• Nie Znaleziono Wyników

On the Existence of a Linear Connection so as a Given Tensor Field of the Type (1,1) is Parallel with Respect to This Connection

N/A
N/A
Protected

Academic year: 2021

Share "On the Existence of a Linear Connection so as a Given Tensor Field of the Type (1,1) is Parallel with Respect to This Connection"

Copied!
6
0
0

Pełen tekst

(1)

U N I VE R S I T AT I S MARIAE C U R I E - S К Ł O D O W S К A

LUBLIN —POLONIA

VOL. XXXIII, 3 SECTIO Л 1979

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej,Lublin

Andrzej BUCKI

- Onthe Existence of a LinearConnection so asa Given TensorField of theType (1,1) isParallel with Respect to This Connection O istnieniu koneksji liniowej takiej, aby dane pole tensorowe typu (1,1)

było równoległe względem tej koneksji

О существовании линейной связности такой, чтобы данный тензор я типа (1,1) был параллельный относительно этой связности

ты я problem is solved by means of conjugate connection.

Conjugate connections have been investigated by a number of authors, among others [5]. In this paper some applications of thi3 concept will be introduced. Suppose that two linear con-

A

nections Г and and a non-singular tensor field of the type (1,1) are given on an n-dimensional manifold M.

A

DEFINITION 1. The connections Г* and Г“ are said to bo conjugate with respect to the tensor field TC of the type

(1,1) if and only if the following condition is satisfied along every curve on Ms if an arbitrary covector a is parallel displaced along I' in the sense of the connection

u TM —*-R

Г\ then tho covector » is parallel displa- a vh—0T(V,a)

(2)

A eed along y in the sense of the connection .

The following theorem characterizes these connections:

THEOREM 1. The necessary and sufficient condition for the connections and f" to be conjugate with respect to the tensor field JT of the type (1,1) is that their local, coordinates and ^jk ^e related & the relation:

where V denotes the covariant dif ferent iation operator with

/ .—. I

respect to the connection / , and 3T is the inverse to_ JT .

I *

Proof. The covector a is parallel dispaced along every curve on M in the sense of , so its coordina­

tes satisfy the following condition:

I

3iak - rikap -0

The covector JTa is parallel displaced along every curve y' on M in the sense of r*, so its coordinates satisfy the condition:

3k(5rJaj> -Tki^j = 0 or

Vk*iaj + %£rLaj - /*tt4aj =0 This equality holds for any covector a, so we have:

VkxJ + xjrji ’rji^s hence •

^ki » Tki + QED

(3)

(5) where to 5T ction

(4)

As an example of the application of the theory of conjuga.

te connections with respect to the tensor field 3T of the type (1,1) we'll give the following:

THEOREM 2. If a non-singular tensor field Of of the type (1,1) on a manifold M with a given connection I""

satisfies the condition:

(2) «°

*

then there exists the connection C on 11 such, that:

VkxJ » 0.

*

Proof. We define the connection on 11 in the following way:

*1 ,

r=J(r+r>

A

r is the conjugate connection with /_* with respect . In the local map U, the coordinates of this conne- are the following:

- rjk ♦ JjfJVjT?

How, let's compute the value of

Td - - rjjjrl ♦

Vkxj ♦ Jjr’srJVkTS •

■ VkxJ - JVkTj♦JxJxJVkTj

Using the condition 2 we have:

- ?VkTTj - V k xJ = JV k 7r} - Jvkjj = 0

(4)

Andrzej Bucki We'll need the following:

THEOREM 5 [2], [4], [5], [6]. If a tensor field IT of the type (1,1) is covariantly constant with respect to a gi- ven connection on a manifold M, then there exists. an atlas,

(in the main-nonholonomlc) on. M such, that the tensor field IT has constant coordinates at each map of this atlas.

Now we have:

THEOREM 4. If a non-singular tensor field •jf of the.

type (1,1) on a manifold M with £ given connection /~’

satisfies the condition (2), then there exists an atlas (in the main-nonholonomic) on M such, that the tensor field IT has constant coordinates at each map of this. atla3.

Proof. It is the obvious consequence of the theorems 2 and J.

Finally, if we proceed similarly to [l] we'll have the following:

THEOREM 5. The curvature tensors R and R of theA

conjugate connections / and / respectively, with respect to the tensor field IT of the type (1,1) are related in the following way:

(5)

(5)

27

REFERENCES

('ll Bucki, A,, Curvature tensors of conjugate connections on a manifold, Ann, Univ. Mariae Curie-Skłodowska, Sect. A, 33(1979).

[2] Bury, T., Jakubowicz, A.F On existence of a linear conne­

ction determined by a covariantly constant tensor field of type (1,1), Tensor (N.S.), 31(1977), 265-270.

[3] Norden, A.P., Spaces with, affine connection (Russian), Nauka, Moscow 1976.

[4] Wong, Ï.C., Existence of linear connections with respect to which given tensor fields are parallel or recurrent, Nagoya Math. J., 24(1964), 67-108.

[5] Zajtz, A., On affine connections determined by parallelism of the given tensor fields, the geometrical methods in physics and technology, Warszawa 1968 (in Polish).

[6] Lichnerowicz, A,, Théorie globale des connexions et des groupes d'holonomie, Roma 1955.

i

)

STRESZCZENIE

W pracy tej zdefiniowane są koneksje liniowe sprzężone względem pola tensorowego typu (1,1) a następnie ich zastoso­

wanie między innymi w podstawowym wyniku pracy tzn. twierdzeniu 2 o istnieniu koneksji liniowej takiej, aby dane pole tensoro­

we nr typu (1,1) było równoległe, przy warunku, że pole 5T jest równoległe względem danej koneksji oraz w twierdze­2 niu 4 o Istnieniu atlasu w którym pole OT ma stałe współrzęd-

(6)

ne, przy założeniu że pole JT jeet równoległe.2

W twierdzeniu 5 podany jest wzór na tensor krzywiznowy koneksji sprzężonej.

Резюме

В этой работе' определено линейные сопряженные связно­

сти относительно тензора типа (1,1) , а затем их употребле­

ние например в основном результате работы, это значит в тео­

реме 2 о существовании линейной связности такой, чтобы данный тензор JT типа (11) был параллельный при условии, что Л2 явля­

ется параллельным относительно данной связности. Другое упот­

ребление выступает в теореме 4 о существовании атласа, в кото­

ром JE имеет постоянные координаты, при условии, что Заявляет­

ся параллельным. В теореме 5 представлено формулу тензора кривизны сопряженной связности.

Cytaty

Powiązane dokumenty

1. This question arises in such algebraical problems as solving a system of linear equations with rectangular or square singular matrix or finding a generalized

By means of a Riccati type transformation, necessary and sufficient conditions for the existence of eventually positive solutions and positive nonincreasing solutions are

Since the fo- liation F given by a closed 1-form ω, F = ker ω, is an R-Lie foliation, we have that, for a compact manifold M [H-H], F admits a closed transversal, and that any

This is, of course, necessary for a construction of special normal forms with the property that passing to another special normal coordinates is provided by linear

The result is based on the abstract framework from [5], applied to the existence of periodic solutions of ordinary differential equations, and compared with theorems by Santanilla

Here the mean value of the digits in the class C j does not differ from the “general” mean value (g − 1)/2 of above... In order to obtain simple rational

[r]

Eliminate then the fields ϕ i (using their equations of motion) from the Euler-Lagrange equations of the φ i fields and from the Noether currents.. that the canonical reasoning