• Nie Znaleziono Wyników

Uniqueness in the linear theory of viscoelastic thermodiffusion

N/A
N/A
Protected

Academic year: 2022

Share "Uniqueness in the linear theory of viscoelastic thermodiffusion"

Copied!
7
0
0

Pełen tekst

(1)

Seria: BUDOWNICTWO z. 83 THEORETICAL MECHANICS

N r kol. 1314

Jadwiga JĘDRZEJCZYK-KUBIK

UNIQUENESS IN THE LINEAR THEORY OF VISCOELASTIC THERM O­

DIFFUSION

Summary. In this paper we proved the theorem about uniqueness o f the solution o f the boundary-initial value problem for the linear system o f the partial differential-integral equations which describe the process o f thermodiffiision in the three-dimensional anisotropic, homogeneous, viscoelastic medium. The p roof is based on the use o f the Laplace transform.

JEDNOZNACZNOŚĆ ROZWIĄZAŃ ZADAŃ LEPKOSPRĘŻYSTEJ TERMO-DYFUZJI

Streszczenie. W pracy dowodzi się twierdzenia o istnieniu rozwiązania problemu początkowo-brzegowego w liniowej teorii termodyiuzji w ciele lepkosprężystym. Dowód przeprow adza się w oparciu o transformatę Laplace’a.

P E 1U E H H E S A R A V B iH K O Y n PYTOM T E P M O ^M O O Y 3M H

Pe3K>Me. B paóoT e flOKa3biBaeTca yTBep>KfleHne eflHHCTBeHHOcra pemeHPw CMemaHHOH rpaHHHHOH 3aflatH B JIHHeHHOH TeOpHH TepM0 /tH(})cj)y3HH

b BH3KoynpyroM Terie. /I,OKa3aTejibCTBO 6 a3HpyexcH Ha n 3nojib30 BaHHH HHTerpajibHoro n p eo6 pa30BaHHa Jlannaca.

(2)

Jadwiga JĘDRZEJCZYK-KUBIK

1. INTRODUCTION

Theory o f thermodiffusion describes the interactions between processes o f mass transport, heat flows and deformations o f the body.

These coupled thermal, mechanical and diffusion flows phenomena are typical for capillary- porous media. One can also observe them in the majority o f technological processes. The material rebuilding structure is also concerned there.

The phenom enon o f thermodiffusion was described in [4,5,6] in an elastic body and in [3,7] in a viscoelastic medium.

In this paper we analyse the system differential-integral equations describing the processes o f thermodiffusion in viscoelastic solids. W e proved the theorem about uniqueness to the boundary-initial problem o f the viscoelastic thermodiffusion using the m ethod presented in [1],

2. THE EQUATIONS OF THE PROBLEM

We consider a body that a time t=0 occupies the region B o f Euclidean three-dimensional space and is bounded by the regular boundary S. By x we denote the typical point o f B, and by ( x , , x 2,x 3 ) the coordinates o f x with respect to a fixed Cartesian coordinate system. W e shall employ the usual summation and differentiation convention, summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the space variables. W e denote time derivatives by a superposed dot. The fundamental equations in the linear theory o f viscoelastic thermodiffusion are [3]:

- the equations o f motion

< Vj+ X . = P ü > ( 2 . 1 )

- the constitutive relations

°,j = E ljU*d£k, - ( p ^ d Q - O J ^ d M (2.2)

(3)

- the equation o f diffusion

dt (2.3)

- the equation o f heat transfer J

k uQ’ji_To ^ [ m* dQ +1* dM + cpy* ds.j] = - r (2.4)

- the geometrical equations

(2.5)

In this relation u=u(x,t) is the displacement vector o f the medium, Q=Q(x,t)=T(x,t)-T0 is the temperature difference, M=M(x,t) - the chemical potential, X=X(x,t) - the body force vector, r=r(x,t) - the intensity o f heat source, R=R(x,t) - rate o f internal mass generation,

= a u(x ,t) , By = e^ X jt) - stress and strain tensor respectively, p - denotes the mass density, k 1(, Kjj - constants dependent on thermal and diffusive properties o f the material, n -the unit outward normal to S and * - the Stielties convolution.

The functions E ijk] = E 1Jk,(t), (p„ = <p,j(t), = O ^ t ) , n = n(t), 1 = l(t), m = m (t) are the relaxation functions detrmining physical properties o f the material. They satisfy the following relations [1,3]:

Eijki = Ejiki = Eklij

(P1j = ( PJi> ^*ij = ®ji for each t in ( -00,00) (2.6)

Let Sa (a=CT,p,q,Q,j,M) be subset o f S so that Su u S0 = Sq u SQ = S, u SM = S , Su o S a = Sg n S Q = S j n S M = 0 .

For the system o f field equations (2. l)-(2.5) we consider the following boundary conditions:

^ijki(t) — °> cPij(f) — °? — 0, n(t) = m(t) = l(t) = 0 on (-0 0 ,0 ) (2.7)

ut = ui on Su x I (2.8)

(4)

46 Jadwiga JĘDRZEJCZYK-KUBIK

CT.jiij = Pj on Sa x I

k ijQ,i a j = q on Sq x l , Q = Q o n S Q x I

K^M,; nj = j on Sj x I, M = M on SM x I

w here ü, ,p, ,q , Q, j 'M are prescibed and I=[0,oo).

To the above we adjoin the initial conditions

a ÿ(x,ty=0, Q(x,t)=M (x,t)=0, u,(x,t) = 0 f o r t < 0

Uj(x,0) = ûi(x), ù,(x,0) = Vj(x) x e B

w here fy and v, are given.

3. UNIQUENESS THEOREM

In this section we prove that the following theorem is true.

Theorem.

W e assume that:

- there exists the Laplace transform o f all variables o f the field and the equations with the boundary-initial conditions (2.8) - (2.12);

- initial value o f the relaxation functions satisfy the following relations

Ejjki(o)YijYki > 0 (3.1)

m(0)n(0) > 12(0) (3.2)

w here y is the arbitrary, symmetric tensor o f rank two;

- coefficients k,j and K l; satisfy the conditions

k ^ > 0, K , ^ ^ 0, for each r, e R . (3.3) (2.9)

(2.10) (2.11)

(2.12)

(5)

Then, under the above mentioned conditions, the problem (2.1)-(2.5) (2.8)-(2.12) has the unique solutions.

In order to prove it, w e assume that there exist two different solutions ( u f * , e ^ ,o ^ , Q (1* ,M ^ j and (uj2* , e ^ , a j ^ , Q ^ , M (2) j o f that problem.

Their differences

u ° - u (1) - u (2) F° - e (1) - e (2) c t° - o (1) - c r (2)

U , - u , u i » e ij - e ij e ij » CTij - ° i j ° i j » ~ ^

Q° = Q(,) - Q(2), M° = M(1) - M*2)

satisfy the homogenous system o f equations with homogenous initial and boundary conditions.

L et l |f ( x , t ) ] = f(x ,p ) denote the Laplace transform with respect to time o f the function f(i,t).

Let us calculate the Laplace transform o f the equations and boundary conditions.

W e get

a 1J,j = p 2pu,° (3.5)

Q (li- p 2m M ° - p 2lM ° - p'rp.jE.j = 0 (3.6)

o

K,JM,“- p 2nM° - p2l Q° - p2(ptt6j = 0 (3.7)

c°> = PEU„S° - P9,jQ° - P ^.jM 0 (3.8)

J a ° nju,odS = 0 (3.9)

S

J k ljQ ^Q ,“ n JdS = 0 (3.10)

j K jjM °M ,°n jdS = 0 (3.11)

s

Applying Gauss theorem to the relation (3.9) and using the equations (3.5) and (3.8) we obtain

(6)

48 Jadwiga JĘDRZEJCZYK-KUBIK

J [ P2pu°u,° + pEljkls kIe° - pcpijQ °e]° - p<D,jM °8“]dB= O

N ow w e will take into account the equations (3.6) and (3.7) respectively by Q°

integrating over B and taking into considaration (3.10) and (3.7) w e get ' k ;i_____

j ~ - Q ,° Q>!+ p ^ ( Q 0)2 + p 2l M°Q° + p % l ° $ °

B °

M ,°+ p 2n (M 0) 2 + p 2lM °Q ° + p J^ e ° M ° dB = 0

dB = 0

W e substitute (3.13) and (3.14) into (3.12). We obtain k

B

Jj

p2p u X + pE Skls “e° + ^ Q , ° M,° + T„P

+ pj^m(Q°)2 + 21 M°Q° + n(M 0) 2 J jd B = 0

Let us consider the case o f real p such that p > p 0 > 0 . It is know n [2], that

l>mpEljkl(p) = Eljkl(0)

lim p[m(p) + 2l(p) + n(p)J = m(0) + 21(0) + n(o)

In accordance with our assumption it follows pE ljkle°£kl > 0

p m (Q °)2 + 2 lM ° Q <’ + n (M 0) 2 > 0

for sufficiently large p.

The relation (3.15) is a sum o f nonnegative terms. It should be u° = 0, Q° = 0, for sufficiently large p.

Hence, by theorem [2] u° = 0, Q° = 0, M° = 0.

(3.12)

and M ° ,

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

M° = 0

(7)

SILESIAN TECHNICAL UNIVERSITY OF GLIWICE. DEPARTMENT OF CIVIL ENGINEERING. CHAIR OF THEORETICAL MECHANICS. Krzywoustego 7.

44 100 Gliwice. POLAND

REFERENCES

[1] Christensen R. M.: Theory o f viscoelasticity, Academic Press, New York, London, 1971.

[2] Doetsch G.: Handbuch der Laplace Transformation, Bazel, 1950.

[3] Kubik J.: Thermodiffusion in viscoelastic solids, Studia Geot. Mech., 8, 2,1986.

[4] Maruszewski B : Thermodiffusive surface waves in semiconductors,J. A S. A ,85, 1989.

[5] Naerlovic-Veljkovic N., Plavsic M.: Thermodiffusion in elastic solids with microstructure, Bull. Acad. Pol .Sc., Ser. Sc. Tech., 22, 1974.

[6] N owacki W, Olesiak Z.S.: Thermodiffusion in solids, PWN, Warszawa 1991.

[7] Wróbel M.: Heat and mass flows coupled with stress in a continuous medium, OCIM, M arch 1993, Oxford University.

Received September 20, 1995

Streszczenie

W pracy analizuje się problem początkowo - brzegowy termodyfuzji w ciele lepkosprężystym. Dla przedstawionego problemu dowodzi się twierdzenia o istnieniu rozwiązania.

D ow ód przeprowadza się w oparciu o transformację Laplace’a.

Cytaty

Powiązane dokumenty

tute of Mathematics of M. Curie-Sklodowska University, Lublin, Poland.. This lemma gives the extension of the family J^.p/H) up to the linear - invariant family H for an... On

2.1. Hadamard’s three- circles theorem [6, p.. In addition, it is a convex function of log r. 142]) that a continuous convex function has finite right-hand and left-hand derivatives

In this essey, I reserve the notion o f the ’ ’avant-garde” for that artistic position as shaped in that time and place, namely, in Soviet Russia from the October Revolution to

[r]

Then, as a counter-example to uniqueness in the range 0.5 &lt; m &lt; 1.0, Cosserat [12] showed for the circular domain, that a non-unique solution for the displacement boundary

T ak ą była zem sta G rzym alitów za udział sędziego kaliskiego w konfederacji pyzdrskiej. P rzyszedł na to czas jednak do­ piero po upływ ie rozejm u, kiedy i

For this purpose the method of transforming of higher order problems to recurrent systems of the problems is used and the weak maximum principle for parabolic

The carried out analysis of this synanthropization process was based on the example of stations of 31 anthropophytes of Poaceae family located in railway grounds