• Nie Znaleziono Wyników

Combination of searches for $\mathit{WW}, \mathit{WZ}$, and \mathit{ZZ} resonances in $\mathit{pp}$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Share "Combination of searches for $\mathit{WW}, \mathit{WZ}$, and \mathit{ZZ} resonances in $\mathit{pp}$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector"

Copied!
21
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Combination of searches for W W , W Z , and Z Z resonances in pp collisions at √

s = 8 TeV with the ATLAS detector

.ATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received16December2015

Receivedinrevisedform9February2016 Accepted9February2016

Availableonline11February2016 Editor:W.-D.Schlatter

TheATLASexperimentattheCERNLargeHadronColliderhasperformedsearchesfornew,heavybosons decayingto W W ,W Z and Z Z finalstatesinmultipledecaychannelsusing20.3 fb1 ofpp collision dataat

s=8 TeV.Inthecurrentstudy,theresultsofthesesearchesarecombinedtoprovideamore stringenttest ofmodelspredictingheavy resonanceswithcouplingsto vectorbosons.Directsearches forachargeddibosonresonancedecayingtoW Z intheν(=μ,e),qq,¯ νqq and¯ fullyhadronic finalstatesare combinedandupperlimits ontherateofproductiontimesbranchingratiototheW Z bosonsarecomparedwithpredictionsofanextendedgaugemodelwithaheavyWboson.Inaddition, directsearchesforaneutraldiboson resonancedecayingtoW W and Z Z intheqq,¯ νqq,¯ andfully hadronicfinalstatesarecombinedandupperlimitsontherate ofproductiontimesbranchingratioto the W W and Z Z bosons arecompared withpredictionsfor aheavy,spin-2 gravitoninan extended Randall–Sundrummodel wheretheStandardModel fieldsareallowedtopropagateinthe bulkofthe extradimension.

©2016CERNforthebenefitoftheATLASCollaboration.PublishedbyElsevierB.V.Thisisanopen accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thenaturalnessargumentassociatedwiththesmallmassofthe recentlydiscoveredHiggs boson[1–4] suggeststhat theStandard Model(SM)isconceivablytobeextendedbyatheorythatincludes additionalparticles and interactions atthe TeV scale. Many such extensionsoftheSM,suchasextendedgaugemodels[5–7],mod- elsofwarpedextradimensions[8–10],technicolour[11–14], and more generic composite Higgs models [15,16], predict the exis- tenceofmassiveresonancesdecayingtopairsofW and Z bosons.

Intheextendedgaugemodel(EGM)[5]anew,chargedvector boson(W)couplestotheSMparticles.Thecouplingbetweenthe WandtheSMfermionsisthesameasthecouplingbetweenthe W bosonandtheSMfermions.TheWW Z couplinghasthesame structureasthe W W Z couplingintheSM,butisscaledbyafac- torc× (mW/mW)2,where c isa scalingconstant,mW isthe W boson mass,andmW is the W boson mass.The scaling of the coupling allows the width of the W boson to increase approx- imately linearly withmW at mW mW and to remain narrow forc1.Forc=1 andmW>0.5 TeV the W widthisapproxi- mately3.6%ofitsmassandthebranchingratioofthe WW Z rangesfrom1.6%to1.2%dependingonmW.Productioncrosssec-

 E-mailaddress:atlas.publications@cern.ch.

tions in pp collisionsat

s=8 TeV forthe W bosonaswell as theWwidthandbranchingratiosofWW Z foraselectionof W bosonmassesintheEGMwithscalefactorc=1 aregivenin Table 1.

SearchesforaWbosondecayingtoνhavesetstrongbounds on the mass of the W when assuming the sequential standard model (SSM) [17,18], which differs from the EGM in that the WW Z coupling is set to zero. Forc1 the effect ofthis cou- plingontheproductioncrosssectionoftheWbosonattheLHC isverysmall,thustheproductioncrosssectionoftheWbosonin theSSMandtheEGMis verysimilar.Moreover, duetothesmall branching ratiooftheWW Z in theEGMwiththe scalefac- tor c1, the branching ratios of the W boson to fermions are approximatelythesameasintheSSM.Nevertheless,modelswith narrowvectorresonanceswithsuppressedfermioniccouplingsre- main viable extensions to theSM, andthus the EGM provides a usefulandsimplebenchmarkinsearches fornarrowvectorreso- nancesdecayingto W Z .

The ATLAS andCMS Collaborations haveset exclusionbounds on the productionand decayof the EGM W boson. In searches usingtheν (e, μ) channel,theATLAS [19] andCMS[20]

Collaborations have excluded, at the 95% confidence level (CL), EGM (c=1) W bosons decaying to W Z for W masses below 1.52 TeVand1.55 TeV,respectively. InadditiontheATLAS Collab- oration has excluded EGM (c=1) W bosons for masses below

http://dx.doi.org/10.1016/j.physletb.2016.02.015

0370-2693/©2016CERNforthebenefitoftheATLASCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

1.59 TeVusing the qq¯ [21] channel, andbelow 1.49 TeV using theνqq¯[22]channel.Thesehavealsobeenexcludedwithmasses between1.3and1.5 TeVandbelow1.7 TeVbytheATLAS[23]and CMS[24]Collaborations,respectively,usingthefullyhadronicfinal state.

Diboson resonances are also predicted in an extension ofthe original Randall–Sundrum (RS) [8–10] model with a warped ex- tradimension.Inthisextension totheRSmodel[25–27],theSM fields are allowed to propagate in the bulk of the extra dimen- sion,avoiding constraintson the original RSmodelfrom flavour- changing neutral currents and from electroweak precision mea- surements.Thisso-calledbulk-RS modelischaracterised bya di- mensionlesscouplingconstantk/ ¯MPl1,wherek isthecurvature of the warped extra dimension, and M¯Pl=MPl/

8π is the re- ducedPlanckmass.InthismodelaKaluza–Klein excitationofthe spin-2graviton,G,candecaytopairsofW orZ bosons.Forbulk RS models with k/ ¯MPl=1 and for G masses between 0.5 and 2.5 TeV, the branching ratio of G to W W ranges from 34% to 16% and the branching ratioto Z Z ranges from 18% to 8%. The G widthrangesfrom3.7%to6.2%dependingontheG mass.Ta- ble 1 lists widths, branching ratio to W W and Z Z for G, and productioncross sectionsin pp collisions at 8 TeVin thesebulk RSmodels.

The ATLAS Collaboration has excluded, at the 95% CL, bulk G Z Z with masses below 740 GeV, using the qq chan-¯ nel[21],aswell asbulk GW W withmassesbelow760 GeV, usingtheνqq channel¯ assumingk/ ¯MPl=1[22].TheCMSCollab- orationhasalsoexcluded atthe95% CLtheG oftheoriginal RS model,decayingtoW W and Z Z withmassesbelow1.2 TeVusing thefullyhadronicfinalstate[24]andhassetlimitsontheproduc- tionanddecayofgenericdibosonresonancesusingacombination ofqq,¯ νqq and¯ fullyhadronicfinalstates[28].

To improve the sensitivity to new diboson resonances, this article presents a combination of four statistically independent searchesfordibosonresonancespreviouslypublishedbytheATLAS Collaboration [19,21–23]. The searches are combined while con- sideringthe correlations betweensystematicuncertainties inthe differentchannels.Thefirstsearch,sensitivetochargedresonances decaying to W Z , uses the ν [19] final state. The second search,sensitivetochargedresonancesdecayingtoW Z and neu- tralresonancesdecayingto Z Z ,usestheqq final¯ state[21].The thirdsearch,sensitivetochargedresonancesdecayingtoW Z and neutralresonancesdecayingtoW W ,usestheνqq final¯ state[22].

Finally,the fourth search, sensitive tocharged resonances decay- ing to W Z andtoneutralresonances decayingtoeither W W or Z Z ,usesthefullyhadronicfinal state [23].Due tothelarge mo- menta ofthebosons fromthe resonancedecay, theresonancein thischannel is reconstructed withtwo large-radius jets, andthe fullyhadronicchannelishereafterreferredtoasthe J J channel.

TosearchforachargeddibosonresonancedecayingtoW Z the

ν, qq,¯ νqq,¯ and J J channelsare combined.The result of this combination is interpreted using the EGM W model with c=1 asabenchmark.

TosearchforneutraldibosonresonancesdecayingtoW W and Z Z theqq,¯ νqq,¯ and J J channels arecombined,andtheresult isinterpretedusingthebulkG,assumingk/ ¯MPl=1,asabench- mark.

The ATLAS Collaborationhasperformed additionalsearches in whichnew dibosonresonancescould manifest themselvesasex- cessesoverthebackgroundexpectation. Intheanalysispresented inRef.[29]the,νν,qq and¯ qq¯νν finalstateshavebeen explored inthecontext ofthesearch fora new,heavy Higgsbo- son.Also, in thecontext ofsearchesfor darkmattera final state ofahadronically decayingbosonandmissingtransversemomen- tum[30],andafinalstateofaleptonicallydecaying Z bosonand

missingtransversemomentumhavebeenexplored[31].Thesead- ditional searches are not included in this combination. They are not expected to contribute significantly to the sensitivity of the combined search duetothe lower branching ratioincaseof the leptonic channels, andthe useofonly narrowjetsincaseof the qq¯ννfinalstate.

2. ATLASdetectoranddatasample

The ATLAS detector isdescribed in detail in Ref. [32]. It cov- ers nearly the entire solid angle1 around the interaction point and has an approximatelycylindrical geometry. It consistsof an inner tracking detector (ID) placed within a 2 T axial magnetic fieldsurroundedbyelectromagneticandhadroniccalorimetersand followedbyamuonspectrometer(MS)withamagneticfieldpro- videdbyasystemofsuperconductingtoroids.

Theresultspresentedinthisarticleusethedatasetcollectedin 2012byATLASfromtheLHC pp collisionsat

s=8 TeV,usinga single-lepton(electronormuon)trigger[33] witha pT threshold of24 GeV,orasinglelarge-radiusjettriggerwithapTthresholdof 360 GeV. Theintegratedluminosityofthisdatasetafterrequiring data quality criteriato ensure that all detectorcomponents have beenoperational duringdata takingis 20.3 fb1.Theuncertainty on theintegratedluminosityis ±2.8%.It isderived followingthe methodologydetailedinRef.[34].

3. Signalandbackgroundsamples

Theacceptanceandthereconstructedmassspectrafornarrow resonancesareestimatedwithsignal samplesgeneratedwithres- onance masses between 200 and 2500 GeV, in 100 GeV steps.

The bulk G signal events are produced by CalcHEP 3.4 [35]

withk/ ¯MPl=1.0,andthe W signal samplesare generatedwith Pythia 8.170 [36], setting the coupling scale factor c =1. The factorisation and renormalisation scales are set to the gener- ated resonance mass. The hadronisation and fragmentation are modelled with Pythia 8 in both cases, and the CTEQ6L1 [37]

(MSTW2008LO[38]) partondistributionfunctions(PDFs)areused for the G (W) signal. The leading-order cross sections and branching ratios for the W andbulk G signal samples for se- lectedmasspointsandassumedvaluesofthecouplingparameters areprovidedinTable 1.

The backgroundsinthedifferentdecaychannelsare modelled with simulated event samples. The W+jets and Z +jets back- groundsaregeneratedusing Sherpa 1.4.1[39]withCT10PDFs[40].

A separatesampleisgeneratedusing Alpgen 2.14[41]toestimate systematiceffects,usingCTEQ6L1PDFsand Pythia 6[36]forfrag- mentationandhadronisation.

The W+jets and Z+jets productioncrosssectionsarescaled tonext-to-next-to-leading-order(NNLO)calculations[42].Thetop quarkpair,s-channelsingle-topquarkandW t processesaremod- elled by the MC@NLO 4.03 generator [43,44] with CT10 PDFs, interfaced to Herwig [45] for fragmentation and hadronisation and Jimmy [46] for modelling of the underlying event. The top quark pairsampleisscaledtotheproductioncrosssectioncalcu- latedat NNLOin QCDincluding resummationofnext-to-next-to- leading logarithmic soft gluon terms withTop++2.0 [47–52]. The

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominalin- teraction point(IP)inthecentreofthedetector andthe z-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φbe- ingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefinedin termsofthepolarangleθasη= −ln tan(θ/2),andthedistancein(φ,η)spaceas R

( φ)2+ ( η)2.

(3)

Table 1

Leading-ordercrosssections,widths,andbranchingratiosfortheWbosonintheEGMwithscalefactorc=1 andfortheGinthebulkRSmodelwithk/MPl=1 inpp collisionsat

s=8 TeV foravarietyofmasspoints.

m [TeV]

W

[GeV]

σ(W) [fb]

BR(WW Z) [%]

GRS [GeV]

σ(G) [fb]

BR(GW W) [%]

BR(GZ Z) [%]

0.5 18.0 2.00×105 1.6 18.4 3.11×103 34 18

1.0 36.0 1.17×104 1.3 55.4 5.60×101 19 10

1.5 54.0 1.44×103 1.3 89.5 3.14×100 17 8

2.0 73.3 2.42×102 1.2 122.5 2.90×101 16 8

2.5 90.7 5.31×101 1.2 155.0 3.20×102 16 8

t-channel single-top events are generated by AcerMC [53] with CTEQ6L1PDFsand Pythia 6forhadronisation.Thedibosonevents areproduced with the Herwig generator andCTEQ6L1PDFs, ex- ceptfortheνchannelwhichuses POWHEG[54,55]interfaced to Pythia 6.Thedibosonproductioncrosssectionsarenormalised tonext-to-leading-order predictions[56].Additionaldibosonsam- plesfortheνqq channel¯ areproducedwiththe Sherpa generator.

QCD multijetsamples are simulated with Pythia 6, Herwig, and POWHEGinterfacedto Pythia 6.

GeneratedeventsareprocessedwiththeATLASdetectorsimu- lationprogram[57]basedontheGEANT4package[58].Signaland background samples simulated or interfacedwith Pythia use an ATLASspecifictuneof Pythia[59].Effectsfromadditionalinelastic pp interactions (pile-up)occurringinthesameandneighbouring bunch crossingsare takeninto account by overlaying minimum- biaseventssimulatedby Pythia 8.

4. Objectreconstructionandselection

Thesearch channelsincludedinthecombinationpresentedin thisarticleusereconstructedelectrons, muons,jetsandthemea- surementofthemissingtransversemomentum.

Electron candidates are selected from energy clusters in the electromagneticcalorimeterwithin|η|<2.47,excluding thetran- sition region between the barrel and the endcap calorimeters (1.37<|η|<1.52), that match a track reconstructed in the ID.

Electronssatisfying‘tight’identificationcriteriaareusedtorecon- struct Weν candidates,while Zee are reconstructed from electrons thatsatisfy ‘medium’ identificationcriteria. Thesecrite- riaare described inRef. [60]. Muon candidatesare reconstructed within the range |η|<2.5 by combining tracks with compati- ble momentum in the ID and the MS [61]. Only leptons with pT>25 GeV areconsidered.

Backgroundsduetomisidentifiedleptonsandnon-promptlep- tonsaresuppressedbyrequiringleptonstobeisolatedfromother activity in the event and also to be consistent with originating fromtheprimaryvertexoftheevent.2 Upperboundsoncalorime- terandtrack isolation discriminants are used to ensure that the leptonsareisolated.

Detailsoftheleptonisolationcriteriaaregiveninthepublica- tionsfortheν[19],qq¯ [21],andνqq¯ [22]channels.

Jetsareformedbycombiningtopologicalclustersreconstructed inthecalorimetersystem[62],whicharecalibratedinenergywith the local calibration weighting scheme [63] and are considered massless. The measured energies are corrected forlosses inpas- sivematerial, thenon-compensatingresponse ofthecalorimeters andpile-up[64].

Hadronicallydecayingvectorbosons withlow pT (450 GeV) are reconstructed using a pair of jets. The jetsare formed with theanti-kt algorithm[65]witharadiusparameter R=0.4.These

2 Theprimaryvertexoftheeventisdefinedasthereconstructedprimaryvertex withhighest

p2Twherethesumisoverthetracksassociatedwiththisvertex.

jets are hereafter referred to as small-R jets. Only small-R jets with|η|<2.8(2.1)and pT>30 GeV areconsideredfortheνqq¯ (qq)¯ channel. Forsmall-R jets with pT<50 GeV it is required that thesummedscalar pT ofthe tracksmatchedto theprimary vertex accountsfor at least 50% of the scalar summed pT of all tracks matchedto the jet. Jetscontaining hadronsfrom b-quarks areidentifiedusingamultivariateb-taggingalgorithmasdescribed inRef.[66].

Hadronicallydecayingvectorbosonswithhigh pT (400 GeV) canbereconstructedasasinglejetwithalargeradiusparameter, orlarge-R jet, dueto the collimated nature oftheir decay prod- ucts. These large-R jets,hereafter denotedby J , are firstformed withtheCambridge–Aachen(C/A)algorithm[67,68]witharadius parameter R=1.2.Afterthejet formationa setofcriteriaisap- pliedtoidentifythejetasoriginatingfromahadronicallydecaying boson(bosontagging).A groomingalgorithmisappliedtothejets to reduce the effectofpile-up andunderlyingevent activityand to identifya pairofsubjets associatedwiththe quarksemerging from the vector boson decay. The grooming algorithm, a variant ofthemass-dropfilteringtechnique [69],isdescribed indetailin Ref.[23].The groomingprocedureprovidesasmalldegreeofdis- criminatingpowerbetweenjetsfromhadronicallydecayingbosons andthoseoriginatingfrombackgroundprocesses.

Jet discrimination is further improved by imposing additional requirementsonthelarge-R jetproperties.First,inallofthechan- nels usinglarge-R jets, a requirement on thesubjetmomentum- balance found at the stopping point of the grooming algorithm,

y>0.45,3 is applied to the jet. Second, jets are required to havethegroomedjetmasswithinaselectionwindow.Duetothe differentbackgroundsaffectingeachofthesearchchannels,differ- entmasswindowsareusedforeachchannel.Inthesinglelepton anddileptonchannels, masswindowsof65<mJ<105 GeV and 70<mJ<110 GeV,where mJ representsthe jetmass, are used forselectingW and Z bosons.Inthefullyhadronicchannel,mass windows of 69.4<mJ <95.4 GeV and 79.8<mJ<105.8 GeV, which are ±13 GeV around the expected W or Z reconstructed mass peak, are used for selecting W or Z boson candidates re- spectively.

The high-pT jetsinbackgroundeventsare expectedtohavea larger charged-particle track multiplicity than the jets emerging from boson decays. This is due to the higher energy scale in- volved in the fragmentation process of background jetsand also duetothelargercolour chargeofgluonsincomparisontoquarks.

Hence,toimprovethesensitivityofthesearchinthefullyhadronic channel, a requirement on thecharged-particle trackmultiplicity matched to the large-R jet prior to the grooming, ntrk<30, is used to discriminatebetween jetsoriginatingfrom boson decays

3 ymin(pT j1,pT j2) Rm(j1,j2)

0 ,wherem0isthemassofthegroomedjetatthe stoppingpointofthesplittingstageofthegroomingalgorithm,pT j1 andpT j2 are thetransversemomentaofthesubjetsatthestoppingpointofthesplittingstageof thegroomingalgorithmand R(j1,j2)isthedistancein(φ,η)spacebetweenthese subjets.

Cytaty

Powiązane dokumenty

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

To conduct the search, the dilepton invariant mass (m ll ) line shape is examined for a localized excess of events corresponding to a new resonance, where ll corresponds to either

Cross sections are determined using both the electron and muon decay modes of the W boson and are presented as a function of inclusive jet multiplicity, N jet , for up to five jets..

9 Efficiency of passing either the mu24i or mu36 trigger as func- tions of the probe-muon transverse momentum p T , for the three trigger levels, Level-1, Level-2 and event-filter,

Number of ℓb-pairs expected from MC simulation (N ℓb expect ) and observed in data (N ℓb data ), and reconstructed mean combined charge, hQ comb i, for the data in the different

However, the b ¯ b final state constitutes only a small fraction of the total heavy flavour quark production in dijet events, and the inclusive bottom cross-section contains

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei,

The observed yield in the signal region for positively charged top quark pair production is consistent with the expected background, resulting in limits of 8.4–62 fb on the