• Nie Znaleziono Wyników

Wave set-up 2: Experimental investigation on normally incident waves

N/A
N/A
Protected

Academic year: 2021

Share "Wave set-up 2: Experimental investigation on normally incident waves"

Copied!
42
0
0

Pełen tekst

(1)

Progress r e p o r t wave set-up i n v e s t i g a t i o n (SK 31)

P.J. Visser

D e l f t U n i v e r s i t y o f Technology, Department of C i v i l Engineering D e l f t , The Netherlands

(2)

CONTENTS page 1 I n t r o d u c t i o n 1 2 Theory 3 3 Experimental procedure • 7 4 The waves 9 5 Experimental r e s u l t s 10

6 Summary, d i s c u s s i o n and suggestions f o r f u r t h e r work 15

Appendix A: references 18 Appendix B: symbols 20 Appendix C:. tables 22 Appendix D: f i g u r e s 28

(3)

I INTRODUCTION

When surface v/aves approach a coast and enter shallow water, the mean water l e v e l decreases s l i g h t l y u n t i l the breaker l i n e . This

i s c a l l e d wave set-down (negative wave s e t - u p ) . On the shoreward side of the breaker l i n e , i n the s u r f zone, where the wave h e i g h t decreases, the mean water l e v e l r i s e s and comes above the s t i l l water l e v e l ( a p a r t from p o s s i b l e wind e f f e c t s ) . This i s c a l l e d wave

set-up. The magnitude of the wave set-up i s d e f i n e d as t h e v e r t i c a l d i s t a n c e between mean and s t i l l water l e v e l .

The phenomenon i s important i n r e l a t i o n t o

~ c u r r e n t s , both p a r a l l e l and p e r p e n d i c u l a r t o the coast ( l o n g -shore c u r r e n t s , set-up c u r r e n t s , r i p c u r r e n t s ) and thus also , f o r t r a n s p o r t of sediment i n and near the breaker zone,

- design and c o n t r o l of shore p r o t e c t i o n works as d i k e s , sea w a l l s , beaches and dunes,

The f i r s t model and f i e l d observations of wave set-up are dated to about 1960 (see references i n [ l , 2, 3 j ) . The f i r s t t h e o r e t i c a l expressions f o r wave set-up were d e r i v e d by s e v e r a l researchers i n the p e r i o d 1961-1964, a f t e r the i n t r o d u c t i o n of the concept of r a d i a t i o n s t r e s s .

I n 1976 an i n v e s t i g a t i o n i n t o wave set-up due t o o b l i q u e l y i n c i d e n t r e g u l a r waves has been s t a r t e d i n the Laboratory of F l u i d Mechanics of the D e l f t U n i v e r s i t y of Technology. This r e p o r t describes the f i r s t series of experiments, namely the experiments w i t h normally i n c i d e n t waves. The purpose of these experiments i s t o make a l i n k w i t h other wave set-up experiments, e s p e c i a l l y the measurements by Bowen, Inman and Simmons [1] i n a flume and one of the wave set-up experiments by the D e l f t H y d r a u l i c s Laboratory i n a flume, which were performed i n 1975 and 1976.

Chapter 2 contains a s h o r t resume of the theory of wave set-up i n normally i n c i d e n t waves. I n chapter 3 the experimental procedure

(4)

2

i n the wave basin simultaneously w i t h the d e s i r e d wave (and may h i n d e r the steady and r e g u l a r wave p a t t e r n ) . Chapter 5 presents the experimental r e s u l t s and the comparison w i t h

r e s u l t s by other i n v e s t i g a t o r s . Chapter 6 contains the summary, d i s c u s s i o n and suggestions f o r f u r t h e r work.

(5)

2 THEORY

This chapter contains a s h o r t t h e o r e t i c a l d e s c r i p t i o n on wave set-up i n waves of perpendicular i n c i d e n c e . Reference i s made to [ 4 ] f o r the r e s t r i c t i o n s and the assumptions vjhich have been made and f o r the d e r i v a t i o n of s e v e r a l equations.

The equation d e s c r i b i n g the p o s i t i o n of the mean water l e v e l reads _ .dS

where h = s t i l l water depth,

q = wave set-up ( d i f f e r e n c e between mean and s t i l l water l e v e l ) ,

X = h o r i z o n t a l c o o r d i n a t e , normal t o t h e shore, p o s i t i v e

shorewards,

S = component of r a d i a t i o n s t r e s s t e n s o r .

XX

Equation (2.1) f o l l o w s from conservation of x-momentum. The r a d i a t i o n s t r e s s i s d e f i n e d as t h e c o n t r i b u t i o n of t h e waves t o the momentum t r a n s p o r t tensor. The concept of r a d i a t i o n s t r e s s has been developed by Longuet-Higgins and Stewart [ 2 , 5, 6, 7, 8 ] and independently by D o r r e s t e i n [ 3 ] and Lundgren (see [ 1 , 9, 10] ) .

I f A = wave l e n g t h , k = 2 T T/ A = wave number and H = wave h e i g h t , then the x-component of the r a d i a t i o n s t r e s s through second order of wave amplitude i s g i v e n by

which i n shallow.water reduces t o

S ^ ^ = l j p g / ( 2 . 3 )

Expression (2.2) f o l l o w s from l i n e a r A i r y wave t h e o r y , i n which a small wave amplitude i s supposed.

Two d i f f e r e n t r e g i o n s , one seaward» and one shoreward^ o f the breaker

(6)

4

Zone seawardsf o f the breaker l i n e

Outside the s u r f zone the waves have an ordered character: the motion i s n e a r l y i r r o t a t i o n a l and contains l i t t l e turbulence. The d i s s i p a t i o n of energy i s r e l a t i v e l y s m a l l , so i t can be

assumed t h a t energy i s approximately conserved:

1

2

-5- pg H nc = constant,' (2.4)

o

where c = phase v e l o c i t y of the waves, nc = group v e l o c i t y of the wave t r a i n .

I n t h i s r e g i o n the mean f r e e surface can be computed [ l , 4, 7, 9 ] to g i v e n =

-2

1 • kH

8 s i n h 2kh (2.5)

I n shallow water t h i s expression becomes

T) =

-1

6

h (2.6)

Combination of (2.4) and (2.5) y i e l d s

n = - H :1 „2 , coth kh k (2.7)

8 o o 2kh + s i n h 2kh

where = deep water wave h e i g h t , k^ = deep water wave number.

From wave theory f o l l o w s t h a t k h ( t g h kh) = k h , so

n = -H^ k f (k h) ,

0 0 o

(2.8)

where f ( k h) = f u n c t i o n of k and the l o c a l s t i l l water depth h. o o

(7)

The wave set-down a t the breaker l i n e f o l l o w s from (2.6) and, because rii h, can be w r i t t e n as

'b 16 ^ \ ' (2.9)

H.

b

where y (2.10)

= breaker h e i g h t ,

h^+n^ = mean water depth a t the breaker l i n e .

I n f a c t two regions seaward of the breaker l i n e can be d i s t i n q u i s h e d , namely (1) w e l l o u t s i d e the s u r f zone where the l i n e a r theory i s

most a p p l i c a b l e and (2) near the breaker l i n e v/here the waves are too steep t o use the l i n e a r theory.

Surf zone

I n the breaker zone, where the waves are u n s t a b l e and the f l u i d motion tends t o lose i t s ordered c h a r a c t e r , wave energy i s d i s s i p a t e d mainly due t o the g e n e r a t i o n of t u r b u l e n c e . For t h i s reason p o t e n t i a l f l o w theory i s no longer v a l i d . Other a n a l y t i c a l d e s c r i p t i o n s f o r the waves i n the s u r f zone, however, are not a v a i l a b l e . Therefore e m p i r i c a l or semi-empirical approaches are necessary.

Using s i m i l a r i t y arguments, i t i s assumed t h a t the wave h e i g h t i s p r o p o r t i o n a l t o the l o c a l mean water depth (LonguetrHiggins and Stewart [ 8 ] , Bowen, Inman and Simmons [ 1 ] ) :

H(x) = Y [ h ( x ) + n ( x ) ; . (2.11)

The l a b o r a t o r y measurements by Bowen e t a l [ 1 ] show t h a t an assumption of s i m i l a r i t y i n the s u r f zone i s reasonable. F u r t h e r the r a d i a t i o n stress expression ( 2 . 3 ) , which f o l l o w e d from l i n e a r wave t h e o r y , i s maintained.

(8)

6

S u b s t i t u t i o n of (2.11) i n t o (2.3) gives

S = -7-7-3 P8Y (b + n) 2 - (2.12)

XX

S u b s t i t u t i n g (2.12) i n t o (2.1) gives the g r a d i e n t of t h e wave set-up

3 2

dn ^ _ 8 dh dx ,,3 2 dx

This equation i n d i c a t e s t h a t t h e g r a d i e n t of the wave set-up i n the surf zone i s p r o p o r t i o n a l t o the l o c a l bottom slope, Equation (2.13) can be i n t e g r a t e d between x = x^ (breaker l i n e ) and

X = X ( l i n e of maximum s e t - u p ) , see [ 9 ] , y i e l d i n g m 3 2 n. max - n 'b (n + h, ) • max b (2,14) S u b s t i t u t i o n of (2.9) i n t o (2.14) gives max 5_ T6 (2.15)

(9)

The experiment's were made m the 16.60 x 34.00 m wave b a s i n o f the Laboratory of F l u i d Mechanics of the D e l f t U n i v e r s i t y of Technology. The wave b a s i n arrangement i s shovm s c h e m a t i c a l l y i n f i g u r e 1, The snake-type wave generator has a 32.80 m long

f l e x i b l e wave board, which c o n s i s t s o f rubber panels, each 0.40 m wide. The wave generator can produce r e g u l a r long-crested waves w i t h a constant angle of incidence which can be v a r i e d . The s t r o k e of the wave board a t the bottom can be a d j u s t e d between zero

(pure r o t a t i o n ) and the s t r o k e a t the s t i l l water l e v e l (pure t r a n s l a t i o n ) . I n a l l experiments the combination o f t r a n s l a t i o n and r o t a t i o n was chosen such t h a t the amplitude o f secondary waves was expected t o be minimal. Opposite t o the wave board a 1:10

smooth concrete slope was b u i l t . The d i s t a n c e between the t o e of the slope and the wave board was 8.35 m. The water i n the constant depth p a r t o f the wave b a s i n was 0.40 m deep.

The wave set-up and set-down were measured w i t h tappings, mounted i n the concrete beach, f l u s h w i t h the slope, i n two rays o f each 30 tappings ( f i g . 1). The h o r i z o n t a l d i s t a n c e between 2 tappings was 0.20 m. The i n s i d e diameter of the tappings was 1.5 mm. The

tappings were connected w i t h maiiometer tubes, i n which the s t a t i c head was measured. The assumptions i n v o l v e d i n t r a n s l a t i n g such measurement i n t o mean water l e v e l were considered by Longuet-Higgins and Stewart [ 7 ] ; see also l i t . [ 4 ] , [ 9 ] or [ 2 1 ] . The most im-p o r t a n t assumim-ptions are a g e n t l y s l o im-p i n g bottom and a slow v a r i a t i o n of the waves i n h o r i z o n t a l d i r e c t i o n . The manometer tubes were

readed by photograph, a l l o w i n g an accuracy of about + 0 , 1 mm. Wave set-up and set-down measurements were made i n r a y 1, and also i n and near the surf zone of r a y 2.

Surface e l e v a t i o n s were measured w i t h a r e s i s t a n c e - t y p e wave gauge and analysed by a c r e s t - t r o u g h apparatus t o determine the mean wave h e i g h t . The a c t u a l wave and the mean wave h e i g h t were recorded on paper. Wave h e i g h t s were measured i n p o i n t s of r a y 1, s t a r t i n g 2 m from the wave board and as f a r as p o s s i b l e on the slope. I n s i d e the s u r f zone the response of the wave gauge was n o t l i n e a r due t o the small water depths here; t h i s was c o r r e c t e d . The h o r i z o n t a l d i s t a n c e between 2 p o i n t s where wave h e i g h t s were measured was 0.20 m. I n each p o i n t wave h e i g h t s were measured d u r i n g about 90 seconds t o give a mean value*

(10)

Measurements o f wave run-up and the p o s i t i o n o f the plunge p o i n t were made v i s u a l l y . E s p e c i a l l y an accurate d e t e r m i n a t i o n of the p o s i t i o n of the plunge p o i n t v^as very d i f f i c u l t ; observations could be made w i t h an accuracy o f about + 0.05 m.

(11)

4 THE WAVES

I n a d d i t i o n t o the primary wave, the p r o g r e s s i v e s i n u s o i d a l wave w i t h the p e r i o d T of the motion of the wave board and w i t h a c r e s t which i s p a r a l l e l t o the wave board, other undesired waves could be generated'simultaneously i n the wave b a s i n , v i z . ;

a r e f l e c t e d component of t h e primary wave ( r e f l e c t i o n on the beach), b r e f l e c t e d component of a ( r e f l e c t i o n against the wave b o a r d ) ,

c secondary waves (importance depends on U r s e l l parameter, see [11] ) , d subharmonic standing waves between wave board and beach (have

an unknown o r i g i n ) .

A l l these waves have c r e s t s which are p a r a l l e l t o the -wave board. Other d i s t u r b i n g waves are:

e standing waves between the s i d e - w a l l s ( p e r i o d T ) ,

g higher order components of e ( i n general n o t i m p o r t a n t ) , h standing edge waves between the s i d e - w a l l s w i t h p e r i o d T or 2T

(see f o r instance [12, 13, 14] ) ,

i standing cross-waves between the s i d e - w a l l s ( p e r i o d 2T, see [ 1 5 ] ) . These waves have c r e s t s p e r p e n d i c u l a r t o the wave board.

The occurrence of these d i s t u r b i n g waves and t h e i r magnitude depend on v a r i a b l e s and q u a n t i t i e s as the wave p e r i o d , t h e wave h e i g h t , the slope of t h e beach, the water depth, t h e d i s t a n c e between the wave board and the toe of the slope and the motion of t h e wave board. The waves c, d, e and h can d i s t u r b the wave p a t t e r n i n an u n d e s i r a b l e way. Moreover s e v e r a l kinds of c u r r e n t s may occur. E s p e c i a l l y r i p c u r r e n t s [ 1 6 ]

can hinder a steady wave p a t t e r n , because t h e i r p o s i t i o n s are n o t steady i n general.

Preceding t o the experiments described i n t h i s r e p o r t , an i n v e s t i g a t i o n was c a r r i e d out t o minimize the d i s t u r b i n g i n f l u e n c e s . The most r e g u l a r waves'were selected t o go on. Nevertheless these waves were n o t e x a c t l y r e p r o d u c i b l e ; the wave h e i g h t , f o r i n s t a n c e , measured at a c e r t a i n place

o u t s i d e the s u r f zone and averaged over 90 seconds, v a r i e d about + 4%. The f i g u r e s 2, 3 and 4 show p r o f i l e s of the s e l e c t e d waves.

(12)

10

5 EXPERIMENTAL RESULTS •

The experimental data of the o b s e r v a t i o n s i n r a y 1 are g i v e n i n t a b l e 1 The wave h e i g h t i n the constant depth p a r t of the wave b a s i n i s o b t a i n e d by averaging the mean wave h e i g h t s which were m.easured i n 33 p o i n t s . The s u r f s i m i l a r i t y parameter B,^, d e f i n e d as

r - t g g

o o

where = deep water wave l e n g t h ,

i s a v e r y i m p o r t a n t parameter: s e v e r a l s u r f zone p r o p e r t i e s and q u a n t i -t i e s can be expressed as f u n c -t i o n s o f 5^ -t 9 ] . The breaker -type c l a s s i f i c a t i o n r e s u l t i n g from the experiments by G a l v i n [ 1 7 ] can be w r i t t e n as (5.1) s u r g i n g or c o l l a p s i n g i f . p l u n g i n g s p i l l i n g i f 5, > 3.33, i f 0.46 < 5 < 3.33, o 5 < 0.46 o > ( 5 . 2 ) The U r s e l l parameter, d e f i n e d as Ur = A^H (5.3)

can be considered as a measure f o r the e f f e c t of secondary waves (see [11] ) . I n t h e experiments Ur < 13 ( i n the constant depth p a r t of the wave b a s i n ) , so the i n f l u e n c e of secondary waves can be expected t o be n e g l i g i b l e .

The measured breaker h e i g h t - t o - d e p t h r a t i o s H^/b^ are i n agreement w i t h measurements by B a t t j e s [ 9 ] , I v e r s e n [ 1 8 ] and Goda [19] .

The maximum set-up 1 ^ ^ ^ i s obtained by e x t r a p o l a t i n g the curve drawn through the measured and p l o t t e d set-up v a l u e s , w i t h the exception o f the measurement near the plunge p o i n t . Near t h i s p o i n t the mean

pressure a t the bottom was i n f l u e n c e d s t r o n g l y by the v e r t i c a l wave impact. T r a n s l a t i n g the mean pressure measurement i n t o mean water l e v e l i s n o t p o s s i b l e by n e g l e c t i n g t h i s i n f l u e n c e .

(13)

The experimental r e s u l t s are shown i n the f i g u r e s 2, 3 and 4, except the r e s u l t s of the wave set-up measurements i n ray 2, which are shown i n subsequent f i g u r e s . The break p o i n t i s defined as the p o i n t of the maximum V7ave h e i g h t . The h o r i z o n t a l d i s t a n c e between

2 p o i n t s i n the s u r f zone where v/ave h e i g h t measurements were made was 0.20 m except f o r experiment 31-4, f o r which t h i s d i s t a n c e

was 0.10 m. As can be seen from f i g u r e s 5, 6 and 7, a mutual d i s t a n c e of 0.20 m i s l i k e l y too l a r g e t o r e v e a l always the plunge p o i n t i n the wave h e i g h t graph. To v e r i f y the s i m i l a r i t y arguments on which equation (2.11) i s based, the measured values of y i n the s u r f zone are g i v e n i n t a b l e 2 and the nondimensional wave h e i g h t

H / H i s p l o t t e d versus the nondimensional water depth ( h + q ) / ( h + q, ) b b b i n f i g u r e 8. I n agreement w i t h the experimental r e s u l t s by Bowen,

Inman and Simmons [ 1"] the assumption of constant y i s reasonable. Compared t o the experiments 31-2 and 31-4, the s p a t i a l v a r i a t i o n of measured wave h e i g h t i s r a t h e r l a r g e f o r 31-3. This i s caused by more r e f l e c t i o n and more i n f l u e n c e of secondary waves (higher U r s e l l number).

The f i g u r e s 9, 10 and 11 present a comparison between measured and t h e o r e t i c a l wave set-up and wave set-down i n r a y 1, and also the wave set-'up measured i n and near the s u r f zone of r a y 2. The d i f f e r e n c e between the wave set-up measured i n r a y 1 and r a y 2 i s r a t h e r s m a l l f o r 31-2 ( f i g . 9) and e s p e c i a l l y 31-4 ( f i g . 11). The d i f f e r e n c e s f o r 31-3 are g r e a t e r : i n r a y 2 the p o s i t i o n of the plunge p o i n t was more seaward and the g r a d i e n t of the wave set-up i n the s u r f zone was smaller than i n r a y 1. The maximum wave set-up, however, was almost the same. The t h e o r e t i c a l wave set-down i s obtained from ( 2 . 5 ) , u s i n g (2.4) and the measured value of H j . Well o u t s i d e the s u r f zone the d i f f e r e n c e between t h e o r e t i c a l and measured wave set-down i s s m a l l . The d i f f e r e n c e between t h e o r e t i c a l and observed wave set-down i s s i g n i f i c a n t near the breaker l i n e , where the waves were too steep f o r the l i n e a r theory t o \ remain v a l i d . Although the waves were higher than p r e d i c t e d by the

l i n e a r theory, the wave set-down was less than p r e d i c t e d by the same theory. This i s i n agreement w i t h the observations by Bowen e t a l [ 1 ] . The p o s i t i o n of the break p o i n t i n the t h e o r e t i c a l wave set-down

(14)

12

l i n e a r theory. I n the s u r f zone che t h e o r e t i c a l set-up i s obtained from (2.13), s u b s t i t u t i n g the measured value of y, the over the s u r f zone averaged value of y , and s t a r t i n g a t the computed )

break p o i n t . The f i g u r e s 9, 10 and 11 show a r a t h e r small d i f f e r e n c e between measured and t h e o r e t i c a l maximum wave set-up, b u t a l a r g e r d i f f e r e n c e between measured and t h e o r e t i c a l g r a d i e n t of wave s e t -up.

A comparison of wave set-up, vzave h e i g h t and wave run-up observations i n r a y 1 w i t h the theory and some e m p i r i c a l formulae i s given i n

t a b l e 3. Le Mehaute and Koh [ 2 0 ] d e r i v e d the f o l l o w i n g wave breaking c r i t e r i o n

^ = 0.76 ( t g a ) ' / ^ ( ^ ) - ' / ^ (5.4) o o

from several experimental i n v e s t i g a t i o n s i n two-dimensional wave tanks by other i n v e s t i g a t o r s . S u b s t i t u t i o n of (5.4) i n t o (2.15) gives an expression f o r the maximum value of the wave set-up

^max = ö-2^^«o^^g'^)'^' ^f^''^"" ^'-''^ o

A r e l i a b l e e m p i r i c a l formula f o r the wave run-up h e i g h t on a slope was given by Hunt (see reference i n [ 1 ] or [ 9 ] ) :

H

' o

where R = wave run-up h e i g h t (above S.W.L.), C = p o r o s i t y f a c t o r .

P

For a smooth slope eq. (5.6) can be w r i t t e n as

R = 5 H . o Q

(15)

The agreement between measured ïi^/li^ and the v a l u e p r e d i c t e d by Le Mehaute and Koh's formula (5.A) i s r a t h e r w e l l ( t a b l e 3 ) . As already appeared from the f i g u r e s 9 through 11 the d i f f e r e n c e between measured and t h e o r e t i c a l v/ave set-down near the break p o i n t i s l a r g e . This a p p l i e s also but t o a l e s s e x t e n t t o the g r a d i e n t of wave set-up i n the s u r f zone. The agreement between

measured n and the value computed from n = -tr" Y H, i s reasonable,

max ^ 'max 16 ' b * w h i l e the agreement between measured and t h e o r e t i c a l run-up i s

e x c e l l e n t . The d i f f e r e n c e between n and the v a l u e p r e d i c t e d max

by ( 5 . 5 ) , however, i s n o t small ( i n experiment 31-3). The experimental data of the experiments by Bowen e t a l [1 ]

and one of the experiments by the D e l f t H y d r a u l i c s Laboratory are given i n t a b l e 4. Bowen e t a l [ 1 ] do n o t r e p o r t on the breaker type; i n t a b l e 4 the breaker type i s obtained from Galvin's breaker type c l a s s i f i c a t i o n ( 5 . 2 ) . The experimental r e s u l t s by Bowen e t a l [ 1 ] are remarkable i n t h a t the measured values of H , /h, are l a r g e

b b

compared t o measurements by B a t t j e s [ 9 ] , I v e r s e n [ 1 8 ] and Goda [ 1 9 ] . The comparison of above measurements w i t h theory and some e m p i r i c a l formulae i s given i n t a b l e 5. The d i f f e r e n c e between measured

H ^ / H^ arid the value p r e d i c t e d by (5.4) i s about 10% a t most. The agreement between measured r\ and the value computed from

n = v r Y H, i s r a t h e r w e l l , w h i l e the agreement, between measured max 16 ' b

and t h e o r e t i c a l run-up i s e x c e l l e n t . The d i f f e r e n c e between measured n and the value computed from ( 5 . 5 ) , however, i s n o t small i n

max

some experiments.

Bowen e t a l [ 1 ] compared the t h e o r e t i c a l r a t i o of set-up slope t o beach slope, which i s given by

_ 3 2 1 dn _ 8 ^

(5.8) tga dx 3 2

' 8 ^

t o the measured r a t i o of set-up slope t o beach s l o p e , which was taken as

K = J k . (5.9)

tga X - X,

(16)

14

Thus, the measured r a t i o of set-up slope t o beach slope was averaged over the s u r f zone, g i v i n g a reasonably good agreement w i t h the t h e o r e t i c a l set-up slope-to-beach slope r a t i o as

expressed by ( 5 . 8 ) , but also n e g l e c t i n g the r e a l steeper s e t -up slope.

A comparison between the experimental r e s u l t s of T2 - 4B from the D e l f t H y d r a u l i c s Laboratory and experiment 31-4 i s sho^ra i n

f i g , 12. The s i m i l a r i t y i n beach slope and wave p e r i o d permits a comparison. The agreement i s good, e s p e c i a l l y f o r the g r a d i e n t of the set-up i n the s u r f zone, b u t also f o r the magnitudes

of set-up and set-down as appears from

31-4 - ^ ^ = 0 . 3 1 = -0,024

"b b n ri, T2-4B - 0,33 rr- = -0,025

b

The breaker depths are almost equal, i n s p i t e of h i g h e r waves f o r 31-4, Hence, the r a t i o of breaker h e i g h t t o mean water depth d i f f e r s s l i g h t l y : = 0,81 f o r T2-4B, y^^ = 0,95 f o r 31-4, The d i f f e r e n c e i n y i s s m a l l , however, which may be seen from f i g , 12.

(17)

6 SU1#IARY, DISCUSSION AND SUGGESTIONS FOR FURTHER WORK

The experiments described i n t h i s r e p o r t and a l s o the experiments by Bowen e t a l [ I J and the D e l f t H y d r a u l i c s Laboratory i n d i c a t e

t h a t the maximum value of the wave set-up on f l a t s o l i d beaches due t o normally incoming; waves may be approximated r a t h e r

a c c u r a t e l y by

n = ^ Y H~ (6.1)

max 1 6 ' b

where H^ = measured breaker h e i g h t .

Equation (6.1) expresses the maximum wave set-up i n terms of an inshore parameter (y) and an inshore q u a n t i t y (H^)• Equation (5.5)

o

gives the maximum wave set-up as a f u n c t i o n o f o f f s h o r e parameters and q u a n t i t i e s , the beach slope tga and s t i l l Y From the e x p e r i -mental r e s u l t s given by B a t t j e s [ 9 ] , I v e r s e n [ 1 8 ] and Goda [19]

i t i s p o s s i b l e , however, t o estimate Y from c,^ (see [ 9 ] , p. 21), The agreement of a l l measurements ( i n c l u d i n g the observations by Bowen e t a l t U and the one by the D e l f t H y d r a u l i c s Laboratory) w i t h the value p r e d i c t e d by (6.2) i s reasonable, b u t less than w i t h ( 6 . 1 ) . A l l experiments present an e x c e l l e n t agreement of measured run-up w i t h Hunt's formula.

As expected f o r plunging breakers the set-up does n o t s t a r t a t the break p o i n t but near the plunge p o i n t . Nevertheless the steeper set-up slope ( steeper than p r e d i c t e d by theory w i t h eq. (2.13) ) y i e l d s a maximun: set-up close t o the t h e o r e t i c a l value ( 6 . 1 ) . Near

the plunge p o i n t t r a n s l a t i o n o f mean pressure measurement i n t o mean water l e v e l f a i l s (does apply t o the experiments described i n t h i s r e p o r t , Bowen et a l [ 1 ] do n o t r e p o r t on t h i s ) . This i s caused by the plunge phenomenon (wave i m p a c t ) , N e g l e c t i n g the measurements near the plunge p o i n t s , the curves drawn through the other set-up measurement-points are p r a c t i c a l l y s t r a i g h t .

(18)

16

I n t h e s u r f zone the theory i s based on t h e assumption of

p r o p o r t i o n a l i t y of wave h e i g h t t o mean water depth (2.11). Also the experiments described i n t h i s r e p o r t show t h a t t h i s

assumption i s reasonable.

V/ell o u t s i d e the s u r f zone the d i f f e r e n c e between measured and t h e o r e t i c a l wave set-down i s small. Some s c a t t e r occurs due t o r e f l e c t i o n , secondary waves, measuring e r r o r s , e t c . I n a l l experiments the d i f f e r e n c e between observed and theo-r e t i c a l set-down i s s i g n i f i c a n t i n f theo-r o n t of the btheo-reaketheo-r l i n e

( t h i s d i f f e r e n c e w i l l increase when t h e t h e o r e t i c a l set-down i s computed from the measured wave h e i g h t s ) . A p o s s i b l e ex-p l a n a t i o n f o r t h i s ex-phenomenon may be t h a t n o t o n l y near the plunge p o i n t b u t also i n f r o n t of the break p o i n t the t r a n s -l a t i o n of mean pressure measurement i n t o mean water -l e v e -l f a i -l s . This idea i s elaborated below.

The mean pressure a t the bottom (p) can be w r i t t e n as (see [ 4 ] , [ 2 1 ] ) :

P = pg(h + n) + P

where pg(h + n) = mean h y d r o s t a t i c pressure a t t h e bottom, P = mean hydrodynamic pressure a t the bottom.

Equation (6.3) f o l l o w s from c o n s e r v a t i o n o f v e r t i c a l momentum. P can be w r i t t e n as ( [ 4 ] , [ 2 1 ] ) : dS p = — _ + small terms dx q where S = ƒ puwdz , -h n = e l e v a t i o n of f r e e surface above S.W.L., u T h o r i z o n t a l v e l o c i t y , w = v e r t i c a l v e l o c i t y ,

z = v e r t i c a l c o o r d i n a t e , measured p o s i t i v e upwards from S.W. the overbar i n d i c a t e s a time average.

(19)

S can be considered as the (x,z)component o f the t h r e e

-dimensional r a d i a t i o n s t r e s s t e n s o r . S u b s t i t u t i o n of the l i n e a r wave theory expressions f o r r\, u and w i n t o (6.5) gives

S^^ = 0. Near break and-plunge p o i n t the v e l o c i t i e s due t o the waves do not behave s i n u s o i d a l l y , hovzever, b u t are s t r o n g l y

asymmetric. Hence, g e n e r a l l y S i s n o t zero here. Besides,

X Z

the growth and change of asymmetry occurs along a s h o r t d i s t a n c e ( i n p l u n g i n g b r e a k e r s ) , p o s s i b l y y i e l d i n g a c o n s i d e r a b l e g r a d i e n t of v e r t i c a l r a d i a t i o n s t r e s s . The term (6.5) w i l l have more i n f l u e n c e i n p l u n g i n g breakers: i n s p i l l i n g breakers the waves become a s y m m e t r i c a l l y t o o , but much less than i n p l u n g i n g breakers. Above mentioned e x p l a n a t i o n seems t o be confirmed by the experiments by Bowen e t a l [ 1 ] : the d i f f e r e n c e between t h e o r e t i c a l and measured

was less i n experiments w i t h breakers which were c a l c u l a t e d as s p i l l i n g . Some a d d i t i o n a l measurements were made t o check t h i s e x p l a n a t i o n . I n these experiments the mean water l e v e l was also measured w i t h a wave gauge. The s i g n a l o f t h e wave gauge was f e d

i n t o an e l e c t r o n i c f i l t e r t o damp the wave motion. The d i f f e r e n c e s between these set-down o b s e r v a t i o n s and t h e set-down observations w i t h manometers, however, were very s m a l l . Consequently, P have not i n f l u e n c e d t h e set-down measurements w i t h manoraeters i n f r o n t of the breaker l i n e .

The number of experiments, described i n t h i s r e p o r t , i s l i m i t e d to t h r e e . The agreement between these experiments and the 11 experiments by Bowen e t a l [ 1 ] and t h e experiment by the D e l f t H y d r a u l i c s Laboratory i s s a t i s f a c t o r y and t h e r e f o r e c o n t i n u a t i o n of the experiments w i t h o b l i q u e l y i n c i d e n t waves i s j u s t i f i e d . Resul of these experiments w i l l be r e p o r t e d i n t h e next progress report.'

(20)

18

APPENDIX A: REFERENCES

1. Bowen, A.J., Inman, D.L. and Sinmons, V.P., Wave "set-do\m" and set-up, J. Geoph. Res., v o l . 73, 1968, p. 2569-2577.

2. Longuet-Higgins, M.S. and Stewart, R.W., A note on wave set-up, J. Mar. Res., v o l , 21, 1963, p. 4-10.

3. D o r r e s t e i n , R,, Wave set-up on a beach, Proc, Second Techn, Conf. on H u r r i c a n e s , June 1961, Miami Beach; Washington, D.C,

1962, p. 230-241.

4. V i s s e r , P.J., Wave set-up, 1: l i t e r a t u r e and t h e o r e t i c a l i n v e s t i g a t i o n , i n p r e s s , 1977.

5. Longuet-Higgins, M.S. and Stewart, R.W., Changes i n the form of s h o r t g r a v i t y waves on long waves and t i d a l c u r r e n t s , J . F l u i d Mech., v o l . 8, 1960, p. 565-583.

6. Longuet-Higgins , M.S. and Stewart, R.W., The changes i n

amplitude of s h o r t g r a v i t y waves on steady non-uniform c u r r e n t s , J. F l u i d Mech,, v o l , 10, 1961, p, 529-549.

7. Longuet-Higgins> M.S. and Stewart, R.W., R a d i a t i o n s t r e s s and

mass t r a n s p o r t i n g r a v i t y waves, w i t h a p p l i c a t i o n t o " s u r f - b e a t s ' J. ..Fluid Mech.., v o l . 13, 1962, p. 481-504.

8. Longuet-Higgins, M.S. and Stewart, R.W., R a d i a t i o n stresses i n water waves; a p h y s i c a l , d i s c u s s i o n , w i t h a p p l i c a t i o n s , Deep-Sea Res., v o l . 11, 1964, p. 529-562.

9. B a t t j e s , J.A., Computation o f set-up, longshore c u r r e n t s , run-up and o v e r t o p p i n g due t o wind-generated waves. Communications on H y d r a u l i c s , Department o f C i v i l E n g i n e e r i n g , D e l f t U n i v e r s i t y of Technology, Report no. 74-2, 1974.

10. B a t t j e s , J.A., Set-up due t o i r r e g u l a r waves, Proc. 13th.Conf. Coastal Eng., Vancouver, B.C., 1972, p. 1993-2004.

(21)

11. Hulsbergen, C.H., O r i g i i i , e f f e c t and suppression of

secondary waves, Proc. 14th. Conf. Coastal Eng., Copenhagen, 1974, p.392-411.

12. Bowen, A.J, and Inman, D.L., Edge waves and c r e s c e n t i c b a r s , J. Geoph. Res., v o l . 76, 1971, p. 8662-8671.

13. Guza, R.Ï. and Davis, R.E., E x c i t a t i o n o f edge waves by waves i n c i d e n t on a beach, J. Geoph. Res., v o l . 79, 1974, p. 1285-1291.

14. Guza, R.T. and Inman, D.L,, Edge waves and beach cusps, J, Geoph, Res,, v o l , 80, 1975, p, 2997-3012

15. G a r r e t t , C.J.R., On cross-waves, J. F l u i d Mech. v o l . 4 1 , 1970, p. 837-849.

16. Bowen, A.J., Rip c u r r e n t s , 1. T h e o r e t i c a l I n v e s t i g a t i o n s , J. Geophys. Res., v o l . 74, 1969, p. 5467-5478.

17. G a l v i n , C.J. J r . , Breaker type c l a s s i f i c a t i o n on t h r e e l a b o r a t o r y beaches, J. Geoph. Res., v o l . 73, 1968, p. 3651-3659.

18. I v e r s e n , H.W. Laboratory study of b r e a k e r s , Nat. Bur. o f Standard C i r c u l a r 521, Washington, D.C, 1952, p. 9-32.

19. Goda, Y., A synthesis of breaker i n d i c e s . Trans. Jap. Soc. Civ. Eng., v o l . 2, 1970, p. 227-230.

20. Le Mehaute, B. and Koh, R.C.Y., On the b r e a k i n g of waves a r r i v i n g a t an angle to the shore, J.Hydr. Res., v o l . 5, p. 67-88.

21. L i u , P. L-F. and Mei, C.C., E f f e c t s o f a breakwater on nearshore c u r r e n t s due t o breaking waves. Tech. Mem. no. 57, C.E.R.C, 1975.

(22)

20

APPENDIX B: SYMBOLS

The symbols used i n the t e x t are l i s t e d below. The remaining symbols used i n appendix C are l i s t e d i n t a b l e 3,

c = phase v e l o c i t y

g = g r a v i t a t i o n a l a c c e l e r a t i o n H V7ave h e i g h t

= deep water wave h e i g h t

Hj = mean wave h e i g h t i n constant depth p a r t of. vrave b a s i n = breaker h e i g h t

h - s t i l l water depth

h j = s t i l l V7ater depth i n constant depth p a r t of wave b a s i n h^ = s t i l l water depth a t breaker l o c a t i o n

K = over s u r f zone averaged (measured) r a t i o of set-up slope to beach slope

k = wave number

k = deep water wave number o

nc = group v e l o c i t y

P = mean hydrodyiiamic pressure a t the bottom p = mean pressure a t the bottom

R = wave run-up h e i g h t S = ( x , x)-component of r a d i a t i o n s t r e s s tensor XX S = ( x , z)-component of 3-dimensional r a d i a t i o n s t r e s s t e n s o r xz T = wave p e r i o d u = h o r i z o n t a l v e l o c i t y , 2 3 i Ur = A H/.h = U r s e l l parameter ' w = v e r t i c a l v e l o c i t y : X = h o r i z o n t a l c o o r d i n a t e , p o s i t i v e shorewards' z = v e r t i c a l c o o r d i n a t e , p o s i t i v e upwards from S.W.L.

(23)

a = slope angle w i t h r e s p e c t t o the h o r i z o n t a l

Y wave height-mean water depth r a t i o i n s u r f zone Y = over s u r f zone averaged value of y

= wave height-mean water depth r a t i o at breaker l o c a t i o n n = e l e v a t i o n of f r e e s u r f a c e above S.W.L.

n mean value of n: wave set-up or wave set-do^m wave set-down a t breaker l o c a t i o n

n . mm

minimum wave set-up (maximum wave set-doxm) n

max

= maximum wave set-up

X = wave l e n g t h

X

o

= deep water wave l e n g t h

X

o =

tga//H /A• o o

(24)

22

APPENDIX C: 5 TABLES

The symbols used i n t a b l e 5 correspond w i t h the symbols used i n t a b l e 3.

(25)

31-3 1.69 0'. 101 447 40.0 0.089 304 8.56 9.08 0.020 0.71 12.3 12.6 10.97 1.15 -0.33. p i . -0.51 1.14 . 3.90 6.6 31-4 I 1.30 0.101 264 . 40.1 0.152 217 7.70 8.42 0.032 0.56 5.6 10.3 11.10 0.93 . -0.25 p i . -0.34 0.97 3.22 4.7 1 ! 1

meas c a l c E e a s c a l c meas c a l c meas meas meas meas meas meas meas

the i n d e x 1 r e f e r s to a v a l u e i n c o n s t a n t depth p a r t o f wave b a s i n , p i . = p l u n g i n g b r e a k e r ,

Y = o v e r s u r f zone a v e r a g e d v a l u e o f y , R = wave run-up .

(26)

distance from breakpoint i n cm experiment 0 10 20 30 40 50 60 70 80 90 100 110 T . 31-2 1.24 1.17 1.03 1.10 1.03 1.11 31-3 1.18 1.22 1.19 0.98 1.22 1.15 1.04 1.14 31-4 0.95 l.OI ].03 1.09 1 .06 0.77 1.02 1.01 0.81 0.99 0.93 0.91. 0.97

(27)

3 1 - 3 1 . 3 9 1-.21 1 . 4 6 - 0 . 3 3 - 0 . 9 0 ' - 0. 5 1 3 . 9 0 • 4 , 4 8 4 . 7 1 0 . 4 1 0 . 3 3 0 . 2 8 6 . 6 6 . 4 5 3 1 - 4 1 . 2 2 1 . 0 8 1-.29 - 0 . 2 5 - 0 . 6 2 - 0 . 3 4 3 . 2 2 3 . 1 1 3 . 3 1 0 . 3 6 0 . 2 6 0 . 2 4 4 . 7 4 . 7 2 •

meas meas meas meas meas , meas

1 K c a l c u l a t e d w i t h l i n e a r t h e o r y . max 1 6 H - = 0 . 7 6 itga)'/' (^)-^/^ o 0 • 0 b = - T6 ^ \ 1 dq o o K K ' = K"= tga dx 3 - 2 1 + ^ Y

= measured set-up slope-to-beach slope r a t i o .

= t h e o r e t i c a l set-up slope-to-beach slope r a t i o .

n - Tl

max b ^S^-^^max"

over s u r f zone averaged set-up slope-to-beach slope r a t i o .

(28)

expe-r i m e n t T s e c t g a X 0 cm cm

\

X 0 cm «1 cm H 0 cm H 0 X 0 ^ 0 I Ur^ cm

\

cm

\

\

\

cm b r e a -k e r t y p e \ i i n y n max cm R cm 71/3 0.82 0.082 105 3.60 0.034 0.45 4.40 4. 15 1.06 -0.17 s p . 0.90 1.48 1.70 71/4 0.82 0.082 105 5.15 0.049 0.38 5.90 5.5 1.07 -0.19 s p . 0.88 1.60 1.84 51/4 . 1. 14 0.082 202 4.20 0.021 0.58 6.60 5.0 1.32 -0.19 p i . 1.1! 2.07 2.32 51/6 1 . 14 0.082 202 6.45 0.032 0.47 8.55 6.8 1.26 -0.32 p i . 1.15 2.95 3.25 51/8 1 . 14 0.082 202 9.00 0.045 0.40 10.60 9.7 1.09 -0.47 sp 1.00 3.30 3.70 35/7 1.65 0.082 424 4.25 0.010 0.83 7.75 5.9 1.31 -0.18 p i . 1.22 3.37 3.66 35/10 1.65 0.082 424 5.85 0.014 0.71 9.65 6.8 1.42 -0.25 p i . . 1.19 3.70 4.23 35/12 1.65 0.082 424 7.10 0.017 0.65 11.45 9.5 1.21 -0.26 p i . 1.17 • 4. 15 4.75 35/15 1.65 0.082 424 8.90 0.021 0.58 13.00 9.7 1.34 -0.43 p i . 1.17 4.65 5.20 24/17 2.37 • 0.082 876 6.20 0.0071 0.99 11.80 8.8 1.34 -0.30 p i . 1.24 4.50 6.17 24/20 2.37- 0.082 876 7.50 0.0086 0.90 12.70 9.2 1.38 -0.38 p i . 1.28 5.28 6.60 T2-4B 1.28 0.10 j 255 29.8 0.117 1.92 6.21 6.71 0.026 0.62 8.6 8.62 10.8 0.80 -0.22 p i . -0.33 0.94 2.86

71/3 through 24/20 : e x p e r i m e n t s by Bowen, Inman and Simmons T2-4B : one o f t h e e x p e r i m e n t s by t h e D e l f t H y d r a u l i c s L a b o r a t o r y

(29)

51/4 1.57 1.18 1.40 -0.19 -0.46 2.07 2.29 2.04 0.32 0.32 2.32 2.42 51/6' 1.33 1.11 1.26 -0.32 -0.61 2.95 3.07 2.91 0.33 0.34 -3.25 3.00 51/8 1.18 1.04 1.16 -0.47 -0.66 3.30 3.31 3.25 0.27 0.30 3.70 3.54 35/7 1.82 1 .34 1.69 , -0.18 -0.59 3.37 2.95 2.74 0.34 0.39 3.66 3 . 5 3 35/10 1.65 1 .20 1.55 -0.25 -0.72 3.70 3.59 3.37 0.34 0.38 4.23 4.1 1 3 5 / 1 2 1.61 1.20 1.48 -0.26 -0.84 4.15 4.19 3.85 • 0.34 0.31 4.75 4.55 35/15 1.46 1.20 1.40 . -0.43 -0.95 4.65 4.75 4.55 0.34 0.37 5.20 5 J 0 24/17 1.90 1.45 .1.84 -0.30 -0.91 • 4'. 50 4.57 4.42 0.37 0.36 6.17 6.1 0 24/20 1.69 1.42 1.75 -0.38 -1.02 5.28 5.08' 5.26 0.38 0.40 6.60 6.7 3 X2-4B 1.28 1.06 1.36 -0.22 -0.51 -0.33 2.86 2.53 2.68 0.36 0.25 0.22 4.17

71/3 through 24/20: e x p e r i m e n t s by Bowen, Inman and Simmons

T2-4B : one o f t h e e x p e r i m e n t s by t h e D e l f t H y d r a u l i c s L a b o r a t o r y

(30)
(31)
(32)

D I S T A N C E F R O M WAVE B O A R D = 3./.5 m D I S T A N C E FROM WAVE B O A R D = 4.45 m D I S T A N C E F R O M WAVE B O A R D 2 5.45 m D I S T A N C E FROM V/AVE B O A R D = 6.A5 m D I S T A N C E FROM WAVE B O A R D = 7.45 m 1 I 1 ~ i 1 1 1 1 —; >- J I M E IN S E C O N D S E X P . 3 1 - 2 T s l . 1 7 s e c h , = 4 0 . 0 c m H , ^ 8 . S 5 c m . . . r a y 1 F I G . 2 ; W A V E P R O F I L E S

(33)

E u D I S T A N C E FROM W A V E B O A R D = 4.45 m 1 0 1 2 3 A 5 6 I , , . 1 H 1 — T I M E IN S E C O N D S E X P . 3 1 - 3 T : : ; 1 . 6 9 s e c h, = 4 0 . 0 c m H, = 9.56 cm r a y 1 F I G . 3 : W A V E P R O F I L E S

(34)

D I S T A N C E FROM V M V E B O A R D = 3./15 m D I S T A N C E F R O M WAVE B O A R D = 4.45 m D I S T A N C E F R O M WAVE B O A R D = 5.45 m D I S T A N C E FROM WAVE B O A R D = 6.45 m D I S T A N C E F R O M WAVE B O A R D = 7.45 m 1 ^ ^ 1 ^—) . 1 &. T I M E IN S E C O N D S I E X R 3 1 - 4 T = 1.30 s e c h, = 4 0 . 1 c m H, = 7 . 7 0 c m r a y 1 F I G . 4 : V/AVE P R O F I L E S

(35)
(36)

B R E A K O B S E R V E D A H in cm P O I N T I ' P L U N G E POINT 11 s • 8 • 7 • 6-5 4 4-3 21 -I . 42 S.W.L. T O E O F S L O P E B E A C H ƒ max 4-0.5 D I S T A N C E F R O M 10 11 12 V/AVE B O A R D IN M E T E R S E X P . 3 1 - 3 T = 1.69 s e c h,= 40.0 c m H,= 8.56 c m FIG.6 : W A V E H E I G H T S A N D S E T - U P M E A S U R E D ! N RAY 1 .

(37)

8 • 7 • 6-2 . . X X X X X X X X " X X X X V W " » X X X T O E O F S L O P E 2 in c m i, • A . | 2 3 4-2 S.W.L E X P . 3 1 - 4 T = 1.30 s e c h,= 40.1 c m - 0 . 5 D I S T A N C E F R O M 10 11 . . 12 WAVE B O A R D IN M E T E R S H, =7.70 c m F i G . 7 : V/AVE H E I G H T S A N D S E T - U P M E A S U R E D I N R A Y 1 .

(38)

Hb 0.4 4-X E X P . 31 - 2 + E X P . 3 1 - 3 . E X P . 3 1 - / i 0.2 0.4 0.6 0.8 ( h . 1.0 -F I G . 8 NONDIMENSIONAL WAVE H E I G H T A S F U N C T I O N OF NONDIMENSIONAL M E A N W A T E R D E P T H

(39)

- r T H E O R E T I C A L S E T - U P RAY 1 B R E A K P O I N T P L U N G E POINT , , ( R A Y 1 ) , , + 3 42 S.W.L T O E O F S L O P E E X P . 3 1 - 2 T = 1.17 s e c 10 hjr^O.O c m 11 12 •0.5 ^ D I S T A N C E FROM. WAVE B O A R D IN M E T E R S F I G . 9 : M E A S U R E D V/AVE S E T - U P IN R A Y S 1 A N D 2 A N D T H E O R E T I C A L S E T - U P IN RAY 1

(40)

12 in c m . T O E O F S L O P E - - • , - i , - • • . • , : , • D I S T A N C E F R O M 8 9 10 11 12 W A V E B O A R D - I N M E T E R S E X P . 3 1 - 3 T = 1.69 s e c h^ = AÖ.0 cm

(41)

TOE O F S L O P E S.W.L + 2 4-1 <• + i- + _ © 10 11 12 - 0 . 5 DISTANCE FROM V M V E B O A R D . IN M E T E R S E.X?. 3 1 - - T= 1.30 s e c h, =40.1 cm F I G . 1 1 : M E A S U . R E D W A V E S E T - U P IN R A Y S 1 A N D 2 AND T H E O R E T I C A L S E T - U P IN RAY 1

(42)

H in c m

4

E X P . 3 1 - A : T= 1.30 s e c , h , = ^ 0 . 1 c m , H, = 7.70 cm , T G oc = 0.10 , WAVE T A N K . E X P . T 2 - 4 B : T=1.28 s e c , h, = 2 S . 8 c m , H, = 6.21 c m , T G o c = 0.10 , F L U M E .

Cytaty

Powiązane dokumenty

Tethered flight automation for airborne wind energy at SkySails has first been developed for traction of large ma- rine vessels [3] with kite sizes ranging from 20 m 2 up to 320 m

Widma EPR dla próbki typu 7, czyli sproszkowanego monokrysztalu kalcytu (frakcja 25- 100 μm) przedstawiono na Rys. Jako naturalny kalcyt, monokryształ ten był wystawiony na

Concrete is laid on the surface of dike crest, extended by 1m down the dike slope; for the next sections, normal grass or Vetiver grass is grown reaching the dike toe; methods

(8a) in which 1) and Ø' are defined by the same expression as (5) in which we replace (w, k) by (w1, ki) and (w2, k2), respectively. In order to keep the consistence, the components

Celem konkursu było wyróżnienie projektów, których autorzy i uczestnicy wykazali się umiejętnością pracy w zespole, współpracą z innym zespo- łem,

Jeszcze na długo przed załamaniem się systemu komunistycznego w Związku Socjalistycznych Republik Sowieckich (Radzieckich) i w zdominowanych przez wschodnie mocarstwo krajach

Panel 3 compared national performance indicators and key performance indicators (KPIs), and analyzed their degrees of maturity. By definition, KPIs are

Czy zatem słuszna była decyzja Kurii Arcybiskupiej w Białymstoku w ydaniatej pracy po 57 latach odjej napisania? Wszak w międzyczasie ukazało się wiele nowych prac o Smotryckim i