 5 E r i c a c e a e 8 E r i o p h o r u m v a g i n a t u m 10 s p h a g n u m p e a t 13 1 , 1 4 - 4 , 6 11 1 6 5 - 1 5 0 R a m z l c h S ph agn um s e c . P a l u s t r i a 42 Sp ha g nu m s e c . C u s p i d a t a 20 S ph a gn um s e c . A c u t i f o l i a 10 E r i c a c e a e 12 E r i o p h o r u m v a g i n a t u m 1б s p h a g n u m p e a t 26 1» 12 - 4 , 2 12 3 0 0 - 3 1 5 R a n z 1 oh S pha gnum 3 e c . P a l u s ü r i a 5 S ph a gn um s e c . C u s p i d a t a 15 E r i c a c e a e 10 E r i o p h o r u m v a g i n a t u m Ю E r i o p h o r u m p e a t 50 C - . « - 4 , 1 13 3 1 5 - 3 30 S ph agn um з е с . F a l u s t r i a 5 S ph a gn um y e c . C u c p i d a t a 20 S ph agn um s e c . A c u t i f o l i a 3 E r i c a c e a e 15 E r i o p h o r u m v a g i n a t u m 55 E r i o p h o r u m p e a t 55 o , -jC - 4» 1

<jec . F a ] u 3 t r i a : S pha gnum im or:, c a t n a , S . c y t n b i f o l i u r a , 5 . p a p i l l o s u m G e c . C u G p i a a t a : S ph a gn um c u s p i d a t u r . i , S e r e c u r v u m

G e e . A c u t i f o l i a ; Sph a gn um a c u t i f o l i a m , S . r u b e l l u r n

E r i c a c e a e : l e d u m p a l u s t r e , C x y c o c c u s q u a d r i p -э t a l u 3 , G a l l u n - , v u l g a r i s

Cottongrass peat in built mainly from Eriophorum vaginatum (65—70).

D ifferent kinds of low or high peats contain very often notable ad­

m ixtures of other plant residues.

The degree of decomposition in low peats ranges w ithin the limits from

15 to over 70%, w hile in high peats — from 5 to 55%.

(5)

Zmiany w składnikach azotowych i fenolowych w torfach

9

The ash content of low peats is in 7,15 to 18,7% of d ry m atter. The

ash content in high peats ranges from 0,91 to 1,64% of dry m atter.

The pH value of low peats ranges from 5,9 to 6,8, while in high

peats — from 3,7 to 4,6. In the respective peat-form ing plants the ash

content ranges from 3,10% to 21,35% of dry m atter. Among plants

investigated only Phragnites communis (13,15%), Carex pilosa (15,32%)

Equisetum plaustre (21,35%) show very high content of ash, in others

it lies below 10% of dry m atter.

2.

C o n t e n t o f n i t r o g e n f o r m s i n p e a t s a n d p e a t -

- f o r m i n g p l a n t s . It is clear from the data presented in Tables 2

Ta b l e 2

N i t r o g e n f o r m s i n p e a t a D e p t h o f b o r i n g s cm De co mpo­ I n % o f t o t a l N' T o t a l w S a m p l e No. s i t i o n d e g r e e % nh4 -n N03- N a m i d e N a m i n e N h e x o s e a m i n e К i n s o l u ­ b l e h u r ai n e N n o n i d e n t i f N i n % o f d . m . 1 a 0 - 2 0 40 1 , 1 0 3 , 7 8 1 6 , 7 8 2 7 , 3 2 6 , 0 2 2 3 , 3 7 2 0 , 3 2 3 , 8 3 2 1 b > 5 0 20 1 , 3 8 2 , 7 1 1 3 , 3 2 2 4 , 5 4 9 , 0 0 2 6 , 2 2 2 2 , 8 2 3 , 5 2 1 2 a 0 - 1 7 45 1 , 5 3 6 , 3 6 1 9 , 9 5 2 2 , 1 0 3 , 6 6 2 3 , 2 1 2 3 , 0 0 3 , 5 9 4 2 b > 50 15 1 , 2 5 2 , 4 9 1 4 , 8 1 2 4 , 6 3 4 , 2 4 2 7 , 1 6 2 5 , 4 1 3 , 6 8 1 3 a 0 - 1 7 > 6 0 1 , 0 0 4 , 0 5 1 8 , 6 1 2 9 , 6 3 5 , 9 4 2 2 , 8 4 1 7 , 9 4 4 , 1 6 5 3 b > 5C 45 1 , 5 0 2 , 0 4 1 4 , 3 7 2 7 , 5 5 5 , 3 8 3 1 , 7 0 1 4 , 4 5 3 , 4 2 2 4 a 0 - 1 9 > 7 0 1 , 2 6 4 , 4 3 1 8 , 5 5 ;-:*3,47 7 , 5 6 2 1 , 7 5 1 ; 193 4 , 2 3 3 4 b > 5 0 50 1 , 2 3 3 , 0 0 1 4 , 4 5 2 6 , 11 6 , 1 9 2 9 , 5 5 1 9 , 4 5 3 , 9 3 5 5 a 0 - 1 7 70 1 , 1 5 3 , 5 1 2 0 , 6 9 2 2 , 6 0 7 , 9 7 2 5 , 6 9 1 b, 19 3 , 7 8 6 5 b > 50 70 1 , 9 6 2 , 2 6 1 6 , 2 4 2 4 , 1 5 •‘ , 2 4 3 4 , 7 8 1 6 , 3 7 3 , 4 0 4 6 a 0 - 1 7 > 6 0 0 , 8 5 3 , 5 7 1 8 , 1 1 2 3 , 6 3 5 , 5 2 2 4 , 5 3 2 3 , 7 9 3,е71 6 b > 50 50 1 , 0 5 3 , 1 0 1 6 , 6 7 1 9 , 8 3 1 , 7 0 3 2 , 3 5 2 5 , 2 9 3 , 4 5 3 7 a 0 - 1 7 5C 1 , 5 1 4 , 0 3 1 7 , 4 9 2 0 , 6 3 3 , 5 4 2 5 , 3 5 2 7 , 3 9 3 , 5 6 9 7 b ? 50 60 2 , 0 2 3 , 9 8 1 6 , 3 0 2 1 , 0 2 3 , 9 6 3 0 , 4 4 2 2 , 2 6 3 , 5 5 8 5 0 - 1 5 5 2 , 4 2 1 , 1 5 1 4 , 4 5 3 7 , 4 0 1 , 8 9 1 9 , 7 1 2 2 , 9 8 0 , 9 0 6 9 1 5 - 3 0 5 3 , 6 9 1 , 0 7 1 3 , 1 9 3 3 , 5 9 1 , 1 8 2 1 , 9 1 2 5 , 3 7 0 , 7 8 6 10 1 5 0 - 1 6 5 18 3 , 4 9 1 , 1 0 1 4 , 0 0 3 0 , 9 1 3 , 9 3 2 4 , 8 8 2 1 , 6 9 1 , 2 2 2 11 1 6 5 - 1 8 0 28 3 , 2 2 0 , 8 6 9 , 9 1 2 4 , 6 0 5 , 9 7 3 9 , 3 2 1 5 , 6 2 1 , 1 8 0 12 3 0 0 - 3 1 5 50 4 , 8 3 1 , 0 1 1 3 , 2 5 1 6 , 5 4 4 , 6 5 3 7 , 9 8 2 1 , 7 4 0 , 8 7 1 13 3 1 5 - 3 3 0 55 5 , 9 4 1 , 4 8 1 9 , 1 9 2 2 , 7 5 3 , 1 6 3 9 , 4 7 S , C 1 0 , 7 6 3

and 3 th a t all kinds of low peat contain much higher am ounts of total

nitrogen, th a n peat-form ing plants from lowmoors. The situation is

reverse in the case of high peats, i.e. peat-form ing plants of highmoor

have higher content of total nitrogen as compared to their high peats.

W ith regard to m ineral nitrogen content, both peat-form ing plants

and peats are sim ilar, only th ere are differences in the content of

ammonium and n itra te nitrogen. The higher values of am m onium and

(6)

" i t r * o r ? r . Глгшп i n p o n t - f o r m i n * p l a n t s i n ,ù o f t o t a l N T o t a l Samn i e No. P l a n t a ?;o, -n a m i d e rimine M h e x o n e -- a m i n e i n s o - l u b ] h u n i r . o N r.cn i ' i e n t i f ÎI i n % o f d , n . 1 C a r o x r o o t r a t ' : - - - 2 , 2 4 1 2 C' -.roz e r r n c i l i . i 1, ¥ i 4 , ? 5 ' - , 5 3 4 0 , 1 9 2 , 0 7 1 4 , 7 1 2 7 , 2 6 1 , 5 1 5 3 С'•.rex p -. eu ' .i o cy p er ' uз 3 , 2 2 5 , 4 3 1 0 , 1 4 4 2 , 9 6 3 , 3 4 1 4 , 4 4 2 0 , 4 6 1 , 2 7 6 4 С -'.ro.c p i l o s a - - - 3 , 9 0 1 5 ù l y c o r i a a q u a t i c . a - - - 3 , 3 3 5 6 i v ir i 1 tC‘3 с OMÎT, un i .1 2 , 2 7 1, i>d 7 , 3 5 3 7 , 3 2 2 ■■ 6 1 5 , 6 4 3 1 , 6 7 3 , 3 5 4 7 1*32 1, 7o 3 , 1 4 4 4 , 4 7 2 , 3 3 1 1 , - 3 2 о , 2 , 7 3 3 - IS l".a p - i l ’;:: ï r o 2 , :ij 2 , 2 3 1 0 , 4 0 4 4 , 0.- 3 , 4 5 10, 40 2 0 , 5 0 2 , 3 7 7 9 . *.i 1 : r i dr. i o i ' - ' i c i r : * ; Ils 2 , 0 4 2 , jO 1 2 , 5 1 4 4 , 1 5 2 , 7 - 1 4 , 7 1 2 0 , 3 9 1 , 3 7 3 10 . i : i p o r . i u l . i u i l n u r i a 2 , 5 2 2 , 2 J 3 , 5 5 4 3 , 2 k 2 , 2 3 1 1 , 2 3 2 9 , 3 7 2 , 9 0 1 11 J oma rui a i r e - - - 1 , 6 4 4 12 2 1 bu 2 , 7 4 1 1 , 1 4 1 , ^ ô 1 3 , 3 3 2 4 , 1 4 1 , 8 6 9 13 З р Ь а . т . ш p a l u s t r i s - - - 1 , 3 2 4 14 JphKtT-un! c :3 ; ' / i d at u i : ; 3 , 3 2 3 , 9 6 1 1 , 3 7 4 2 , 3 7 / . 3 1 4 , 0 2 1 7 , 3 3 1 , 4 7 3 15 C a l l u n a v u l g a r : . - 1, ^3 3 , 8 3 9 , 7 4 4 0 , 5 5 5 , 2 7 1 5 , 7 1 2 3 , 0 0 1 , 5 1 5 l 6 : i n u s G i l v c : ; ü r i 3 2 , 11 3 , 2 2 o , 4 3 4 0 , 7 2 5 , 1 7 , 3 0 2 3 , 16 1 , 4 3 0 17 Latium p: iAun;r-> 2 , 72 3 , ^ 7 , 3 0 3 5 , 6 9 5 , 7 ô 1 4, > 0 , 7 5 1, 320 13 0:c>-c o c c uj q u ' i i r i p - ï î n l u s 2 , - 3 5 , 0 ; ; ; , 3 3 4 1 , 4 5 1, 3ô 1 5 , 3 4 2 j , 5 * 1 , 4 0 1 19 » • ^c cl ni um u l i ^ ' i n o . ï u m 3 , 4 2 6 , 2 7 3 3 , 2 3 2 , 3 1 1 5 , 0 4 3£.,-.i5 1 , 7 0 2 2 0 a r Jr i o p i i o r u m v ^ i n a u u a - - - 1 , 4 7 6 2 1b o r i o p : : o r u m v a g i n a : . ici 2 , 2 o 3 , - 4 3 , 0 5 4 2 , 1 1 4 , 4 0 11, j ô 2 7 , . v ; i , 22 ^ r i o p h o r u m a n g u s t i r ' o l i u . u 2 , 3 , 5 3 1 0 , 9 3 4 4 , 6 2 3 , 4 7 1 3 , » 7 1 , 3 5 3 - n o t a n a l j - j - - - a , b - c o l l e c t e d f r o i a • j r e n t h i s - . M O o rj

lower of n itrate nitrogen than in plants occur in high peats. On the

other hand, both peat-form ing plants from lowmoor and from highmoor

contain a high am ount of nitrate nitrogen.

The plants contain about 40% of amine nitrogen in relation to the

total nitrogen. The highest values (40-44%) of amine nitrogen occur both

in peat-form ing plants of lowmoors and in peat-form ing plants of high-

moors. In all cases individual kinds of peat contain sm aller (20-50%)

am ounts of amine nitrogen than compared species of peat-form ing plants.

In particular, it is tru e for a low peats and for very strongly decompo­

sed high peats. However it is different w ith other nitrogen fractions.

Both low and high peats contain much more amide and insoluble humine

nitrogen as the plants compared.

W ith regard to the hexozam ine-nitrogen, particular kinds of peat

have m ostly more of this fraction than respective plants. As the

peat-form ing process goes on, th ere takes place a large increase in peat

(7)

Zmiany w składnikach azotowych i fenolowych w torfach

11

of insoluble hum ine nitrogen (non hydrolysable in 6 N HCl) w hich is

often twice as high as in plants.

Investigated peats and plants have a very high content of lignin

(Tables 4, 5); however, individual kinds of peats contain evidently higher

T -a 1 о 4 C o n t e n t and c h a r a c t a r o f ? . ig ni n f r a c t i o n i n peat?» заг. р1ел : Sa mo l» : ; o p t h o f b o r i n g С 21 D'.‘с 0:1 p o s i ­ t i o n C o r t o n t o f l i r n i n f r a c t i o n s i n a o f i . ? . . T c t ' i l M i n l i p r . i n f r a c t i o n s i n л. o f d . a . ■I i n l i a ^ i n f r a c t i o n s i n % o f t o t - i l Я t o t a l a c h f r e e V---0 - 2 2 /10 со 09 5 0 , 7 5 . ? 3 6 ? , 98 1 b > 50 20 6 1 , 9 4 6 1 , 35 1- 7 3 , 0 2 с - 1 7 45 3 7 , 8 3 5 1 , 2 1 : , 9 9 6-1,35 ' b > 5 0 6 5 , 9 2 6 5 , 3 3 4, 7 3 , 3 2 3 П 0 - 1 7 > : o 6 0 , 9 2 5 7 , 1 3 4 , 9 6 7 2 , 6 0 3 ь > :-o 45 6 9 , 6 1 6 9 , 3 2 4 , 3 3 9 2 , 1 1 4 :i 0 - 1 9 >70 5 3 , 1 4 5 2 , 0 8 4 , 9 3 C 7 , 46 £ b > 5 0 50 6 9 , 0 0 6 8 , 5 5 4 , 6 8 8 1 , 7 3 5 i 0 - 1 7 70 6 1 , 5 5 5 7 , 2 6 3 , 9 9 6 4 , 9 9 5 b > 5 0 70 7 5 , 6 1 7- , 9 4 3 , 9 6 8 7 , 9 5 6 a 0 - 1 7 > 6 0 6 3 , 1 5 5 3 , 7 7 2 , 9 7 4 8 , 32 6 b > 50 50 6 7 , 9 6 6 6 , 7 4 2 , 8 3 5 5 , 6 6 7 a 0 - 1 7 50 4 9 , 9 0 4 5 , 4 1 4 , 0 9 5 7 , 1 5 7 b >5 0 60 7 3 , 2 1 7 1 , 0 2 4 , 3 5 8 9 , 6 1 8 C - 15 5 3 7 , 30 3 5 , 8 4 2 , 0 4 8 3 , 5 2 9 1 5 - 3 0 5 3 8 , 0 2 3 6 , 7 3 1 , 9 9 3 9 , 8 8 10 1 5 0 - 1 6 5 13 4 1 , 4 4 4 0 , 7 0 2 , 8 3 9 7 , 5 4 11 1 6 5 - 1 8 0 28 6 5 , 2 2 6 3 , 0 6 1 , 7 6 9 7 , 4 6 12 3 0 0 - 315 50 6 7 , 6 9 6 7 , 3 5 1 , 3 3 9 9 , 4 7 13 3 1 5 - 3 3 0 55 6 9 , 0 0 6 3 , 7 6 1 , 1 2 1 0 0 , 0 0

am ounts of these compounds than comparable species of peat-form ing

plants. From the data presented (Tables 4 and 5) it results th a t a larger

p a rt of the total nitrogen in peats and peat-form ing plants is bound w ith

lignin. P articularly high values (83-100%) of total nitrogen occur in

peat-form ing plants of highmoors and in high peats. Amoung individual

species of plants from lowmoor: Carex pseudocyperus and Salix cinerea,

contain the largest am ounts of nitrogen bound w ith lignin. Decomposed

low peats, from deeper layers of peat profiles, as for example reed, woody

or carex-moss peats contain also a very large p art of nitrogen bound

w ith lignin.

3. C o n t e n t of p h e n o l i c c o m p o u n d s in p e a t s a n d

p e a t - f o r m i n g p l a n t s . As already mentioned, the peat form ation

conducts to increase in peats of such substances as lignin and humic

(8)

12

F. Maciak, H. Söchtig

Ta b l e 5

C o n t e n t a n d c h a r a c t e r o f l i g n i n i n p e a t - f o r m i n g p l a n t e S a m p l e No. P l a n t C o n t e n t o f l i g n i n f r a c t i o n s i n % o f d . m . T o t a l N i n l i g n i n f r a c t i o n s i n % o f d . m . N i n l i g n i n f r a c t i o n s i n % o f t o t a l 17 t o t a l a o h f r e e 1 C a r e x r c s t r a t a 2 4 , 1 7 2 3 , 4 9 5 , 6 0 6 0 , 2 4 2 C a r e x g r a c i l i s 2 7 , 6 3 2 6 , 9 6 3 , 8 0 6 5 , 0 2 3 C a r e x p s c u d o c y p e r u 3 2 7 , 9 3 2 5 , 4 3 3 , 9 9 8 8 , 3 8 4 C a r e x p i l o s a 2 5 , 3 0 2 2 , 0 2 6 , 6 8 4 3 , 3 4 5 G l y c e r i a a q u a t i c a 1 9 , 9 9 1 3 , 7 4 4 , 8 2 2 8 , 7 9 6 P h r a g m i t e o c o mm u ni s 3 7 , 6 6 3 1 , 3 9 5 , 9 8 6 7 , 0 9 7 S a l i x c i n e r e a 5 9 , 5 6 5 9 , 1 5 4 , 3 4 9 4 , 2 3 8 E q u i o e t u a p a l u s t r e 3 0 , 8 8 2 4 , 4 2 5 , 1 3 6 6 , £7 9 V a l e r i a n a o f f i c i n a l i s 2 3 , 1 6 2 2 , 5 7 4 , 4 5 5 5 , 0 0 10 P i l i p e n d u l a u l i n a r i a 3 6 , 5 8 3 4 , 8 5 5 , 4 5 6 0 , 6 0 11 C om a r u n p a l u s t r e 3 7 , 6 6 3 6 , 6 1 2 , 7 0 6 2 , 2 0 12 T y p h a l a t i f o l i a 2 2 , 2 2 2 2 , 0 1 4 , 1 9 4 9 , 8 2 13 S ph ag nu m p a l u s t r i a 1 4 , 9 3 1 4 , 5 5 3 , 1 7 3 5 , 6 1 14 Sp ha g nu m c u s p i d a t u m 2 1 , 1 3 1 8 , 6 2 4 , 9 6 7C, 74 15 C a l l u n a v u l g a r i s 4 8 , 5 7 4 3 , 3 0 1 , 6 9 5 1 , 7 5 16 P i n u e s i l v e s t r i 3 3 5 , 32 3 0 , 0 6 3 , 4 3 9 3 , 0 7 17 Ledum p a l u e t r e 4 8 , 7 3 4 7 , 1 4 3 , 2 3 8 1 , 7 7 13 O x y c o c c u a q u a d r i p e t a l u s 5 1 , 6 3 5 1 , 0 2 2 , 4 1 3 0 , 5 1 19 V a c c i n i u m u l i g i n o s u m 5 1 , 0 0 5 0 , 4 0 2 , 5 1 7 5 , 2 1 2 0 a E r i o p h o r u m v a g i n a t u m 32 ,6 8 3 0 , 6 5 2 , 9 3 6 4 , 8 7 21b E r i o p h o r u m v a g i n a t u m 2 3 , 3 3 2 8 , 1 6 5 , 0 1 7 1 , 2 2 22 E r i o p h o r u m a n g u s t i f o l i u m 2 9 , 9 3 2 8 , 4 1 3 , 7 9 8 3 , 1 5

compounds because it is w ell-proved th at these substances are very

resistant to microbes. The high meolecular weight of lignin and hum ic

compounds constitute a source of low m olecular w eight phenolic sub­

stances, which were form ed during degradation of lignin in peats

[9, 10].

In the present investigation the five phenolic compounds were isola­

ted. From the data presented (Table 6) it follows th a t different kinds

of peats give variable values of phenolic compounds. Among the phenolic

substances isolated from peats p-hydroxybenzoic acid have been found

in a higher amount. However vanillic and protocatechuic acid were in

lesser amounts. It is interesting th a t other phenols, as syringic acid,

appeared only in well-decomposed low peats, contrary to p-hydroxyben­

zoic aldehyde, w hich appears only in high peats. Considering individual

differences in the content of phenolic substances in soil form ations of

different kind of peat one can prove th a t the higher yields of p-hydroxy­

benzoic, vanillic and protocatechuic acid are mostly in stronger decom­

posed surface layers of low peats. Strongly decomposed high peats are

(9)

T a b l e 6

C o n t e n t o f p h e n o l i c c o m p o u n d s I n p e a t a Di g/ 1 0 0 g o f d . m . Sample D e p t h o f b o r i n g s D e c o m p o -a i t i o n p r o t o c a t e c h u i c a c i d p - h y d r o x y b e n z o i c a c i d v a n i l l i c a c i d I х1 Ï O . cm K i n d o f p e a t d e g r e e % h y d r o l y s i s h y d r o l y s i a h y d r o l y s i s h y d r o l y e e b N ::C1 *Ia a m a l ­ ga m t o t a l 6 N HC1 Im a m a l ­ gam t o t a l 6 N HC1 Ha a m a l ­ g am t o t a l 6 If HC1 1 a 0 - 2 0 s e d g e p e a t 40 1 , 2 1 - / X 1 , 2 1 4 4 , 7 2 3 3 , 16 8 2 , 8 3 1 5 , 8 2 1 0 , 3 7 3 4 , 1 9 -1 b > 5 0 s e d g â - т о з з p e a t 20 0 , 8 4 - 0 , 8 4 1 7 , 0 0 - 1 7 , 0 0 1 2 , 1 3 - 1 2 , 1 8 -2 a 0 - 1 7 e e d g e - r a o a a p e a t 45 5 , 8 4 4 , 2 0 1 . , 0 4 5 0 , 6 8 2 3 , 2 5 7 3 , 9 3 3 5 , 3 0 1 9 , 9 9 5 5 , 2 9 traoe 2 b > 5 0 s e d g e - m o s a p e a t 15 0 , 6 9 7 , 2 0 1 , 3 9 3 5 , 7 9 4 3 ; 65 7 9 , 4 3 1 2 , 1 3 2 9 , 7 2 4 1 , 8 5 -3 a 0 - 1 7 m u ck d e v e l o p e d f r o m r e e d p e a t > GO 2 1 , 12 - 2 1 , U 5 7 , 2 3 1 3 , 1 1 7 0 , 3 9 3 9 , 2 4 - 3 9 , 2 4 1 2 , 3 7 3 b > 5 0 r e e d p e a t 4 5 3 , 0 9 - ; 4 , 0 3 1 5 , 7 5 3 9 , 0 3 2 5 , 1 3 3 2 , 4 3 5 7 , 6 1 4 . 5 1 4 a 0 - 1 9 m u c k d e v e l o p e d f r o m r e e d p e a t > 7 0 2 , 6 9 3 , 0 0 5 , - 9 4 1 , 5 1 1 3 , 9 0 5 5 , 4 1 2 2 , 5 3 - 2 2 , 5 3 traoe 4 b > 5 0 r e e d p e a t 5 0 0 , 7 1 1 6 , 2 0 l G , 9 1 1 2 , 4 6 2 5 , 6 8 3 3 , 1 4 1 1 , 3 3 4 6 , 4 3 5 7 , 8 1 -5 a 0 - 1 7 m u c k d e v e l o p e d f r o m r e e d p e a t 7 0 0 , 7 3 2 , 4 0 3 , 1 3 3 4 , 6 1 1 6 , 6 3 5 1 , 2 9 2 2 , 3 7 - 2 2 , 3 7 -5 b > 5 0 r e e d p e a t 70 2 , 3 5 - 2 , 35 4 3 , 6 9 - 4 3 , 6 9 2 4 , 55 - 2 4 , 5 5 tra o e 6 a 0 - 1 7 m u c k d e v e l o p e d f r o m w o o d p e a t > Co 3 , c 6 - 3 , 0 6 3 0 , 6 5 1 1 , 0 0 4 1 , 6 5 2 1 , 2 3 - 2 1 , 2 3 7 , 7 0 6 b > 5 0 a l d e r p e a t 5 0 1 1 , 4 3 - 1 1 , 4 3 1 0 , 3 7 - 1 0 , 3 7 2 2 , 0 2 - 2 2 , 0 2 8 , 2 2 7 a 0 - 1 7 m u ck d e v e l o p e d f r o m w o o d p e a t 5C 1 5 , 0 2 3 , 0 0 1 8 , 0 2 1 2 , 6 0 - 1 2 , 6 0 1 3 , 5 0 - 1 3 , 5 0 5 , 6 9 7 b > 5 0 a l d e r p e a t 68 6 , 5 1 “ 6 , 5 1 5 , 9 6 3 , 0 0 1 3 , 9 6 1 1 , 9 3 1 5 , 1 3 2 7 , 1 1 2 , 1 9 * N o t d e t e c t a b l e 3 3 S y s i n g i c a c i d

(10)

14

F- Maciak, H. Söchtig

also richer in the content of the phenols m entioned contrary to

p-hydroxybenzoic aldehyde, the content of which is the highest in weakly

decomposed high peats (sphagnum peat).

As compared to peats, the peat-form ing plants (Table 7) are richer

in protocatechuic and p-hydroxybenzoic acid, however the level of

vanillic acid in peat-form ing plants is low. W ith regard to the syringic

acid and p-hydroxybenzoic aldehyde both phenols are found only in

some species of plants. Syringic acid content is in Comarum palustre

much less than in compared plants. The p-hydroxybenzoic aldehyde

appeared only in four plants. It is very interesting th a t p-hydroxybenzoic

aldehyde w ith a large am ount was isolated, first of all, in sphagnum

plants as well as in weakly decomposed sphagnum peats.

Among the plants investigated the highest content (over 10 mg/100 g)

of protocatechuic acid was in lowmoor plants (Salix cinerea, Filipendula

ulmaria, Comarum palustre and Hypha latifolia). However, the highmoor

plants: L edum palustre, Oxycoccus quadripetalus and Eriophorum vagi-

natum were also rich in protocatechuic acid. The highest value (about

300 mg/100 g) of p-hydroxybenzoic acid was obtained in Pinus silvestris.

The large amount of p-hydroxybenzoic acid (30-55 mg) was in p articular

in al species of Carex and in plants: Salix cinerea, Typha vatifolia, L {e-

dum palustre, Eriophorum vaginatum and Eriophorum angustifolium.

The highest value (over 10 mg/100 g) of vanillic acid occured in Salix

cinerea, Valeriana officinalis and Eriophorum august of olium.

DISCUSION OF RESULTS

From the data obtained for peat-form ing plants and peats, it follows

th at peat-form ing process leads to some quantative changes in nitrogen

and phenolic components.

As affected by peat form ation the content of total nitrogen increases

in the low peats m entioned in comparison to corresponding species of

low peat-form ing plants.

The increase presents probably an effect of a decrease of carbon

in organic m atter, w hich in the total bulk leads to relative increase in

the am ount of nitrogen [11, 16]. In case of high peat the situation is

reverse: peat-form ing plants of highmoors show somewhat higher content

of the total nitrogen then the samples of high peats. May be th a t in

peat-form ing processes occuring in highmoors the loss of carbon is not

significant because of a small activity of microbes. Some losses of the

nitrogen may occur also due to leaching [12].

There are also some quantitative differences w hen the corresponding

nitrogen fractions are taken into consideration. Individual kinds of peat

contain in all cases sm aller amounts (20-50%) of amine nitrogen than

(11)

T a b l e 7 C o n t e n t o f p h e n o l i c c o n i p o u r d s i r , p e n t —f o r m i n g p l a n t a a n d p e a t mg/ Ю О g o f d*im. 3 a n p l e P l a n t e p r o t o c a t e c h u i c a c i d p - h y d r o x y b o n z o i c a c i d v a n i l l i c a c i d i x x I ц Х Х Х N o. h y d r o l y s i s h y d r o l y s i s h y d r o l y s i s h y d r o l y s i s 6 IT I I Cl Na a m a l g a m t o t a l 6 N HC1 Na a n a l ^ a m t o t a l 6 N HC1 Na a m a l g a m t o t a l 6 N HC1 6 N H C l 1 2 3 4 5 6 7 8 9 10 11 12 1 3 1 C a r e x r o s t r a t a 4 , 2 7 - / X 4 , 2 7 3 2 , 7 0 5 , 5 0 4 5 , 2 8 6 , 0 7 6 , 0 7 -2 C a r e x g r a c i l i o 4 , 6 2 - 4 , 6 2 5 0 , 3 9 4 , 4 0 5 4 , 7 9 7 , 7 1 - 7 , 7 1 - -3 C a r e x p c c u d o c y p e r u e 9 , 3 2 - 9 , 3 2 5 3 , 2 7 - 5 3 , 2 7 9 , 6 3 - 9 , 6 3 - 8 , 4 8 4 C a r e x p i l o s a 2 , 8 2 - 2 , 8 2 2 9 , 9 3 - 2 9 , 9 3 7 , 3 4 - 7 , 3 4 - -5 G l y c e r i a a q u a t i o a 5 , 5 4 - 5 , 5 4 9 , 3 3 - 9 , 3 3 5 , 1 4 - 5 , 1 4 t r a c e -6 P h r a g m i t e e o o n n u n i s - - - 9 , 1 0 - 9 , 1 0 4 , 5 0 - 4 , 5 0 - -7 3 a l i x c i n e r e a 9 , 3 6 1 1 , 4 2 2 0 , 7 8 2 3 , 6 3 7 , 3 3 3 0 , 9 6 3 , 8 2 1 4 , 0 5 1 7 , 8 7 t r a c e -a E q u i s e t u m p a l u s t r e 1 , 4 6 5 , 4 0 6 , 8 6 6 , 0 7 6 , 2 4 1 2 , 3 1 4 , 0 0 - 4 , 0 0 t r u c e -9 V a l e r i a n a o f f i c i n a l i s 1 , 3 9 3 , 0 0 4 , 3 9 1 2 , 7 1 4 , 4 0 1 7 , 1 1 3 , 7 7 8 , 6 4 1 2 , 4 1 t r a c e -10 F i l i p e n d u l a u l i n a r i a 5 , 5 8 1 8 , 0 4 2 3 , 6 2 1 5 , 3 4 6 , 6 0 2 1 , 9 4 6 , 5 7 - 6 , 5 7 - -11 C o a a r u m p a l u s t r e 1 8 , 6 1 ‘ - 1 8 , 6 1 1 2 , 7 6 9 , 9 0 2 2 , 6 6 3 , 8 4 - 3 , 8 4 2 , 2 1 -12 T y p h a l a t i f o l i a 4 , 5 5 6 , 3 1 1 0 , 8 6 3 9 , 7 4 8 , 0 0 4 7 , 7 4 1 , 5 9 - 1 , 5 9 t r a c e -1 3 S p h a g n u m p a l u s t r i s 2 , 0 6 - 2 , 0 6 1 6 , 0 3 - 1 6 , 0 3 8 , 1 3 - 8 , 1 3 - 3 6 , 4 6 14 S p h a g n u m c u s p i d a t u m - - - 1 6 , 2 0 - 1 6 , 2 0 6 , 9 3 - 6 , 9 3 - 3 3 , 2 9 15 C a l l u n a v u l g a r i s 1 , 7 8 - 1 , 7 8 1 4 , 6 7 - 1 4 , 6 7 6 , 5 4 - 6 , 5 4 - -16 P i n u s s i l v e s t r i o 7 , 5 9 - 7 , 5 9 2 7 8 , 0 7 1 7 , 9 8 2 9 6 , 0 5 5 , 3 5 - 5 , 3 5 - -17 Le d um p a l u s t r e 1 5 , 9 5 1 1 , 4 2 2 7 , 3 7 3 0 , 3 0 - 3 0 , 3 0 5 , 1 2 - 5 , 1 2 - -18 O x y c o c c u s q u a d r i p e t a l u s 9 , 2 2 1 8 , 0 4 2 7 , 2 6 1 1 , 8 7 - 1 1 , 8 7 8 , 5 1 - 8 , 5 1 - -19 V a c c i n i u m u l i g i n o a u m 0 , 7 9 - 9 , 7 9 1 8 , 3 4 - 1 8 , 3 4 9 , 0 4 - 9 , 0 4 t r a o e -2 0 a E r i o p h o r u m v a g i n a turn 1 0 , 9 8 - 1 0 , 9 6 1 3 , 2 5 - 1 3 , 2 5 1 , 5 0 - 1 , 5 0 - -2 1 b E r i o p h o r u m v a g i n a t u m 7 , 0 5 1 0 , 8 2 1 7 , 8 7 3 4 , 0 0 5 , 1 3 3 5 , 1 3 6 , 9 1 - 6 , 9 1 - -2 -2 E r i o p h o r u m a n g u s t i f o l l u m 6 , 0 3 - 6 , 0 3 Z S , 0 1 4 , 7 7 3 0 , 7 3 7 , 2 7 8 , 1 0 1 5 , 3 7 - 1 . 1 1

(12)

■J 2 3 4 5 6 7 8 9 10 11 12 1 3 _ _ 8 S p h a g n u m p e a t 3 , 5 4 3 , 5 4 2 0 , 6 3 - 2 0 , 6 3 1 2 , 0 2 - 1 2 , 0 2 - 1 4 , 1 9 S p h a g n u m p e a t - 6 , 3 1 6 , 0 1 1 9 , 3 5 1 0 , 6 4 2 9 , 9 9 1 0 , 8 2 - 1 0 , 8 2 “ 1 4 , 9 10 S p h a g n u m p e a t 6 , 6 6 - 6 , 6 6 2 0 , 6 6 3 , 0 0 2 8 , 6 6 1 1 , 0 2 - 1 1 , 0 2 - 1 8 , 5 11 S p h a g n u m p e a t - 1 3 , 4 7 1 3 , 4 7 2 1 , 0 4 1 5 , 0 4 3 6 , 8 0 9 , 5 6 - 9 , 5 6 - 7 , 5 12 E r i o p h o r u m p e a t 2 7 , 4 6 1 8 , 6 4 4 6 , 1 0 3 , 1 7 7 , 3 3 1 5 , 5 0 4 , 4 4 1 6 , 7 5 2 1 , 1 9 “ 2 , 2 13 r J r i o p h o r u m p e a t 8 , 6 2 6 , 0 1 1 4 , 6 3 6 , 32 7 , 7 0 1 4 , 0 2 4 , 7 3 1 4 , 5 9 1 9 , 3 7 1 . 0 x - / N o t d e t e c t a b l e * * I 3 y s i n g l e a c i d XXX p - h y d r o x y b e n z o i c a l d e h y d e

(13)

Zmiany w składnikach azotowych i fenolowych w torfach

17

compared species of peat-form ing plants. This can be considered as

a result of intensive m ineralization of these fractions by microbes [12, 13].

On the other hand, in all kinds of peat, contrary to peat-form ing plants,

th e am ount of amide and insoluble hum ine nitrogen increases. The m en­

tioned insoluble hum ine nitrogen fraction is strongly bound w ith lignin

occuring in great am ounts in well-decomposed peats. From th e early

publications of the author [10, 14, 25] and other publications [15, 18, 19,

20] it m ay be concluded th a t the decomposition process of organic plant

m aterial lead to an increase of nitrogen bound w ith lignin and humic

compotents. There m ay also be interaction of the lignin degradation

products — phenolic compounds w ith nitrogen [6, 9, 17].

The quantity and num ber of the phenolic compounds separated from

different kinds of peats varied depending of the profile depth and the

degree of decomposition as w ell as on the plant species from w hich the

peats w ere formed.

The content of phenolic compounds was the highest in the stronger

decomposed peat, w ith a higher concentration of humic substances [10,

14, 19, 20, 25]. On the other hand, the specific character of peat-form ing

plant species influenced also the content of individual phenolic com­

pounds in peats.

There is distinct corelation in the am ount and composition of phenolic

compounds in sphagnum plants and sphagnum peats, Carex plants and

Carex peats and in several other peat-form ing plants and kind of peats.

In general, one can state th a t peat-form ing process mostly leads to an

increase of the phenolic compounds in peat, which existed previously

in peat-form ing plants.

REFERENCES

[1] B a t u r o V.A., R a k o w s k i j V.E.: Chimija torfoobrazovatelej. Trudy Inst.

Torfa 6, 1957, 52-67.

'[2] B r e m n e r J.M.: The chem ical nature of soil organic nitrogen (Studies on

soil organic matter). J.Agr. Sei. 39, 1949, 183-193.

i[3] B r e m n e r J.M., Studies on soil humic acids. I. The chemical nature of humic

nitrogen. J.Agr. Sei. 46, 1955, 147-256.

{4]i B r e m n e r J.M.: Studies on soil humic acids. II. Observation on the estim a­

tion of free amino,groups. Reaction o f humic and lignine preparations with

nitrous acid. J.Agr. Sei. 48, 1957, 352—359.

[5] B r e m n e r J.M.: Methods of soil analysis. II. Chemical and m icrobiological

properties. A m erican Soc. of Agronomy Inc. Madison, USA, 1965, 1149—1238.

[6] B u r g e s N.A.: The nature and distribution of hum ic acids. Sei. Proc. Roy.

Dublin, Soc., Ser. A l, 1969, 53-58.

[7] B u r g e s N.A., H u r s t H.M., W a l l d e n S.B.: The phenolic constituent of

hum ic acid and their relation to the liignin of the plant cover. Geochim.

Cosmochim. Acta 28, 1964, 1547-1554.

(14)

18

F. Maeiak, H. Söchtig

|[8] F l a i g W.: Zur Kenntnis stoffw eschselaktiver Substanzen in Torf. Land­

bauforsch. Völkenrode, 17, 1967, 17-26.

19] F l a i g W.: Comparative chem ical investigations on natural humic com pounds

and their model substances. Sei. Proc. Roy. Dubl/in Soc., Ser. A l, 1960,

149-162.

(10} F l a i g .W,, S ö c h t i g H.: About the influcence of phenolic peat constituants

on metabolism, of plant. Proc. of the 4th Inter. Peat Congress Otaniemi, F in ­

land IV, 1972, 19-30.

|[11] M a c i a k F.: Bilans azotow y w roślinności torfotwórczej i torfach (Badania

nad formami azotu w torfach). Rocz. Nauk roi. A-4, 87, 1963, 562-594.

[12] M a cii а к F.: R elationship b etw een total and amino nitrogen content and

the composition of amino acids in peat-form ing plants and in peats. Ekologia

Polska S-A, II, 1966, 193-202.

j[13] M a c i a k F.: E ffect of fertilization and tillage on content of organic forms

of nitrogen in peat soil and the humus fractions. Proc. of 4th Inter. Peat

Congress Otaniiemi Finland IV, 1972, 105-120.

[14] M a c i a k F., S ö c h t i g H.: E ffect o f the degree of decom position on the

changes in the nitrogen fractions and phenoles .in low peat. Proc. of the 5th

Peat Congress Poznań, Poland, IV, 1976, 306-319.

[15] M a e d e r

H.:

Chemische

und

pflanzenphysologische U nterschungen mit

Rotterstroh. Dissertation, Giessen 1960, 1-93.

[16] M a k s i m ó w A., M a c i a k F.: W pływ tem peratury na przem iany azotow e

w złożu torfu niskiego. Rocz. glebozn. 2, 1962, 45-59.

[17] M e t z n e r H. Biochem ie der Pflanzen. Ferd,. Euke Verlag 132, 1973,

[18] M o r i t a H.: Composition of peat humus and its derivatives oxid ative con ­

version to lignin model compounds. J. Org. Chem. 27, 1962, 1079-1080.

[19] M o r r i s o n R.I.: The alkaline nitrobenzene oxidation of soil organic matter.

Soil Sei. 9, 1958, 130-140.

[20} M o r r i s o i n R.I.: Products of the alkaline nitrobenzene oxidation of soil

organic matter. J. Soil. Sei. 14, 1963, 201-216.

[211 P i g u l e w s k a j a L.V., R a k o w s k i j V.E.: Chimiczeskij sostav torfoobra-

zovatelnej i vlijanie ego na sostav torfov. Trudy Inst. Torf a 6, 1957, 3-11.

[22] P i g u l e w s k a j a L.V., R a k o w s k i j V.E.: Izm enienie chimiczeskogo sosta-

va otdelnych vidov torfov v zavisim osti ot lich vozrasta. Trudy Inst. Torfa 6,

1957, 12-31.

|[23] R i t t e r G.J., S e b o r g R.M., M i t c h e l l R. L.: Ind. Engin, Chem., Analyt.

Edit. 4, 1932, 202.

[24] S t e f e n s o n E.I.: Effect of some long rotation on the amino acid compo­

sition of the soil. Proc. Soil. Sei. Amer. 20, 1956, 204-209.

[25] S ö c h t i g H., M a c i a k F.: Bindung des Stickstoffes und Vorkommen pheno-

lischer Verbindungen in Torf. Telma I, 1971, 49-61.

,[26] W a к s m a n S.A., S t e v e n s K.F.: Chemical composition of peat. Soil Sei. 26,

1928, 113-137, 239-251.

(15)

Zmiany w składnikach azotowych i fenolowych w torfach

19

Ф. МАЦЯК, X. СЕХТИГ

ВЛИЯНИЕ ТОРФООБРАЗОВАТЕЛЬНОГО ПРОЦЕССА НА ИЗМЕНЕНИЯ В АЗОТНЫХ

И ФЕНОЛОВЫХ СОСТАВНЫХ ТОРФОВ

Варшавская сельскохозяйственная академия Институт питания растений и почвоведения

в Грауншвейге

Резю м е

Рассматриваются лабораторные исследования минеральных и органических форм азота,

содержания лигнинов и фенолей в разных видах низинных и верховых торфов и в торфо-

образуюших растенях. На основании подробного анализа ботанического состава и видов

торфов, а также сравниваемых видов торфообразующих растений в строении месторождений

и видов торфов делались попытки определения происходящих в торфах изменений в ходе

процесса торфообразования.

Минеральные и органические формы азота в торфах и торфообразующих растениях

определялись по Бремнеру [5], фракции лигнинов — по Риттеру и сотр. [28], фенольные

элементы — по методу Б ардж еса и сотр. [7], а после хроматографического раздела (с ис­

пользованием тонкослойной двунаправленной хроматографии) отдельные феноли опре­

деляли спектрографическим методом (в ультрафиолете при длине волны 190-350 мм).

Результаты анализов показали как сходства так и различия в содержании и составе

отдельных форм азота и фенольных элементов между разными видами торфов и сравни­

ваемыми видами торфообразующих растений.

Торфообразовательный процесс привёл к повышению азота в общем в низинных торфах,

а к его снижению в верховых торфах. Количество аминного азота снижалось в ходе торфо­

образовательного процесса в обоих типах торфов. Обратное явление наблюдалось в слу­

чае форм амидного и нерастворимого гуминного азота (не подвергающемуся кислому гид­

ролизу), содержание которых в торфах было выше, чем в сравниваемых торфообразующих

растениях. Преобладающая часть общего азота как в торфах так и в торфообразующих

растениях была сильно связана с фракцией лигнинов, причем лигнины в верхних слоях тор­

фяных почв связывают меньше количества азота, чем лигнины из более глубоких слоев.

Как из торфов так и из отдельных торфообразуюших растений изамировано 5 фенолей

в виде протекатехузовой, п-гидроксибензойной, ванилиновой и сиринговой кислот, а также

в виде n-гидроксибензойного альдегида.

Количественный и качественный состав фенолей в торфах был зависен главным образом

от степени разложения торфа и глубины профиля, а в торфообразующих растениях — от

вида растения. Была установлена известная корреляция в содержании фенолей между ви­

дами торфообразующих растений и соответствующими им видами торфов.

В общем можно констатировать, что в большинстве случаев торфообразующий процесс

привел к увеличению количества фенолей в торфах.

(16)

20

F. Maciaik, H. Söchtig

F. MACIAK, H. SÖCHTIG

WPŁYW PROCESU TORFOTWÓRCZEGO N A ZMIANY W SKŁADNIKACH

AZOTOWYCH I FENOLOWYCH TORFÓW

Akadem ia Rolnicza w W arszawie

Instytut Żywienia Roślin i Gleboznawstwa,

Braunschweig, RFN

S t r e s z c z e ń ' i e

Przeprowadzono badania laboratoryjne nad m ineralnym i i organicznymi fo r­

m am i azotu, zawartością lignin i fenoli w różnych gatunkach torfów niskich i w y ­

sokich oraz w roślinach torfotwórczych. Na podstawie szczegółowej analiizy składu

botanicznego i gatunków torfów oraz porów nyw alnych gatunków roślin torfotw ór­

czych budujących złoża i gatunki torfów próbowano ustalić zmiany zachodzące

w torfach w procesie torfienia.

M ineralne i organiczne form y azotu w torfach i roślinach torfotwórczych okre­

ślano w edług

B r e m n e r a

i[5], frakcje lignin w edług

R i 11 e r a

i

w sp. ([23].,

składniki fenolow e w edług m etody B u r g e s a i wsp. [7], a po rozdziale chroma­

tograficznym (za pomocą chrom atografii cienkow arstw ow ej dwukierunkowej) po­

szczególne fen ole oznaczano spektografiicznie (w u ltrafiolecie przy długości fali

190—350^m).

W yniki analiz w ykazały zarówno podobieństwa, jak i różnice w zawartościach

i ’Składzie poszczególnych form azotu i składnikach fenolow ych m iędzy różnym i

gatunkam i torfów a porów nyw alnym i gatunkam i roślin torfotwórczych.

Proces torfotwórczy prowadził do zwiększenia azotu ogółem w torfach niskich,

a do zm niejszenia jego zaw artości w torfach w ysokich. Ilość azotu am inowego u le­

gała zm niejszeniu w procesie torfotwórczym w obydwóch typach torfów. N a to ­

m iast było odwrotnie przy form ach azotu am idowego i hum inowego nierozpuszczal­

nego (nie podlegającego kwaśnej hydrolizie), których zawartość w torfach była

w iększa niż w porów nyw anych roślinach torfotwórczych. W iększość azotu ogółem,

zarówno w torfach, jak i w roślinach była silnie związana z frakcją lignin, przy

czym lign in y w w ierzchnich w arstw ach gleb torfowych w iązały m niejszą ilość

azotu niż ligniny w w arstw ach głębszych.

Zarówno z torfów, jak i poszczególnych roślin torfotwórzcych w yizolowano

5 fenoli w postaci kwasów: protokatechusowego, p-hydroksybenzoesowego, w an ili-

nowego, syingow ego oraz w postaci aludehydu p-hydroxybenzoesow ego.

Ilościow y i jakościow y skład fen oli w torfach zależał głów n ie od stopnia roz­

kładu i głębokości profilu, w roślinach torfotwórczych natom iast od gatunku ro­

śliny. Stwierdzono pew ną korelację co do zawartości fenoli pomiędzy gatunkam i

roślin torfotwórczych a odpowiadającymi im gatunkam i torfów.

O gólnie biorąc można stwierdzić, iż w w iększości przypadków proces torfo­

twórczy prowadził do zw iększenia ilościow ego fenoli w torfach.

Prof. dr hab. Franciszek Maciak

Akad emia Rolnicza

Cytaty

Powiązane dokumenty

Celem niniejszej pracy była ocena przydatności markerów ISSR do identyfikacji oraz oceny zróżnicowania genetycznego między liniami wsobnymi, jak również próba

Plik pobrany ze strony https://www.Testy.EgzaminZawodowy.info.. Wi cej materia ów na

Plik pobrany ze strony https://www.Testy.EgzaminZawodowy.info.. Wi cej materia ów na

Po przekształceniach w roku 1989, kiedy to powstała Wspólnota Energetyki i Węgla Brunatnego, a status przedsiębiorstw państwowych nadany został dotychczasowym zakładom,

Abstract: The article is devoted to the illustration of the relationship of the operation system state assessment in the reliability and economic aspect on a type of

Y tercera, porque nuestro autor, que no agota su personalidad literaria en la de narrador, entiende que ninguno de los géneros lite- rarios al uso sirven como la novela para acceder