# 0. Introduction. Let M be a 2n-dimensional manifold and ω be a 2-form on M . The pair (M, ω) is called a symplectic manifold if ω is closed (i.e. dω = 0) and nondegenerate, [Wei]. A submanifold L

## Full text

(1)

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

WARSZAWA 1999

n

y

y

y

y

y

k

k

y

y

2n−k

y

y

n

n

Rn

TRn

n

Rn

Rn

n

n

TRn

n

n

n

1

n

1

n

ni=1

i

i

ni=1

i

i

(2)

0

0

k2n

n

n

n

n

n

|L

n

n

(3)

n

n

1

n

n−1

|L

n

n

1

2

r

n

1

n

1

n

n

1

1

n

n

n

n

2n

n

n(n+1)2

n

y

n

n

n

n

y

n

n

y

n

n

0

n

0

n

n

0

n

1

n

n

0

(4)

n

1

n

1

n

0

n

1

n

0

p

n

(n+1)n2

2

n

1

2

2

2n

2

2

n

1

1

1

G

1

n

(det

2)

1

1

2

1

1

2

1

1

1

2

2

2

2

1

2

2

2

1

1

2πi1 dzz

1

1

1

1

(5)

k2n

n

k2n

k2n

k(k+1)2

1

k2n

k2n

1

n

1

n

1

n

n

n

m

n

n

m,ln

n

m

n

2

4

n−1

n

i

2i+1

n

n−i+1,2n

n

k2n

k2n

(4[n−k+1

2 ]+1)

(4t+1)

(2n−1)

(4[n−k+1

2 ]+1)

(4t+1)

(2n−3)

(4[n−k+1

2 ]+1)

(4t+1)

(2n−3)

(2n−1)

k2n

m

n

m

1

n

1

n−m

1

n

n

1

n

2nk

k2n

m

2nk

k2n

m

(6)

2nk

2nk

2nk

2nk

k2n

l

m

m

l

m

m

2nk

2nk

2nk

2nk

l(2k−l+1)2

2nk

2nk

2nk

2nk

k−l2n−2l

l

m

2nk

2nk

2nk

k2n

2

k2n

k

R

1

n

k

n

C

1

n

k

k

n

k

n

k2n

k

k

2nk

2nk

2nk

k−l2n−2l

l

m

2nk

2nk

p

k2n

k2n

k+12n+2

k

k2n

k+12n+2

−1k

2n+2k+1

k2n

2nk

(7)

k+12n+2

2n+2k+1

2nk

2nk

p

k2n

k2n

2nk

2nk

2nk

2nk

2nk

p

k2n

22(n−k+2)

k−12n−2

k2n

k

k−12n−2

k2n

k

2nk

2n−2k−1

p

k−12n−2

2nk

2n−2k−1

2(n−k+2)2

2nk00

0

k2n00

2(n−k+2)2

22(n−k+2)

0

0

2n2 0

0

0

0

2n2 0

0

22n0

0

0

2n2 0

0

2n2 0

0

n0−m0+3

n0

0

0

m0

1

n0

1

n0−m0

2n2 0

0

22n0

m0

2n2 0

0

22n0

2n

0

2

0

22n0

0

0

n0−m0+2

R

∂xn0 −m0 +3

∂x

n0

n0

n0−m0+2

2(n

0−m0+2)

2

2n2 0

0

(8)

2

2n2 0

0

2(n

0−m0+2)

2

2

0

0

0

0

0

2n2 0

0

2n2 0

0

n0−m0+2

n0−m0+2

2n2 0

0

2(n0−m0+2)−1

2

(m

0−2)

2

0

2n2 0

0

0

0

0

0

0

2n2 0

0

2

22(n0−m0+2)

22(n0−m0+2)

2

2

2

0

2

2n2 0

0

2n2 0

0

R

∂pn0 −m0 +1

∂p

n0 −m0 +2

22n0

2n2 0

0

22n0

2n2 0

0

22n0

2nk

k2n

2n

n

m

m

n

2n−m

1

n

1

n

1

n

1

n−m

k

|I

I

R|I

2n

n

m

k

k2n

y

(9)

k2n

I

2nk

k2n

m

k2n

2nk

I

I

2nk

I

n

2n−m

n

n

2nk

2nk

k2n

0

(10)

Updating...

## References

Related subjects :