• Nie Znaleziono Wyników

Charge symmetry breaking in $dd\rightarrow ^{4}He\pi ^{0}$ with WASA-at-COSY

N/A
N/A
Protected

Academic year: 2022

Share "Charge symmetry breaking in $dd\rightarrow ^{4}He\pi ^{0}$ with WASA-at-COSY"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Charge symmetry breaking in dd4 He π 0 with WASA-at-COSY

WASA-at-COSY Collaboration

P. Adlarson

a,1

, W. Augustyniak

b

, W. Bardan

c

, M. Bashkanov

d,e

, F.S. Bergmann

f

, M. Berłowski

g

, H. Bhatt

h

, A. Bondar

i,j

, M. Büscher

k,l,2,3

, H. Calén

a

, I. Ciepał

c

, H. Clement

d,e

, D. Coderre

k,l,m,4

, E. Czerwi ´nski

c

, K. Demmich

f

, E. Doroshkevich

d,e

, R. Engels

k,l

, A. Erven

n,l

, W. Erven

n,l

, W. Eyrich

o

, P. Fedorets

k,l,p

, K. Föhl

q

, K. Fransson

a

, F. Goldenbaum

k,l

, P. Goslawski

f

, A. Goswami

k,l,r

, K. Grigoryev

k,l,s,5

, C.-O. Gullström

a

, C. Hanhart

k,l,t

, F. Hauenstein

o

, L. Heijkenskjöld

a

, V. Hejny

k,l,

, B. Höistad

a

, N. Hüsken

f

, L. Jarczyk

c

, T. Johansson

a

, B. Kamys

c

, G. Kemmerling

n,l

, F.A. Khan

k,l

, A. Khoukaz

f

,

D.A. Kirillov

u

, S. Kistryn

c

, H. Kleines

n,l

, B. Kłos

v

, W. Krzemie ´n

c

, P. Kulessa

w

, A. Kup´s ´c

a,g

, A. Kuzmin

i,j

, K. Lalwani

h,6

, D. Lersch

k,l

, B. Lorentz

k,l

, A. Magiera

c

, R. Maier

k,l

,

P. Marciniewski

a

, B. Maria ´nski

b

, M. Mikirtychiants

k,l,m,s

, H.-P. Morsch

b

, P. Moskal

c

, H. Ohm

k,l

, I. Ozerianska

c

, E. Perez del Rio

d,e

, N.M. Piskunov

u

, P. Podkopał

c

,

D. Prasuhn

k,l

, A. Pricking

d,e

, D. Pszczel

a,g

, K. Pysz

w

, A. Pyszniak

a,c

, C.F. Redmer

a,1

, J. Ritman

k,l,m

, A. Roy

r

, Z. Rudy

c

, S. Sawant

k,l,h

, S. Schadmand

k,l

, T. Sefzick

k,l

, V. Serdyuk

k,l,x

, B. Shwartz

i,j

, R. Siudak

w

, T. Skorodko

d,e

, M. Skurzok

c

, J. Smyrski

c

, V. Sopov

p

, R. Stassen

k,l

, J. Stepaniak

g

, E. Stephan

v

, G. Sterzenbach

k,l

, H. Stockhorst

k,l

, H. Ströher

k,l

, A. Szczurek

w

, A. Täschner

f

, A. Trzci ´nski

b

, R. Varma

h

, M. Wolke

a

,

A. Wro ´nska

c

, P. Wüstner

n,l

, P. Wurm

k,l

, A. Yamamoto

y

, L. Yurev

x,7

, J. Zabierowski

z

, M.J. Zieli ´nski

c

, A. Zink

o

, J. Złoma ´nczuk

a

, P. ˙Zupra ´nski

b

, M. ˙Zurek

k,l

aDivisionofNuclearPhysics,DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box516,75120Uppsala,Sweden bDepartmentofNuclearPhysics,NationalCentreforNuclearResearch,ul.Hoza69,00-681,Warsaw,Poland

cInstituteofPhysics,JagiellonianUniversity,ul.Reymonta4,30-059Kraków,Poland

dPhysikalischesInstitut,Eberhard-Karls-UniversitätTübingen,AufderMorgenstelle14,72076Tübingen,Germany

eKeplerCenterforAstroandParticlePhysics,EberhardKarlsUniversityTübingen,AufderMorgenstelle14,72076Tübingen,Germany fInstitutfürKernphysik,WestfälischeWilhelms-UniversitätMünster,Wilhelm-Klemm-Str.9,48149Münster,Germany

gHighEnergyPhysicsDepartment,NationalCentreforNuclearResearch,ul.Hoza69,00-681,Warsaw,Poland hDepartmentofPhysics,IndianInstituteofTechnologyBombay,Powai,Mumbai,400076,Maharashtra,India iBudkerInstituteofNuclearPhysicsofSBRAS,11akademikaLavrentievaprospect,Novosibirsk,630090,Russia jNovosibirskStateUniversity,2PirogovaSt.,Novosibirsk,630090,Russia

kInstitutfürKernphysik,ForschungszentrumJülich,52425Jülich,Germany lJülichCenterforHadronPhysics,ForschungszentrumJülich,52425Jülich,Germany

mInstitutfürExperimentalphysikI,Ruhr-UniversitätBochum,Universitätsstr.150,44780Bochum,Germany nZentralinstitutfürEngineering,ElektronikundAnalytik,ForschungszentrumJülich,52425Jülich,Germany

oPhysikalischesInstitut,Friedrich-Alexander-UniversitätErlangen–Nürnberg,Erwin-Rommel-Str.1,91058Erlangen,Germany

pInstituteforTheoreticalandExperimentalPhysics,StateScientificCenteroftheRussianFederation,BolshayaCheremushkinskaya25,117218Moscow,Russia

*

Correspondingauthorat:InstitutfürKernphysik,ForschungszentrumJülich,52425Jülich,Germany.

E-mailaddress:v.hejny@fz-juelich.de(V. Hejny).

1 Presentaddress:InstitutfürKernphysik,JohannesGutenberg-UniversitätMainz,Johann-Joachim-BecherWeg45,55128Mainz,Germany.

2 Presentaddress:PeterGrünbergInstitut,PGI-6ElektronischeEigenschaften,ForschungszentrumJülich,52425Jülich,Germany.

3 Presentaddress:InstitutfürLaser- undPlasmaphysik,Heinrich-HeineUniversitätDüsseldorf,Universitätsstr.1,40225Düsseldorf,Germany.

4 Presentaddress:AlbertEinsteinCenterforFundamentalPhysics,UniversitätBern,Sidlerstrasse5,3012Bern,Switzerland.

5 Presentaddress:III.PhysikalischesInstitutB,Physikzentrum,RWTHAachen,52056Aachen,Germany.

6 Presentaddress:DepartmentofPhysicsandAstrophysics,UniversityofDelhi,Delhi,110007,India.

7 Presentaddress:DepartmentofPhysicsandAstronomy,UniversityofSheffield,HounsfieldRoad,Sheffield,S37RH,UnitedKingdom.

http://dx.doi.org/10.1016/j.physletb.2014.10.029

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

qII.PhysikalischesInstitut,Justus-Liebig-UniversitätGießen,Heinrich-Buff-Ring16,35392Giessen,Germany rDepartmentofPhysics,IndianInstituteofTechnologyIndore,KhandwaRoad,Indore,452017,MadhyaPradesh,India sHighEnergyPhysicsDivision,PetersburgNuclearPhysicsInstitute,OrlovaRosha2,Gatchina,Leningraddistrict188300,Russia tInstituteforAdvancedSimulation,ForschungszentrumJülich,52425Jülich,Germany

uVekslerandBaldinLaboratoryofHighEnergy Physics,JointInstituteforNuclearPhysics,Joliot-Curie6,141980Dubna,Moscowregion,Russia vAugustChełkowskiInstituteofPhysics,UniversityofSilesia,Uniwersytecka4,40-007,Katowice,Poland

wTheHenrykNiewodnicza´nskiInstituteofNuclearPhysics,PolishAcademyofSciences,152RadzikowskiegoSt,31-342Kraków,Poland xDzhelepovLaboratoryofNuclearProblems,JointInstituteforNuclearPhysics,Joliot-Curie6,141980Dubna,Moscowregion,Russia yHighEnergyAcceleratorResearchOrganization KEK,Tsukuba,Ibaraki305-0801,Japan

zDepartmentofCosmicRayPhysics,NationalCentreforNuclearResearch,ul.Uniwersytecka5,90-950Łód´z,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received10July2014

Receivedinrevisedform10September 2014

Accepted10October2014 Availableonline16October2014 Editor:V.Metag

Keywords:

Chargesymmetrybreaking Deuteron–deuteroninteractions Pionproduction

Chargesymmetrybreaking(CSB)observablesareasuitableexperimentaltooltoexamineeffectsinduced byquarkmassesonthenuclearlevel.PrevioushighprecisiondatafromTRIUMFandIUCFarecurrently usedtodevelopaconsistentdescriptionofCSBwithintheframeworkofchiralperturbationtheory.In thiswork the experimentalstudies onthe reactiondd→4Heπ0have been extendedtowards higher excessenergiesinordertoprovideinformation onthecontributionof p-waves inthefinalstate. For this,anexclusivemeasurementhasbeencarriedoutatabeammomentumofpd=1.2 GeV/c usingthe WASA-at-COSYfacility.Thetotalcrosssectionamountstoσtot= (118±18stat±13sys±8ext)pb andfirst dataonthedifferentialcrosssectionareconsistentwiths-wavepionproduction.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Introduction

Within the Standard Model there are two sources of isospin violation,8 namely the electro-magnetic interaction and the dif- ferences in the masses ofthe lightest quarks [1,2]. Especiallyin situationswhereoneisabletodisentanglethesetwosources,the observation of isospin violation in hadronic reactions is a direct windowtoquarkmassratios[2–4].

The effectivefield theory forthe Standard Model in the MeV rangeischiralperturbationtheory(ChPT).Itmapsallsymmetries ofthe Standard Model onto hadronic operators — their strength thenneedstobefixedeitherfromexperimentorfromlatticeQCD calculations. At leading order the only parameters are the pion massandthepiondecayconstantwhicharethebasisforaseries offamouslow energytheoremsinhadron–hadron scattering(see, forexample,Ref. [5]). Althoughat subleadingorders thenumber ofaprioriunknownparametersincreases,thetheorystillprovides non-trivial links between different operators. A very interesting exampleisthecloselinkbetweenthequarkmassinducedproton–

neutronmassdifference,Mqmpn,and, atleading order,isospinvi- olating

π

N scattering,theWeinbergterm.Ingeneral,itisdifficult togetaccesstoquark masseffectsinlow energyhadronphysics:

byfar the largestisospin violating effectisthe pionmass differ- ence,whichalsodrivesthespectacularenergydependenceofthe

π

0-photoproduction amplitude near threshold (see Ref. [6] and the references therein). Thus, it is important to use observables wherethepion massdifference doesnot contribute. Anexample is chargesymmetry breaking(CSB)observables—charge symme- try isan isospin rotationby 180degrees that exchangesup and downquarks—asthepionmasstermis invariantunderthisro- tation.Forthiscase, theimpactofsoftphotonshasbeenstudied systematically[7–11]andcanbecontrolled.Alreadyin1977Wein- bergpredictedahugeeffect(upto30%differenceinthescattering lengthsfor p

π

0 andn

π

0)of CSBin

π

0N scattering [1](seealso Ref.[12] fortherecentextraction ofthesequantitiesfrompionic atomsdata).

8 Ignoringtinyeffectsinducedbytheelectro-weaksector.

While the

π

0p scattering length might be measurable in po- larized neutralpion photoproductionvery near threshold[13], it isnotpossible tomeasurethen

π

0 channel. Asan alternativeac- cessto CSBpion–nucleonscatteringitwas suggestedinRef. [14]

to use N N induced pion production instead. There have been two successful measurements of corresponding CSB observables, namely a measurement of Af b(pnd

π

0) [15] — the forward–

backwardasymmetryinpnd

π

0—and ofthetotalcrosssection ofdd4He

π

0 closetothereactionthreshold[16].

ThefirstexperimentwasanalyzedusingChPTinRef.[17](see also Ref. [18]), where it was demonstrated that Af b(pnd

π

0) isdirectly proportionalto Mqmpn,while theeffectof

π

η

mix- ing, previously believedto completelydominate thisCSBobserv- able [19], was shownto be subleading.The value for Mqmpn ex- tractedturned outtobe consistentwithother,directcalculations of thispart based on dispersiveanalyses [2,20,21] andfromlat- tice.SeeRef.[22]forthelatestreview.Inordertocross-check the systematicsandtoeventually reduce theuncertainties, additional experimentalinformationneedstobeanalyzed.

The first theoretical results for dd4He

π

0 are presented in [23,24]. The studies show that the relative importance of the various charge symmetry breaking mechanisms is very different compared to pnd

π

0. Forexample, softphoton exchange may significantlyenhancethecrosssectionsfordd4He

π

0[25].Fur- thermore, a significant sensitivity of the results to the nuclear potential model was reported in Ref. [26], which calledfor a si- multaneous analysis of CSB in the N N scattering length and in dd4He

π

0[26].Thus,aspartofaconsistentinvestigationofCSB inthetwonucleonsector,pnd

π

0anddd4He

π

0shouldhelp tofurtherconstraintherelevantCSBmechanisms.

Themainchallengeinthecalculationofdd4He

π

0 istoget theoreticalcontrolovertheinitialstateinteractions:highaccuracy wave functions are needed fordd4N in low partial waves at relativelyhighenergies.Oneprerequisitetocontrolthisistheear- lier WASA-at-COSY measurement ofdd3Hen

π

0 [27], which is allowed by charge symmetry and partially shares the same ini- tial state as dd4He

π

0. In addition, higher partial waves are predicted to be very sensitive to the CSB N NN transition potential that is difficult to access in other reactions. In lead- ing order in chiral perturbation theory this potential is known.

(3)

Fig. 1. Cumulativeprobabilitydistributionsfrom thekinematicfitusedforevent selectionplottedasprobabilityfor the4He hypothesisversus theprobabilityfor the 3He hypothesis.Left:distributionforMonte-Carlosimulatedsignaleventsfordd4Heπ0,middle:distributionforMonte-Carlosimulatedeventsfordd3Henπ0,right:

distributionfordataandtheappliedprobabilitycut.

Thus, a measurement of, for example, p-waves provides an ad- ditional, non-trivial test of our current understanding of isospin violation in hadronic systems. Future theoretical CSB studies for dd4He

π

0 can be based on recent developments in effective field theoriesforfew-nucleon systems[28] aswell asforthere- actionN NN N

π

[29–31],thus promisingamodel-independent analysisofthedata.

Whiletheprevious measurementsofdd4He

π

0 closeto re- action threshold were limited to the total cross section [16], in ordertoextractconstraintsonhigherpartialwavesanynewmea- surementathigherexcess energiesinadditionhastoprovide in- formation on the differential cross section. Forthis, an exclusive measurementdetecting the4He ejectile aswellasthetwo decay photonsofthe

π

0 hasbeen carriedout utilizingthe samesetup usedfordd3Hen

π

0 [27].Thelatterreactionwas alsousedfor normalization.

2. Experiment

The experiment was carried out at the Institute for Nuclear Physics of the Forschungszentrum Jülich in Germany using the CoolerSynchrotron COSY[32] together withthe WASA detection system [33]. For the measurement of dd4He

π

0 at an excess energy of Q60 MeV a deuteron beam with a momentum of 1.2 GeV/c wasscatteredonfrozendeuteriumpellets providedby an internal pellet target. The 4He ejectile and the two photons from the

π

0 decay were detected by the Forward Detector and theCentralDetectoroftheWASAfacility,respectively.Theexperi- mentalsetupandtriggerconditionswerethesameasdescribedin Ref.[27].

3. Dataanalysis

The basic analysis leading to eventsamples with one helium andtwophotonsinfinalstatefollowsthestrategyusedfordd

3Hen

π

0 outlinedinRef.[27].Comparedtothisreaction,however, the charge symmetry breaking reactiondd4He

π

0 has a more thanfourordersofmagnitudesmallercrosssection.Theonlyother channelwith4He andtwophotonsinfinalstateisthedoublera- diativecapturereactiondd4He

γ γ

.The crosssectionsforboth reactionsarenotlargeenough toprovideavisualsignaturefor4He in thepreviously used E–E plots from the ForwardDetector.

Thus, all 3He and 4He candidatestogether withthe two photons havebeen testedagainst the hypotheses dd4He

γ γ

(“4He hy- pothesis”) anddd3Hen

γ γ

(“3He hypothesis”) by means of a kinematicfit.Besidestheoverallenergyandmomentumconserva- tion noother constraintshave beenincluded. Especially, thereis no constraintonthe invariant mass ofthe two photonsin order

Fig. 2. Missingmassplotforthereactiondd4He X .Thedifferentcontributions fittedtothespectrumaredoubleradiativecapturedd4Heγ γ (greendashed), thereactiondd3Henπ0 (bluedotted,added)andthesumofallcontributions includingthesignal(redsolid).

to leavea decisivemissing-mass plotandnot tointroducea fake 4He

π

0 signal.

Forfinaleventclassificationthecumulativeprobabilities P(

χ

2, n.d.f.) for the two hypotheses have been plotted as probability for the 4He hypothesis versus the probability for the 3He hy- pothesis (see Fig. 1). The data (right plot) have been compared to Monte-Carlo generated samples of dd4He

π

0 events (left plot) and dd3Hen

π

0 events (middle plot). Events originating fromdd4He

π

0populatethelowprobabilityregionforthe3He hypothesis andform a uniformdistribution forthe 4He hypoth- esis. As there is no pion constraint in the fit, events from the double radiative capture reaction show the same signature. For dd3Hen

π

0 thesituationisopposite.Theindicatedcutisbased ontheMonte-Carlosimulations,buthasbeenoptimizedbymaxi- mizingthestatisticalsignificanceofthe

π

0 signalinfinalmissing mass plot.In addition,ithasbeen checkedthatthe resultissta- blewithinthestatisticalerrorsagainstvariationsoftheprobability cut. For the simulations the standard Geant3 [34] based WASA Monte-Carlopackagehasbeenused,whichincludesthefulldetec- torsetupandwhichhasalreadybeenbenchmarkedagainstawide rangeofreactionsfromtheWASA-at-COSYphysicsprogram.After thisanalysisstepthecontributionfrommisidentified3He wasre- ducedbyaboutfourordersofmagnitude.

In a next step, the resulting four momenta based on the fit hypothesis dd4He

γ γ

havebeenusedto calculatethemissing massmX indd4He X asafunctionofthe center-of-massscat- teringangleθ ofthe particle X .Fig. 2showsapeakatthepion

(4)

Fig. 3. Missingmassplotsforthefourdifferentangularbins(scatteringangleofthepioninthec.m.system).Thecolorcodefortheindividualcontributionsisthesameas inFig. 2.

massontopofabroadbackground.Inordertoextractthe num- berofsignal eventsthebackgroundinthepeak regionhasto be described andsubtracted. Instead ofa (rather arbitrary) fitusing a polynomial, the shape of signal and background has been re- producedusinga composition ofphysics reactions withadouble chargednucleus and two photons in the final state. Any further sources ofbackground— physics aswell asinstrumental —have alreadybeeneliminatedbytheanalysisstepsdescribedinRef.[27]

and the subsequent kinematic fit. The signal has then been ex- tractedbyfittingalinearcombinationofthecorrespondingMonte- Carlogeneratedhigh-statisticstemplatedistributionsforthethree reactions

dd4He

γ γ

(double radiative capture) using 3-body phase space(greendashed),plus

dd3Hen

π

0 using the model described in Ref. [27] (blue dotted)forwhichthe3He isfalselyidentifiedas4He,plus

dd4He

π

0 using2-bodyphase space(i.e. plains-wave, red solid).

PleasenotethatinFig. 2aswell asinFig. 3thecumulated distri- butionsare shown,e.g. thered solid curverepresentsthe sumof allcontributions.

For the differential cross section the data have been divided into four angular bins within the detector acceptance (−0.85≤ cosθ0.75).Independentfitsofthedifferentcontributionslisted

above have been performed for each bin to address possible anisotropies. In the course of thefit two systematic effects have beenobserved,whicharediscussedinthefollowing.

First, the background originating from misidentified 3He is slightlyshiftedcompared totheMonte-Carlo simulations.Theef- fectisangulardependentandislargestatforwardangles.Possible reasons are a mismatch in the actual beam momentum, a dif- ferent amountof insensitive material inMonte-Carlo simulations compared totherealexperiment orsystematicdifferencesin the simulateddetectorresponsefor3He and4He —thelimitedstatis- ticsdidnot allowfora detailedstudyoftheoriginofthat effect.

Thebackgroundstemmingfromdd3Hen

π

0issensitivetothese effectsastheenergylossesfroma(true)3He ejectileareusedfor energyreconstruction of a (falselyidentified)4He.The mismatch canbe compensatedby introducinganangulardependentscaling factoronthemissingmassaxisforthe3Hen

π

0background,which hasbeenincluded inthefitasadditionalfree parameter.Forthe angularbinsfrombackwardtoforwardthesefactorsare1.0,0.99, 0.97 and0.94,respectively.Astheresultingfitsdescribetheshape ofthedataespeciallyintheregionofthepionpeak,noadditional systematicerrorhasbeenassignedtothiseffect.

The second systematiceffect concerns a mismatchinthe low mass rangem0.11 GeV/c2 in the mostbackward angular bin.

According to the fit only events fromthe reaction dd4He

γ γ

contribute in thismass region. The model used forthis channel was3-bodyphasespace,whichwasnotexpectedtoprovideaper- fect description. However, with the dominatingbackground from

(5)

dd3Hen

π

0 in a wide mass range,it is currently not possible todisentangle thetwocontributions preciselyenoughinorderto verifyany moreadvanced theoretical model —this issuewill be addressedinafollow-upexperiment,seebelow.Consequently,the final fit excludes the corresponding missing mass range (consis- tentlyinall angularbins).Basedon thedifferencetothefit with the low mass region included a corresponding systematic uncer- taintyforthiseffecthasbeenassignedintheresult.

Fig. 3shows the fittedmissing massspectra for the different binsincosθ together withthefitresult. Thechosenansatz pro- videsagood overalldescriptionofthe fulldataset.Any testsfor furthersystematiceffects(accordingtothedefinitioninRef.[35]), forexample concerningrateeffects andselection cutsin theba- sicanalysis(seeRef.[27]),didnotrevealanyadditionalsystematic uncertainties.

4. Results

For the acceptance correction an isotropic angular distribu- tion has been assumed. For absolute normalization the reaction dd3Hen

π

0 hasbeenused. Theresultingdifferential crosssec- tionsextractedfromFig. 3are

d

σ

d

Ω

 −

0

.

85

cos

θ

≤ −

0

.

45



= (

17

.

1

±

3

.

8

±

4

.

0fit

)

pb

/

sr

,

(1) d

σ

d

Ω

 −

0

.

45

cos

θ

≤ −

0

.

05



= (

6

.

6

±

2

.

4

)

pb

/

sr

,

(2) d

σ

d

Ω

 −

0

.

05

cos

θ

0

.

35



= (

5

.

5

±

2

.

2

)

pb

/

sr

,

and (3) d

σ

d

Ω



0

.

35

cos

θ

0

.

75



= (

8

.

4

±

2

.

8

)

pb

/

sr

.

(4)

Ingeneral,onlystatisticalerrorsaregiven, exceptforthefirstbin wheretheuncertaintycausedby thesystematiceffectinthelow massregion hasbeenincluded.Asystematicerrorof 10% forlu- minositydetermination and7% for the normalizationto external dataiscommontoall numbers.Integratingtheindividualresults, the (partial) total cross section within the detector acceptance amounts to

σ

totacc

= (

94

±

14stat

±

10sys

±

6ext

)

pb (5) withthesystematicerror originatingfromluminosity determina- tionandtheuncertaintyfromthedifferentfitmethods.Theexter- nalnormalizationerrorhasbeenpropagated fromtheluminosity determination for dd3Hen

π

0 (see Ref. [27]). Extrapolation to thefull phasespacebyassuminganisotropicdistributionyields

σ

tot

= (

118

±

18stat

±

13sys

±

8ext

)

pb

.

(6) This result can be compared with the values measured close to thresholdbydividingoutphasespace(seeFig. 4).Aconstantvalue couldbeinterpretedasadominatings-wave,butonehastokeep inmindthat theenergydependenceoftheformationofa4He in the4N finalstatemighthavesomeinfluencehere,too.

Fig. 5showsthedifferentialcrosssection.Duetotheidentical particlesintheinitialstate,oddandevenpartialwavesdonotin- terfereandthe angulardistribution issymmetric withrespectto cosθ=0. As the p-wave ands–d interference terms contribute to the quadraticterm andthe p-wave also addsto the constant term, the differentpartial wavescannot be directly disentangled.

However,a fitincludingtheLegendrepolynomials P0(cosθ)and P2(cosθ) — although not excluding — doesnot show any evi- denceforcontributionsofhigherpartialwaves:

Fig. 4. Energydependenceofthereactionamplitudesquared|A|2.Intheabsenceof initialandfinalstateinteractions aconstantamplitudewouldindicatethatonly s-waveis contributing.Theredfullcirclecorrespondstothetotalcross section giveninthetext.(Forinterpretationofthereferencestocolorinthisfigureleg- end,thereaderisreferredtothewebversionofthisarticle.)

Fig. 5. Differentialcrosssection.Theerrorsbarsshowthestatisticaluncertainties.In thefirstbintheadditionalsystematicuncertaintyfromthefithasbeenadded(see text).Thebluedashedlinerepresentsthetotalcrosssectiongiveninthetextas- suminganisotropicdistribution,thesolidredcurveshowsthefitwiththeLegendre polynomialsP0andP2.

d

σ

d

Ω = (

9

.

8

±

2

.

6

)

pb

/

sr

·

P0



cos

θ

 + (

9

.

5

±

7

.

4

)

pb

/

sr

·

P2



cos

θ



.

(7)

Here, the twocoefficients are stronglycorrelated withthecorre- lationparameter0.85,i.e. thereadershould notinterpretthetwo contributionsasindependentresults.

Based on thefitresults afirst estimate ofthe totalcross sec- tionofdd4He

γ γ

hasbeenextractedassumingahomogeneous 3-bodyphasespace.Itamountsto

σ

tot

= (

0

.

92

±

0

.

07stat

±

0

.

10sys

±

0

.

07norm

)

nb

.

(8) Itshouldbenotedthatthisresultdependsontheunderlyingmod- els forthereactionsdd3Hen

π

0 anddd4He

γ γ

.Thismodel dependenceisnotincludedinthegivensystematicerror.

5. Summaryandconclusions

In this letter results were presented for a measurement of the chargesymmetry breakingreactiondd4He

π

0 atan excess

(6)

energy of60 MeV. The energy dependence ofthe square of the productionamplitude mightindicate the on-set ofhigher partial wavesorsome unusualenergydependenceof thes-wave ampli- tude — given the current statistical error, no conclusion on the strength of the higher partial waves is possible from the differ- entialcrosssection.

However, since within chiral perturbation theory the leading andnext-to-leading p-wave contribution does not introduce any newfreeparameter(it isexpectedtobedominatedbytheDelta- isobar),thedataonthestrengthofhigherpartialwavespresented in this work will still provide a non-trivial constraint for future theoreticalanalyses.

The results presented hereare based on a two-week run us- ing the standard WASA-at-COSY setup. Based on the experiences gainedduringthisexperimentanother8weekmeasurementwith amodifieddetectorsetupoptimizedforatime-of-flightmeasure- mentoftheforward goingejectiles hasbeenperformedrecently.

In total, an increase of statistics by nearly a factor of 10 and significantlyreducedsystematicuncertainties canbe expected. In particular,the experimenthas beendesigned toprovide a better discriminationofbackgroundeventsfromdd3Hen

π

0.

Acknowledgements

Wewouldliketothankthetechnicalandadministrativestaffat theForschungszentrumJülich,especiallyattheCOolerSYnchrotron COSYandattheparticipatinginstitutes. Thisworkhasbeensup- portedin partby the German Federal Ministryof Education and Research(BMBF), the PolishMinistry ofScience andHigher Edu- cation(grantNos. NN202078135 andNN202285938),thePol- ishNational ScienceCenter (grant No.2011/01/B/ST2/00431), the Foundation For Polish Science (MPD), Forschungszentrum Jülich (COSY-FFE) and the European Union Seventh Framework Pro- gramme(FP7/2007–2013)undergrantagreementNo.283286.

References

[1]S.Weinberg,Trans.N.Y.Acad.Sci.38(1977)185–201.

[2]J.Gasser,H.Leutwyler,Phys.Rep.87(1982)77–169.

[3]G.Miller,B.Nefkens,I.Šlaus,Phys.Rep.194(1990)1–116.

[4]H.Leutwyler,Phys.Lett.B378(1996)313–318.

[5]S.Weinberg,Phys.Rev.Lett.17(1966)616–621.

[6]V.Bernard,B.Kubis,U.-G. Meißner,Eur.Phys.J.A25(2005)419–425.

[7]U.-G.Meißner,S.Steininger,Phys.Lett.B419(1998)403–411.

[8]G.Müller,U.-G.Meißner,Nucl.Phys.B556(1999)265–291.

[9]N.Fettes,U.-G.Meißner,Phys.Rev.C63(2001)045201.

[10]M.Hoferichter,B.Kubis,U.-G.Meißner,Phys.Lett.B678(2009)65.

[11]J.Gasser,etal.,Eur.Phys.J.C26(2002)13–34.

[12]V.Baru,etal.,Phys.Lett.B694(2011)473–477;

V.Baru,etal.,Nucl.Phys.A872(2011)69–116.

[13]A.Bernstein,Phys.Lett.B442(1998)20–27.

[14]U.vanKolck,J.Niskanen,G.Miller,Phys.Lett.B493(2000)65–72.

[15]A.Opper,etal.,Phys.Rev.Lett.91(2003)212302.

[16]E.Stephenson,etal.,Phys.Rev.Lett.91(2003)142302.

[17]A.Filin,etal.,Phys.Lett.B681(2009)423–427.

[18]D.R.Bolton,G.A.Miller,Phys.Rev.C81(2010)014001.

[19]J.A.Niskanen,Few-BodySyst.26(1999)241–249.

[20]W.Cottingham,Ann.Phys.(N.Y.)25(1963)424–432.

[21]A.Walker-Loud,C.E.Carlson,G.A.Miller,Phys.Rev.Lett.108(2012)232301.

[22]A.Walker-Loud,PoSLATTICE2013(2014)013.

[23]A.Gårdestig,etal.,Phys.Rev.C69(2004)044606.

[24]A.Nogga,etal.,Phys.Lett.B639(2006)465–470.

[25]T.Lähde,G.Miller,Phys.Rev.C75(2007)055204.

[26]A.C.Fonseca,R.Machleidt,G.A.Miller,Phys.Rev.C80(2009)027001.

[27]P.Adlarson,etal.,WASA-at-COSYCollaboration,Phys.Rev.C88(2013)014004.

[28]E.Epelbaum,H.-W.Hammer,U.-G.Meißner,Rev.Mod.Phys.81(2009)1773.

[29]A.A.Filin,etal.,Phys.Rev.C85(2012)054001.

[30]A.A.Filin,etal.,Phys.Rev.C88(2013)064003.

[31]V.Baru,C.Hanhart,F.Myhrer,Int.J.Mod.Phys.E23(2014)1430004.

[32]R.Maier,etal.,Nucl.Phys.A626(1997)395c.

[33]H.H.Adam,etal.,WASA-at-COSYCollaboration,arXiv:nucl-ex/0411038,2004.

[34] GEANT- detectordescriptionandsimulationtool,CERNProgramLibraryLong WriteupW5013.

[35]R.Barlow,arXiv:hep-ex/0207026,2002.

Cytaty

Powiązane dokumenty

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut Justus-Liebig-Universität Giessen,

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

53b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 54 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,