• Nie Znaleziono Wyników

Biogenic origin of manganese flowstones from Jaskinia Czarna Cave, Tatra Mts., Western Carpathians

N/A
N/A
Protected

Academic year: 2022

Share "Biogenic origin of manganese flowstones from Jaskinia Czarna Cave, Tatra Mts., Western Carpathians"

Copied!
9
0
0

Pełen tekst

(1)

Annales Societatis Geologorum Poloniae (1995), vol. 65: 19 - 27.

BIOGENIC ORIGIN OF MANGANESE FLOWSTONES FROM JASKINIA CZARNA CAVE, TATRA MTS., WESTERN

CARPATHIANS

Michał GRADZIŃSKI1, Michał BANAŚ2 & Alfred UCHMAN1

1 In s titu te o f G e o lo g ic a l S cien c es, J a g ie llo n ia n U niversity, O le a n d ry 2 a ; 3 0 -0 6 3 K ra k ó w , P o la n d

2 In s titu te o f G e o lo g ic a l S c ien c es, P o lish A c a d e m y o f S c ien c es, C ra c o w B ra n ch , S e n a c k a I, 3 1 -0 0 2 K ra k ó w , P o la n d

Gradziński, M., Banaś, M. & Uchman, A.. 1995. Biogenic origin o f manganese flowstones from Jaskinia C zarna Cave, Tatra Mts., W estern Carpathians. Ann. Soc. Geol. Poion., 65: 1 9 -2 7 .

A b stra c t: Flow stones composed mostly o f amorphic manganese oxides occur in Jaskinia Czarna Cave in the contact zone betw een Middle Triassic carbonates and Upper Jurassic-Lower Cretaceous limestones on a substrate diagenetically enriched in Mn and Fe minerals. In the SEM micrographs, the flowstones display a dom e-like structure, which is characterized by non-porous microfabric in the dome centres and porous micvofabric in the outer parts o f the domes, and in the inter-dome spaces. The filament elements o f porous m icrofabric and co-occurring globular bodies are recognised as mineralized biogenic structures, probably bacterial or fungal in origin. The Mn/Fe ratio in the flowstones is 7 2 .1 :1, while in the substrate it is about 1.32:1. High concentration o f Mn is caused by preferencial microbial precipitation. A very high rate o f manganese oxide growth also suggests their microbially mediated precipitation.

A b stra k t: N aciekow e polewy zbudowane głównie z amorficznych tlenków manganu w ystępują w Jaskini Czar­

nej w pobliżu kontaktu utworów środkowego triasu i malmo-neokomu, na podłożu, które cechuje diagenetyczne wzbogacenie w mangan i żelazo. Polewy o miąższości 2 do 20 mm są zbudowane z am orficznych tlenków manganu. O bserw acje w SEM wykazały, że polewy składają się z kopulastych form mających w partiach centralnych zw ięzłą a w peryferycznych porow atą więźbę. K omponenty budujące porow atą więźbę - kłaczki i ciała globularne - zostały zidentfikowane jako struktury mikrobialne, prawdopodobnie bakteryjne lub grzybowe.

Stwierdzone analizą chem iczną proporcje Mn/Fe w polewach wynoszą 72.1:1, natom iast w ich podłożu 1,32:1.

Tak wysoka koncentracja manganu spowodowana jest jego preferencyjnym wytrącaniem przez mikroorganizmy.

W ysokie tempo w zrostu badanych polew wskazuje również na mikrobialne wytrącanie tlenków manganu.

Key w ords: biom ineralization, manganese oxides, karst, Tatra Mts.

M anuscript received 16 November 1995, accepted I D ecember 1995

INTRODUCTION

V a ria b le m a n g a n e se d e p o sits o rig in a te in v a rio u s e n v i­

ro n m e n ts. T h e y o c c u r in m a rin e b asin s (e.g ., n o d u le s, m in ­ e ra liz e d stro m a to lite s , c ru sts), as w ell as in la cu strin e, flu ­ v ial, a n d su b a e ria l e n v iro n m e n ts (e.g ., n o d u le s, cru sts, d e ­ s e rt v a rn is h ) (D ix o n & S k in n e r, 1992). T h e p ro b le m o f th e ir o rig in h a s b e e n e x te n s iv e ly d is c u sse d in lite ra tu re (e.g.

S c h w e isfu rth , 1971; M a rsh a ll, 1979; N e a lso n , 1983; D ix o n

& S k in n e r, 1992). R e c e n tly , se v e ra l a u th o rs h a v e p ro m o te d th e b io g e n ic m o d el o f th e o rig in o f so m e m a n g a n e se d e p o s ­ its. T h is c o n c e p tio n w a s c o n firm e d b y th e e x p e rim e n ts an d d is c o v e rie s o f v ario u s m ic ro o rg a n ism s, m a in ly b a c te ria , fu n g i, b lu e -g re e n alg ae a n d a lg a e in m o d e m m a n g a n e se se d im e n ts (e.g . K ru m b e in , 1971; D u b y n in a , 1980; N e a lso n

& F o rd , 1980; E m e rs o n e t a i , 1982; R ic h a rd so n e t al., 1988).

M a n g a n e s e d e p o sits also o c c u r in th e k a rs t e n v iro n ­ m ents a n d h a v e b e e n o b se rv e d in s e v e ra l c a v e s. T h e y fo rm so ft d ep o sits, th e so -c a lle d w ad , o r c o n s o lid a te d c ru sts (e.g., M o o re, 1981; H ill, 1982; P e c k , 1986; Jo n es, 1992a). T he w a d o c c u rs in the cav e c la s tic d e p o sits (C ile k & F ab ry , 1989) o r fo rm s a film w h ic h c o a ts th e w a lls o f th e c a v e p assa g e s (M o o re & S u lliv an , 1978; G a sc o in e , 1982; H ill, 1982; K a sh im a , 1983). T h e c ru sts o c c u r o n th e w a lls o f cav e p assag es as w e ll as w ith in an d o n th e s u rfa c e o f c a lc ite s p e le o th e m s (M o o re , 1981; R o g e rs & W illia m s , 1982; P eck,

1986). T h e o rg in o f m a n g a n e se c a v e d e p o sits h as b e e n fre q u e n tly re la te d to th e a c tiv ity o f m ic ro o rg a n ism s (B ro u g h to n , 1971; W hite, 1976; H ill, 1982; C île k & F â b ry ,

1989). T h is p ro b le m w as s tu d ie d in d etail b y M o o re &

S u lliv a n (1 9 7 8 ), P eck (1 9 8 6 ), a n d J o n e s (1 9 9 2 a ).

M a n g a n e s e c a v e d e p o sits h a v e n e v e r b e e n re c o g n is e d in

(2)

20

M. GRADZIŃSKI, M. BANAŚ & A. UCHMAN

Fig. 1. Location o f Jaskinia Czarna Cave in W estern Tatra Mts., map B shows m ain passage o f Jaskinia Czarna Cave; arrow indicates sampling place

th e W e ste rn C a rp a th ia n s. In th is p a p e r, h o w e v e r, w e w o u ld like to d e sc rib e a n d in te rp re t th e m a n g a n e se flo w sto n e s w h ic h w e re fo u n d in th e ea ste rn p a rt o f J a s k in ia C z a rn a C a v e in th e T a tra M o u n ta in s d u rin g the e x p lo ra tio n in 1992.

T h e m a in re su lts w e re o b ta in e d by m e a n s o f p é tro g ra p h ie / m in e ra lo g ic a l a n a ly s e s. P re lim in a ry re su lts c o n c e rn in g th e ab o v e p ro b le m h a v e b e e n a lre a d y re p o rte d in th e m a te ria ls o f lo c a l s y m p o s iu m (G ra d z iń sk i e t a l., 1995).

GEOLOGICAL SETTING

J a s k in ia C z a rn a C a v e is lo c a te d o n th e e a ste rn slo p es o f th e D o lin a K o ś c ie lis k a V a lle y in th e T a tra M ts. at an a lti­

tu d e o f a b o u t 1200 to 1500 m a.s.l. (F ig. 1). It is m o re th a n 6 k m lo n g (G ra d z iń sk i e t a i , 1985). T h e cav e is lo c a te d in th e te c to n ic a llo c h to n o u s O rg a n y U n it th a t is a p a rt o f th e allo - c h to n o u s C z e rw o n e W ie rc h y U n it. M o s t o f th e c a v e p a s ­ sag es o rig in a te d in M id d le T ria s sic d o lo m ite s an d lim e ­ sto n e s, a n d o n ly th e e a s te rn p a rts o f th e c a v e o rig in a te d in U p p e r J u ra s s ic -L o w e r C re ta c e o u s lim e s to n e s o f th e H ig h - T a tric S u c c e sio n (R u d n ic k i, 1967; G ro d z ic k i, 1978). J a s ­ k in ia C z a rn a C av e is p ro b a b ly L ate T e rtia ry in ag e (R u d ­ n ic k i, 1967; G ła z e k e t a l., 1979).

T h e c o n ta c t b e tw e e n M id d le T ria ssic c a rb o n a te s an d U p p e r J u ra s s ic -L o w e r C re ta c e o u s lim e s to n e s is w e ll v isib le in th e e a ste rn p a rt o f Ja s k in ia C z a m a C av e. T h e b ed s are o v e rtu rn e d , d ip p in g 4 5 ° to 55° S E E in th is p a rt o f th e cav e.

T h e c o n ta c t is c o n c o rd a n t w ith b e d d in g in th e scale o f th e cav e. C o m m o n ly , n e p tu n ia n d y k e s fille d w ith ? B a jo c ia n p in k c rin o id a l lim e s to n e s p e n e tra te M id d le T ria ssic c a rb o n ­ a tes b e lo w th e c o n ta c t zo n e . S im ila r n e p tu n ia n d y k e s o f v a ria b le siz e a n d o rie n ta tio n o c c u r in an a n a lo g o u s g e o lo g i­

c al situ a tio n in se v e ra l o u tc ro p s o f th e H ig h -T a tric S u c c e s­

sio n in th e T a tra M ts., e.g . in M a ła Ś w istó w k a (S z u lc z e w s k i, 1963a) an d W y ż n ia Ś w istó w k a (G ro c h o c k a -R e ć k o , 1963).

C o n tra ry to th e v ie w o f G ro d z ic k i (1 9 7 8 ), th e d isc u sse d c o n ta c t b e tw e e n M id d le T ria s sic c a rb o n a te s a n d U p p e r Ju - ra s s ic -L o w e r C re ta c e o u s lim e s to n e s is n o t te c to n ic . O n ly sm a ll-sc a le te c to n ic slid e s b e tw e e n b ed s, d e v e lo p e d d u rin g fo ld in g , can b e o b serv ed . It is a se d im e n ta ry c o n ta c t, a n d a h u g e stra tig ra p h ie g ap is c a u s e d b y te m p o ra ry la c k o f d e p o ­ sitio n an d ero sio n . In th e C z e rw o n e W ie rc h y U n it, d iv e rse M id d le Ju ra ssic d ep o sits c o v e r e ro d e d M id d le T ria s sic d e ­ p o sits (L e fe ld , 1979). J u ra ssic d e p o sits a re re p re s e n te d by lo c a lly o c c u rrin g B a jo c ia n c rin o id a l lim e s to n e s a n d re d B a- th o n ia n lim e s to n e s w ith rich n e k to n ic fa u n a a n d a stro m a ­ to lite (K ru p ia n k a L im e sto n e F o rm a tio n ), a n d b y p a rtia lly n o d u la r, p in k a n d g re y ish C a llo v ia n lim e s to n e s (a p a rt o f th e R a p ta w ic k a T u m ia L im e sto n e F o rm a tio n ) (G ro c h o c k a -R e ć ­ ko, 1963; S ie c ia rz , 1963; S z u lc z e w sk i, 1963a; B a c & G ro - ch o c k a , 1965). T h e fo rm a l lith o s tra tig ra p h ic u n its w e re d is­

tin g u is h e d b y L e fe ld (1 9 8 5 ). B a th o n ia n stro m a to lite is im ­ p re g n a te d b y iro n o x id e s (S z u lc z e w s k i, 1 9 6 3 b ). T h e o c c u r­

re n c e o f h a e m a tite cru sts in n o d u la r C a llo v ia n lim e sto n e s d ire c tly o v e rla in g T ria s sic c a rb o n a te s w a s o b s e rv e d in the w e ste rn p a rt o f th e C z e rw o n e W ie rc h y u n it (B a c & G ro - ch o ck a, 1965).

D ia g e n e tic im p re g n a tio n s o f th e iron a n d m a n g a n e se ox id es, v isib le e x c lu s iv e ly in th is c a v e , o c c u r in M id d le T ria s sic c a rb o n a te s, as w e ll as in U p p e r J u ra s s ic -L o w e r C re ta c e o u s lim e s to n e s a ro u n d th e c o n ta c t z o n e b e tw e e n th e s e d e p o sits. Iro n an d m a n g a n e s e m in e ra ls an d c a lc ite fill n u m e ro u s sm a ll v e in s, w h ic h a re u p to 0.5 m m w id e . O n e o f th e e x a m in e d se c tio n s c o n ta in s d ia g e n e tic d e p o sits, w h ich o c c u r b e tw e e n M id d le T ria s sic c a rb o n a te s a n d U p p e r J u ra s ­ sic lim e sto n e s. T h e y c o n ta in sig m o id a l c a lc ite c e m e n ts (cf.

R a m sa y & H u b e r, 1989), iro n -m a n g a n e s e stru c tu re s o f th e o p a q u e F r u te x ite s -ty p e (cf. B ö h m & B re c h e rt, 1993), an d clasts o f T ria s sic d o lo m ite s. T h e se c la s ts d is p la y d istin c t featu res o f p re s s u re d isso lu tio n .

MATERIALS AND METHODS

T h e e x a m in e d flo w s to n e s are d e v e lo p e d o n th e w a lls o f th e c a v e e x c lu s iv e ly on th e s u b s tra te e n ric h e d in iro n an d m a n g a n e se m in e ra ls c lo se to th e c o n ta c t z o n e b e tw e e n M id ­ dle T ria s sic c a rb o n a te s an d U p p e r J u r a s s ic -L o w e r C re ta ­ ceo u s lim esto n es. T h e ir m o s t a d v a n c e d d e v e lo p m e n t c a n be o b se rv e d d ire c tly on th e a b o v e m e n tio n e d d ia g e n e tic d e p o ­ sits. T h e flo w s to n e s fo rm irre g u la rly s h a p e d c ru s ts w h ic h o c c u r lo c a lly in th e is o la te d fo rm s. T h e d ia m e te r o f th e cru sts ra n g e s fro m a few c e n tim e te rs to a fe w d e c im e te rs.

T h e e x te rn a l su rfa c e o f th e c ru s ts is b la c k in c o lo u r an d d is p la y s an e a rth y luster. It is c o rro d e d as in d ic a te d by d istin ct, irre g u la r c o rro sio n a l p its. T h e is o la te d fo rm o f o c ­ c u rre n c e is p ro b a b ly d u e to th e c o rro sio n . T h e th ic k n e ss o f th e c ru sts ra n g e s fro m a b o u t 2 to m o re th a n 2 0 m m . S o m e p a rts o f th e flo w s to n e s are c o v e re d w ith a c a lc ite sp e le o - th e m w h ic h is up to 4 m m th ick .

(3)

MANGANESE FLOWSTONES

21

Table 1

C h e m ic a l c o m p o s itio n o f m a n g a n e s e flo w sto n e s a n d o f h o s t d ia g e n e tic d e p o sit;

m e a n d a ta fo r 5 s a m p le s, * m e a n d a ta fo r 3 sam p les

T h e sa m p le s w e re c o lle c te d fro m m a n g a n e se flo w ­ sto n e s a n d fro m d ia g e n e tic d e p o sits o c c u rrin g in th e ir su b ­ strate. T h e s e sa m p le s w e re e x a m in e d in th e la b o ra to ry u sin g m ic ro s o p ic o b se rv a tio n , c h e m ic a l, a n d X -ra y d iffra c tio n a n a ly se s.

M ic ro sc o p y : T h e s a m p le s e x a m in e d w e re c o lle c te d fro m m a n g a n e s e flo w s to n e s, to g e th e r w ith th e ir su b strate.

E ig h t th in -se c tio n s w e re p re p a re d . T h e y h a v e b e e n a n a ly s e d b y m e a n s o f p é tro g ra p h ie m ic ro sc o p e . S c a n n in g e le c tro n m ic ro s c o p e (S E M ) im a g e s w e re o b ta in e d fro m n a tu ra l p a r t­

ing su rfa c e s a n d p o lish e d s u rfa c e s e tc h e d in 2 .5 % H N O3 fo r 2.5 a n d 5 sec, re s p e c tiv e ly . A JE O L J S M -8 4 0 S E M c o u p le d w ith a m ic ro p ro b e L in k A n a ly tic a l A N 10/85S w e re used.

C h e m ic a l an a ly se s: T h e w a s h e d sa m p le s w e re c ru sh e d an d p o w d e re d in a b all m ill. T h e y w e re d is so lv e d in w arm 18.5% HC1, o r m e lte d w ith N a2C0 3 an d d is so lv e d in c o ld HC1. C a c o n te n t w a s d e te rm in a te d u sin g c o m p le x o m e tric titra tio n . A to m ic a b s o rp tio n a n a ly s e s (A A S ) w a s a p p lie d to e stim a te M n , F e, M g , N i, a n d C o c o n te n ts u sin g th e A S A P e rk in -4 0 0 a to m ic a b s o rp tio n s p e c tro m e te r (E lm e r p ro d u ct) w ith a ir-a c e th y le n flam e.

X -ra y d iffra c tio n (X R D ) a n a ly sis: X R D p a tte rn s w ere re c o rd e d b y ste p sc a n n in g , w ith a P h ilip s d iffra c to m e te r an d C u K a ra d ia tio n , 0 .0 5 ° ste p -siz e , 1 sec. c o u n tin g tim e p er size, a n d w ith a 5-5 0 ° 2 0 ra n g e o f th e ta k e - o ff an g le.

RESULTS

T h e c h e m ic a l c o m p o s itio n o f th e m a n g a n e se flo w sto n e s w a s d e te rm in a te d u sin g c h e m ic a l a n a ly sis. M a n g a n e s e is the d o m in a n t e le m e n t o f th e e x a m in e d flo w s to n e s. Iro n c o n te n t is in s ig n ific a n t (T ab. 1). T h e sa m p le s also c o n ta in C a an d M g, as w ell as sm all a m o u n ts o f C o an d N i. Si, A l, B a, an d K w e re d e te c te d o n ly b y m ic ro p ro b e a n a ly se s. T h e d iffe r­

e n ces b e tw e e n th e M n /F e ra tio in th e flo w sto n e a n d in th e ir su b s tra te are v e ry d is tin c t (T a b . 1).

L a c k o f d is tin c t p e a k s in th e d iffra c to g ra m s in d ic a te s an a lm o s t to ta l a b se n c e o f c ry s ta llin e p h a se s a n d p re s e n c e o f a m o rp h ic s u b s ta n c e s in th e flo w s to n e s (F ig. 2). O n ly in tw o sa m p le s, th e p o s s ib ility o f o c c u rre n c e o f to d o ro k ite c a n n o t b e e x c lu d e d on th e b asis o f m o s t in te n siv e re fle x e s. H o w ­ e v er, th e p re s e n c e o f th e s e m in e ra ls h as n o t b e e n p ro v en . A lso o n ly sp o ra d ic o c c u rre n c e s o f c ry s ta llin e p h a se s w e re o b se rv e d in th e S E M im ag es.

A c c o rd in g to th e a b o v e p re s e n te d d ata, it c a n be co n -

2 theta

Fig. 2. Characteristic shape o f diffractogram s indicating pres­

ence o f amorphic material, sam ple from manganese flowstone

e lu d e d th a t th e e x a m in e d flo w s to n e s are m a in ly c o m p o s e d o f am o rp h ic m a n g a n e se s u b s ta n c e s, w h ic h , m o re o v e r, c o n ­ ta in so m e a m o u n t o f C a a n d M g . T h e ir c h e m ic a l c o n te n t can be re la te d to b im e s s ite o r v a rie tie s th e re of, n a m e ly b u se rite , in w h ic h C a, M g , M n , K , a n d H2O o c c u r b e tw e e n th e M n o c ta h e d ra l s h e e ts (P o st, 1992; U su i & M ita , 1995).

It h as b e e n p ro v e n th a t th e flo w s to n e s e x a m in e d u n d e r th e m ic ro sc o p e in tra n sm itte d lig h t are o p a q u e . T h e y are c o m p o s e d o f d o m e -lik e s tru c tu re s a b o u t 1 0 0 -1 5 0 |im in d iam eter, w h ic h are c le a rly v is ib le in th e S E M m ic ro g ra p h s (F ig. 3). T h e c e n tra l p a rts o f th e d o m e s are c h a ra c te riz e d by a d e n se n o n -p o ro u s m ic ro fa b ric (F ig . 4). T h e o u te r p a rts o f th e d o m e s a n d th e in te r-d o m e sp a c e s sh o w p o ro u s m ic ro fa b ­ ric. T h is p o ro u s m ic ro fa b ric is c o m p o s e d o f d e n s e ly p ac k e d , irre g u la rly tw is te d fila m e n ts w h ic h are m o re th a n 10 p.m

Fig. 3. General view o f dome-like structure com posing manga­

nese flowstone; SEM photom icrograph, scale bar 100 |im

lo n g (F ig. 5) b u t o n ly 1 to 2 p m in d ia m e te r. S o m e o f th e a d ja c e n t fila m e n t a g g lo m e ra te s a n d th e b o rd e rs b etw e e n th e m are d iffic u lt to d istin g u ish .

G lo b u la r b o d ie s , oval o r c irc u la r in sh a p e , o c c u r in th e p o ro u s m ic ro fa b ric (F ig. 6, 7). T h e y a re fro m 0.5 to 3 p m in d iam eter. T h e g lo b u la r b o d ie s d is p la y e ith e r a sm o o th o r sh a rp ly irre g u la r su rfa c e w ith sh a rp irre g u la ritie s. S o m e o f Mn

(%) Fe (%)

C a (%)

Mg (%)

Ni (ppm)

Co

(ppm) Mn/Fe Flowstones

48.3 0.67 6.14 1.86 443* 822* 72.1

Substrate 2.98 2.25 27.95 1.75 490* 406* 1.32

(4)

2 2 MANGANESE FLOWSTONES

Fig. 4. Detailed view o f dome-like structure, non-porous mi­

crofabric in central parts o f domes and porous microfabric in their outer parts and inter-dome spaces. Domes are developed due to the faster growth o f colony caused by quickest reproduction o f micro­

organism s (probably bacteria); SEM photomicrograph, scale bar 50 uni

Fig. 6. G lobular body o f m icrobial (bacterial or fungal) origin occuring within porous microfabric; SEM photom icrograph, scale bar 1 |.im

Fig. 5. Detailed view o f porous microfabric composed o f fila­

ments and globular bodies (large arrow), agglomeration o f adja­

cent filam ents is visible (small arrow); SEM photomicrograph,

scale bar 10 |im Fig. 7. G lobular body o f microbial (bacterial or fungal) origin:

visible sharp outline is due to mineralization processes; sample etched in H NO3 for 2.5 sec.; SEM photom icrograph, scale bar 1

|.im

th e m fo rm c lu m p s, w h ic h are m o re th a n 5 |im in d ia m e te r (F ig. 8), o th ers are d is tin c tly fix e d to th e fila m e n ts. In the la tte r c ase, th e b o rd e rs b e tw e e n th em an d th e fila m e n ts are o b lite ra te d and, sim ila rly as b etw e e n a d ja c e n t filam en ts, d iffic u lt to d e te rm in e (F ig. 5).

DISCUSSION

T h e o rig in o f v a ria b le m a n g a n e se d e p o sits is e x te n ­ siv e ly d is c u sse d in lite ra tu re , e sp e c ia lly th e ir b io g en ic v e r­

su s n o n -b io g e n ic o rig in (M a rsh a ll, 1979; N e a ls o n , 1983;

G h io rs e & E h rlic h , 1992). S o m e a u th o rs o p t fo r th e in flu ­ e n c e o f m ic ro o rg a n ism s o n th e o rig in o f m a n g a n e se d e p o s ­ its, fo r in sta n c e d e e p -s e a (G re e n sla te , 1974), fre sh -w a te r (D u b y n in a , 1980; C h a p n ic k e t al., 1982), an d so il n o d u le s (R o b b in s , e t al., 1992), as w ell as d e se rt v arn ish (P a lm e r e t

al., 1986) an d sp rin g d e p o sits (H a riy a & K ik u c h i, 1964;

M u sto e, 1981). M o reo v er, p re c ip ita tio n o f m a n g a n e se o x ­ ides b y m ic ro o rg a n ism s w as s h o w n in s e v e ra l e x p e rim e n ts (e.g. N e a ls o n & F ord, 1980; N e a ls o n & T e b o , 1980; M u s­

to e, 1981; E m e rso n et al., 1982; D iem & S tu m m , 1984;

G reen e & M ad g w ick , 1988). B io lo g ic a lly -in d u c e d an d b io ­ lo g ic a lly -c o n tro lle d p ro c e s se s o f m a n g a n e s e -o x id e p re c ip i­

ta tio n h a v e b een d is tin g u ish e d (S k in n e r & F itz p a tric k , 1992). In th e fo rm e r o f o f th e s e p ro c e s se s, m a n g a n e se o x ­ id es are p re c ip ita te d e x te rn a lly o n to m ic ro b ia l cells as a re s u lt o f th e in flu e n c e o f m ic ro o rg a n ism s on th e e n v iro m e n t, e sp e c ia lly th ro u g h c h a n g e s in p H an d E h. T h e la tte r p ro c e s s is c o n n e c te d w ith p re c ip ita tio n o f m a n g a n e s e o x id e s w ith in th e cells o r o rg a n s o f m ic ro o rg a n ism s, p ro b a b ly b y m ean s o f e n zy m e s. H o w e v e r, a lo t o f c o n tro v e rsie s c o n c e rn in g the b io lo g ic a l p re c ip ita tio n o f m a n g a n e se o x id e s still ex ists (G h io rse & E h rlic h , 1992).

(5)

MANGANESE FLOWSTONES 2 3

Fig. 8. Irregular three-dimensional clumps composed o f globular bodies o f microbial origin; sam ple etched in HNO3 for 2.5 sec.; SEM photomicrograph, scale bar 10 |im

O R I G I N O F I N T E R N A L S T R U C T U R E S T h e siz e a n d sh ap e o f fila m e n ts, c o -o c c u rrin g g lo b u la r b o d ie s a n d th e d o m e -lik e stru c tu re s th e y fo rm su g g e s t th e ir m ic ro b ia l o rig in . C o rre c t d e te rm in a tio n o f th e o rig in o f th e s e stru c tu re s is d iffic u lt b e c a u se o f th e ir sta te o f p re s e rv a ­ tio n . H o w e v e r, it is p o s s ib le to c o m p a re the e x a m in e d stru c ­ tu re to th e m in e ra liz e d o n e s d e s c rib e d so far.

D istin c t d o m e -lik e s tru c tu re s in th e e x a m in e d flo w ­ sto n e s (F ig s 3, 4 ) can b e c a u s e d b y b io g e n ic p ro c e sse s. Such a sh a p e is ty p ic a l o f re c e n t b a c te ria l c o lo n ie s (C a rlile , 1979).

T h e c e n te rs o f th e b a c te ria l c o lo n ie s are p u s h e d u p, th is d u e to th e fa c t th a t th e s e c e n te rs are th e are a o f q u ic k e s t re p ro ­ d u c tio n . C o n s e q u e n tly , th e d o m e s are form ed. A n a lo g o u s stru c tu re s o f sim ila r size o c c u r in m o d e m m an g a n e se sp rin g d e p o sits in th e H o k k a id o Is la n d (U su i & M ita, 1995, fig.

6a). A s im ila r, a lth o u g h s m a lle r by o n e o rd e r o f m a g n itu d e stru c tu re w a s d o c u m e n te d in th e T u ro n ia n m ic ro b ia l p h o s- p h a tic s tro m a to lite s d e s c rib e d b y K ra je w sk i e t al. (1 9 9 4 , fig.

19).

T h e o rig in o f fila m e n ts (F ig . 5) m a y b e re la te d to c y a n o ­ b a c te ria (b lu e -g re e n a lg a e ), fu n g i, o r b a c te ria . T h e to ta l d a rk n e s s d e e p in th e cav e, w h e re the flo w s to n e s w e re sa m ­ p le d , su g g e sts th a t fu n g i a n d b a c te ria are m o re lik ely to a p p e a r th e re . S u ch p o s tu la tio n can b e ta k e n in to a c c o u n t in fu rth e r d is c u ssio n . A c c o rd in g to K la p p a (1 9 7 9 ), fu n g al fila ­ m e n ts are c h a ra c te riz e d b y c o n s ta n t d ia m e te r an d are n o t tw is te d . H o w e v e r, fu n g al h y p h e s o b ta in e d in th e e x p e ri­

m e n ts c a rrie d o u t b y J o n e s a n d P e m b e rto n (1 9 8 7 ) w e re d is tin c tly tw is te d . M o re o v e r, th e e x a m in e d p o ro u s m ic ro - fa b ric s a re v e ry sim ila r to th o s e o f m a n g a n e se o x id es o b ­ ta in e d in th e e x p e rim e n ts o f G o ld e n e t al. (1 9 9 2 , p h o to 1). In th e s e e x p e rim e n ts, th e fu n g i w e re in c u b a te d a n d p ro p a g a te d o n a s u b s tra te rich in m a n g a n e se . T h e m a n g a n e se o x id es p re c ip ita te d w ith in th e fu n g a l m y c e liu m . A s th e re s u lt o f th is e x p e rim e n t, a p o ro u s , s o -c a lle d “ o p en fa b ric ” , c o m ­ p o se d o f b u s e rite , w as fo rm e d .

A lth o u g h th e p o ro u s m ic ro fa b ric s a p p e a r to b e o f fu n g al o rig in , th e ir b acte rial o rig in c a n n o t b e e x c lu d e d . Jo n e s an d M o ty k a (1 9 8 7 , fig. 4 C -D ) illu s tra te d a s im ila r m ic ro fa b ric , ca lle d “th e re tic u la r p a tte rn s ” , w h ic h o c c u rs in a n o p a q u e su b s ta n c e w ith in ca lc itic sta la c tite s. T h e su b s ta n c e is c o m ­ p o se d m a in ly o f M n an d C a, a n d s u b o rd in a te ly o f A l. T h e c ite d a u th o rs p o stu la te d b a c te ria l o rig in o f th e su b sta n c e . M o re o v e r, so m e stru c tu re s s im ila r in siz e a n d s h a p e to the e x a m in e d fila m e n ts h a v e b e e n re c o g n iz e d in th e C re ta c e o u s p e la g ic p h o sp h o ro u s stro m a to lite s in S p ain (M a rtin -A lg a rra

& V era, 1994, fig. 17). T h e y w e re in te rp re te d as “ strin g c o lo n ie s o f b a c te ria ” . H o w e v e r, c o n tra ry to th e e x a m in e d m ic ro fa b ric , th e fila m e n ts in th e s e c o lo n ie s w e re m o re d e n se ly p a c k e d a n d c o n se q u e n tly b u ilt a n o n -p o ro u s m ic ro - fabric. T h e fila m e n ts in q u e stio n a re s im ila r to th e b ra n c h e s o f th e s ta r-s h a p e d c o lo n y o f b a c te riu m M e ta lo g e n iu m sp.

(cf. C re a r e t a i , 1980). It is w o rth p o in tin g o u t th a t th is b a c te riu m can p re c ip ita te m a n g a n e s e o x id e (e.g . M a rsh a ll, 1979; D u b y n in a , 1980).

T h e e x a m in e d g lo b u la r b o d ie s in th e p o ro u s m ic ro fa b ric (F ig s 6, 7) a re p ro b a b ly m in e ra liz e d b o d ie s o f b a c te ria or m in e ra liz e d fu n g al sp o re s, as su g g e s te d b y th e ir size an d sh ap e. T h e sp h e ric a l a n d o v al sh a p e o f th e se b o d ie s c o rre ­ sp o n d s w ith th a t o f sp o re s o f fu n g i o r th e c o c o id b a c te ria , d e sp ite th e p o te n tia l p le o m o rp h is m o f th e la tte r (cf. N e a l­

son, 1983; Jo n e s & K e d d ie , 1992). S im ila r, b u t c a lc ifie d , b o d ie s o f b a c te ria l o rig in are re p o rte d fro m c a rb o n a te d e ­ p o sits (Jo n e s & M a c D o n a ld , 1989; G u o & R id in g , 1992,

1994; F o lk , 1993), a n d fro m m a n g a n e s e d e p o sits, w h ere th ey are c o m p o s e d m o s tly o f m a n g a n e s e o x id e s (N e a ls o n &

F o rd , 1980; N e a ls o n , 1983). It is w o rth p o in tin g o u t th a t th e m a n g a n e se re p lic a s o f b aterial b o d ie s w e re o b ta in e d in th e la b o ra to ry e x p e rim e n ts th ro u g h b io m in e ra liz a tio n (M u sto e , 1981, fig. 2; N e a ls o n & F o rd , 1980, fig. 3C ; N e a ls o n &

T e b o , 1980, fig. 3D ; E m e rso n e t a l., 1982, fig. 3 E ). F o r th e e x p e rim e n ts, th e b a c te ria w e re e x tra c te d fro m th e e n v iro n ­ m en ts o f m a n g a n e se o x id e fo rm a tio n . T h e sh a p e a n d size o f th e e x a m in e d g lo b u la r b o d ie s are s im ila r to th o s e o b ta in e d in th e e x p e rim e n t d e sc rib e d b y th e a b o v e c ite d a u th o rs.

T h e size o f sm a lle r g lo b u la r b o d ie s , w h ic h are 0 .5 -1 .2

|am in d ia m e te r, is s im ila r to th e siz e o f th e sp o re s o f so m e fungi. S im ila r fo rm s c o m p o s e d o f c a lc ite an d c o v e re d w ith fine p la te le ts o f m a n g a n e se o x id e s w e re fo u n d in c a lic h e d e p o sits in th e G ra n d C a y m a n Is la n d (J o n e s, 1992a, b).

T h e y are sin g le o r a rra n g e d in c lu s te rs . T h e size o f g lo b u la r b o d ie s is u n ifie d in th e c lu s te rs , c o n tra ry to th o s e u n d e r d iscu ssio n .

T h e sm a lle r o f th e e x a m in e d g lo b u la r b o d ie s fo rm th re e -d im e n sio n a l c lu m p s (Fig. 8). T h e sh a p e o f th e c lu m p s co rre sp o n d s to th a t o f sim ila r o n e s o f c a lc ifie d b a c te ria a n d n a n n o b a c te ria d e sc rib e d by F o lk (1 9 9 3 ). S im ila r fo rm s o c ­ c u r in th e liv in g fre sh -w a te r s tro m a to lite s d e s c rib e d b y S zu lc an d S m y k (1 9 9 4 ), in te rp re te d as c a lc ifie d c lu m p s o f b a c te ria l cells. W e are n o t a b le to d e c id e i f th e e x a m in e d sm a lle r g lo b u la r b o d ie s are m in e ra liz e d b a c te ria o r sp o res d u e to th e ir p o o r sta te o f p re s e rv a tio n an d , m a in ly , b e c a u se o f th e a b se n c e o f e x te rn a l o rn a m e n ta tio n . N e v e rth e le s s , th e ir b acte rial o rig in se e m s m o re p la u s ib le .

T h e b io g e n ic m ic ro stru c tu re s a b o v e d e s c rib e d a re c h a r­

(6)

24

M. GRADZIŃSKI, M. BANAŚ & A. UCHMAN

a c te riz e d b y th re e -d im e n s io n a l m o rp h o lo g y an d th e la c k o f c o lla p se . T h is can b e seen as th e e v id e n c e fo r b io lo g ic a lly m e d ia te d m in e ra liz a tio n p ro c e s se s. T h e se p ro c e s se s o c ­ cu rre d w h ile the o rg a n is m s w e re a liv e o r d u rin g th e ir d e a th (cf. Jo h n e s & K a h le , 1986; Jo n e s & M a c D o n a ld , 1989). It can b e c o n c lu d e d th a t th e m ic ro o rg a n ism s, m a in ly b a c te ria an d fu n g i, p la y e d a n a c tiv e ro le in th e fo rm a tio n o f th e e x a m in e d flo w sto n e s.

T h e a m o rp h ic s ta te o f th e m a n g a n e se o x id e c o m p o s in g th e flo w s to n e s s tro n g ly su p p o rts th e c o n c e p t o f th e ir m ic ro ­ bial o rig in . T h e a m o rp h ic sta te o f m a n g a n e se o x id e s is m u ch m o re c o m m o n in d e p o s its o f b io g e n ic o rig in an d is re g a rd e d as o n e o f th e d ia g n o s tic c rite ria o f su c h o rig in (R a y m o n d e t a l , 1992).

D I A G E N E T I C P R O C E S S E S

T h e irre g u la r s h a p e a n d sh arp o u tlin e o f so m e g lo b u la r b o d ie s (F ig . 7) are p ro b a b ly c o n n e c te d w ith th e p ro c e s s o f m in e ra liz a tio n , w h ic h c a u se s th e o b lite ra tio n o f th e p rim a ry sh a p e o f b io g e n ic stru c tu re s. E a rly d ia g e n e tic p ro c e sse s o f th is ty p e w e re c le a rly re c o g n is e d in c a rb o n a te se d im e n ts (G u o & R id in g , 1994; S zu lc & S m y k , 1994; V e re c c h ia &

V e re c c h ia , 1994). T h e m in e ra liz e d m ic ro b ia l b o d ie s b e ­ c o m e c e n tre s o f c a lc ite c ry s ta lliz a tio n d u rin g fu rth e r d i­

ag e n e sis. S im ila r p h e n o m e n a w e re re c o rd e d d u rin g th e p re ­ c ip ita tio n o f m a n g a n e s e o x id e s in se v e ra l e x p e rim e n ts (N e a ls o n & F o rd , 1980; N e a ls o n & T e b o , 1980). P rim a rily w e ll-d e fin e d b a c te ria l b o d ie s b e c o m e ce n tre s o f p re c ip ita ­ tio n o f m a n g a n e se o x id e s in su b s e q u e n tly p h a se s o f th e e x p e rim e n ts. S o m e irre g u la r lu m p s o f m a n g a n e se o x id es w e re la te r fo rm e d a ro u n d th e ce n tre s. S im ila r early d ia g e ­ n e tic p ro c e s s e s p ro b a b ly c a u s e d th e a g g lo m e ra tio n o f a d ja ­ c e n t fila m e n ts as w e ll as th e o b lite ra tio n o f fila m e n t b o rd ers a n d th e ir re la te d g lo b u la r b o d ie s in th e e x a m in e d p o ro u s m ic ro fa b ric (Fig. 5).

T h e d e v e lo p m e n t o f n o n -p o ro u s m ic ro fa b ric in th e d o m e c e n tre s can b e a ttrib u te d to th e a b o v e p ro c e s se s. H o w ­ e v e r, th e p o s s ib ility o f la te -d ia g e n e tic o rig in o f m ic ro fa b ric c a n n o t b e e x c lu d e d . A n a lte rn a te d is so lu tio n an d re c ry s ta lli­

z a tio n ca n le a d to th e fo rm a tio n o f su ch a m ic ro fa b ric an d ca n b e c a u s e d b y a lte rn a tin g d ry in g a n d w e ttin g o r w e a th e r­

in g o f m a n g a n e se o x id e s (D ix o n & S k in n er, 1992). T h e la tte r p ro c e s s e s c a u s e d th e c o rro ssio n o f th e flo w sto n e s u r­

faces. T h e in s ig n ific a n t o c c u rre n c e o f to d o ro c k ite , w h ic h ca n re s u lt fro m tr a n s fo rm a tio n o f o th e r m a n g a n e se o x id es (G io v a n o li, 1980; G o ld e n e t al., 1987, 1992), m ig h t h av e re s u lte d fro m d ia g e n e tic p ro c e s se s as w ell.

M n / F e R A T I O

T h e M n /F e ra tio d is tin c tly d iffe rs in th e e x a m in a te d flo w s to n e s an d th e ir s u b s tra te (T a b . 1). T h e M n /F e ra tio in th e e x a m in e d flo w s to n e s is h ig h e r b y a fe w o rd ers o f m a g n i­

tu d e th a n its a v e ra g e v a lu e in se d im e n ta ry ro ck s, w h ic h ra n g e s fro m 1:40 to 1:60 (S ta n to n , 1972). It is w o rth e m p h a ­ s iz in g th a t m a n g e n e s e o x id e s are less sta b le th e n iron o x id es (cf. M a rsh a ll, 1979; S k in n e r & F itz p a tric k , 1992). C o n s e ­ q u e n tly , th e p re c ip ita tio n o f m a n g a n e se o x id e s fro m th e so lu tio n c o n ta in in g F e a n d M n sh o u ld be a c c o m p a n ie d b y a

p re c ip ita tio n o f iro n o x id e s (K ra u sk o p f, 1957; S tan to n , 1972; O stw a ld , 1992).

So h ig h M n /F e ra tio in th e e x a m in e d sa m p le s h a s n o t b e e n re c o rd e d e v e n in d e e p -s e a m a n g a n e s e n o d u le s a n d cru sts, w h e re its a v e ra g e v a lu e is a b o u t 1:1 (C ro n a n ,1 9 7 7 , ta b 2-II; B o lto n e t al., 1988, ta b . 5). A s im ila rly h ig h M n /F e ra tio h as b e e n re c o rd e d in th e s u b m a rin e h y d ro te rm a l m a n ­ g a n e se c ru sts (B o lto n e t al., 1988, ta b . 6) a n d th e m a n g a n e se s in te r ap ro n s o f c o n tin e n ta l h o t-sp rin g s (S ta n to n , 1972, tab . 4 6 1 ). B o lto n e t al. (1 9 8 8 p . 8 1 ) c o n n e c te d su c h a hig h M n /F e ra tio in th e su b m a rin e h y d ro th e rm a l d e p o sits w ith

“a n e a rly p re c ip ita tio n o f F e in th e fo rm o f silic a te , o x id e, o x y h y d ro x id e o r su lp h id e b e fo r e h y d ro th e rm a l flu id s d e ­ b o u c h e d o n to th e s e a flo o r” . T h is m e c h a n ism c o u ld n o t h av e b e e n a p p lie d to th e e x a m in e d flo w s to n e s.

T h e p o s s ib ility o f a p o te n tia l, s e le c tiv e su p p ly o f M n in th e so lu tio n c a u se d b y se le c tiv e d is so lu tio n is a lso e x c lu d e d . T h is can b e p ro v e n b y th e la c k o f c h a ra c te ris tic s o f se le c tiv e d is so lu tio n o f m a n g a n e se o x id e in th e su b s tra te . S e le c tiv e d isso lu tio n w o u ld b e in c o n s is te n t w ith th e e x p e rim e n t r e ­ su lts w h ic h p ro v e th a t th e M n /F e o f d is s o lv e d ro c k s is sim ila r to th a t o f th e o b ta in e d s o lu tio n (K ra u sk o p f, 1957).

T h e h ig h M n /F e ra tio in th e e x a m in e d flo w s to n e s can be e x p la in e d b y b io lo g ic a lly m e d ia te d p re c ip ita tio n . T h e a b se n c e o f c a lc ite in th e e x a m in e d flo w s to n e s su g g e sts an ac id e n v iro m e n t d u rin g th e ir fo rm a tio n , th e p re s u m e d p H le v e l b e lo w 7 .8. T h e p o s s ib ility o f se le c tiv e p re c ip ita tio n o f m a n g a n e se b y m ic ro o rg a n ism s w a s su g g e s te d b y K ra u s k o p f (1 9 5 7 ), S tan to n (1 9 7 2 ), J o n e s a n d K a h le , (1 9 8 5 ) a n d O st­

w a ld (1 9 9 2 ). M o re o v e r, a h ig h M n /F e ra tio , a b o u t 5 0 :1 , w as re c o rd e d in th e m a n g a n e se la m in a e th a t o c c u r in th e c a rb o n ­ ate se d im e n ts o f R e d S e a (G a rb e r e t a l., 1981). E h rlic h an d Z a p k in (1 9 8 5 ) p o stu la te d th a t m a n g a n e s e o x id e s fro m th e la m in ae are o f b io g e n ic orig in .

D E P O S I T I O N A L R A T E

H e m (1 9 8 1 ) c a lc u la te d th e p re c ip ita tio n ra te o f in o r­

g a n ic m a n g a n e se o x id e s to b e a p p ro x im a te ly a fe w -te n th s o f a m illim e te r p e r m illio n y e a rs . T h e n e g lig ib le sig n ific a n c e o f in o rg a n ic p re c ip ita tio n o f m a n g a n e s e o x id e s fro m so lu ­ tio n is c o n firm e d b y e x p e rim e n t d a ta (D ie m & S tu m m , 1984). T a k in g into a c c o u n t th e e v o lu tio n o f th e T a tra M ts., th e e x a m in e d flo w s to n e s are m o s t p ro b a b ly n o t o ld e r th an L ate M io c e n e in age. T h e tim e o f th e ir fo rm a tio n w a s p ro b ­ a b ly stro n g ly lim ite d b y L a te P lio c e n e c lim a tic c o o lin g an d P le isto c e n e g la c ia tio n s. It can b e c a lc u la te d th a t th e p e rio d o f p o te n tia l a v a ila b ility o f a m a n g a n e s e b e a rin g so lu tio n w as n o t lo n g e n o u g h to a llo w th e fo rm a tio n o f se v e ra l-m m - th ic k flo w s to n e . T h e p re c ip ita tio n p ro c e s s e s o f th e e x a m ­ in e d flo w s to n e s w e re m o s t lik e ly m u c h m o r e e ffic ie n t th a t k n o w n in o rg a n ic p ro c e s se s. T h is s tro n g ly su g g e s ts b io lo g i­

c a lly m e d ia te d p re c ip ita tio n (cf. G h io rs e & E h rlic h , 1992), sin c e th e s e p ro c e s se s are fa s te r b y se v e ra l o rd e r o f m a g n i­

tu d e . S ev eral e x a m p le s o f v e ry fa s t m ic ro b ia lly m e d ia te d o x id a tio n o f m a n g a n e se in n a tu ra l c o n d itio n s w e re d e ­ scrib ed . F o r in stan ce, M a rsh a ll (1 9 7 9 ) p ro v id e d se v e ra l e x ­ am p le s o f su ch p ro c e s se s. T h e ir o c c u rre n c e in h y d ro e le c tric p ip e lin e s re s u lte d in p re c ip ita tio n o f 1 0-m m -th ic k la y e r o f

(7)

MANGANESE FLOWSTONES

25

m a n g a n e se o x id e s w h ic h o n ly la s te d h a lf a y ear. S im ilar a n n u a l ra te o f p re c ip ita tio n o f m a n g a n e se o x id e s w as n o te d in h o t-sp rin g d e p o sits o f th e Y u n o -T a k i S p rin g s in Jap an , w h e re th e p re c ip a tio n p ro c e s s e s are a c c e le ra te d b y m ic ro ­ b ial m e d ia tio n (U su i & M ita , 1995). C h a p n ic k e t al. (1 9 8 2 ) su g g e s te d th e in flu e n c e o f m ic ro o rg a n ism s o n p re c ip ita tio n o f m a n g a n e s e o x id e s in O n e id a L ak e, w h e re th e p re c ip ita ­ tio n rate is a b o u t 1 m m /y (D e a n e t a l ., 1981). M o re o v e r very h ig h ra te o f m ic ro b ia lly m e d ia te d p re c ip ita tio n o f m a n g a ­ n e se w a s, m o re o v e r, re v e a le d in se v e ra l e x p e rim e n ts (cf.

N e a ls o n & F o rd , 1980; N e a ls o n & T e b o , 1980; M u sto e, 1981).

CONCLUSIONS

1. T h e flo w s to n e s fro m J a s k in ia C z a rn a C a v e are m a d e u p o f a m o rp h ic m a n g a n e se o x id e s.

2. T h e flo w s to n e s are c o m p o s e d o f d o m e -lik e stru ctu res w h ic h are c h a ra c te riz e d b y n o n -p o ro u s m ic ro fa b ric in th e d o m e c e n tre s a n d p o ro u s m ic ro fa b ric o n th e o u te r p a rts o f th e d o m e s as w e ll as in th e in te r-d o m e sp aces. T h e p o ro u s m ic ro fa b ric is c o m p o s e d o f fila m e n ts a n d c o -o c c u rrin g g lo b u la r b o d ie s .

3. T h e fila m e n ts a n d g lo b u la r b o d ie s are o f b io g e n ic o rig in . T h e y a re m in e ra liz e d b o d ie s o f b a c te ria a n d /o r fungi.

S im ila r stru c tu re s, o b ta in e d in so m e e x p e rim e n ts an d o b ­ s e rv e d in fo s s il m a te ria ls, a re d e s c rib e d in se v e ra l p u b lic a ­ tio n s.

4. N o n -p o ro u s m ic ro fa b ric in th e c e n tre o f d o m e s and o b lite ra tio n o f th e b io g e n ic stru c tu re s is c a u se d b y d ia g e ­ n e tic p ro c e s se ss.

5. A v e ry h ig h M n /F e ra tio in th e flo w sto n e s in d icates a p re fe re n c ia l p re c ip ita tio n o f m a n g a n e se o x id e s b y m ico o r- g a n ism s.

6. T h e a c c u m u la tio n ra te o f flo w s to n e s is m u ch h ig h e r th a n th a t k n o w n d u rin g in o rg a n ic p re c ip ita tio n , w h ic h su g ­ g ests a m ic ro b ia lly m e d ia te d p re c ip ita tio n .

7. A z o n e o f c o n c a t b e tw e e n M id d le T ria s sic carb o n a te s a n d U p p e r J u ra ssic - L o w e r C re ta c e o u s, rich in M n /F e, is m o s t p ro b a b ly th e so u rc e o f th e M n.

A c k n o w le d g m e n ts

A uthorities o f the Tatra N ational Park kindly provided us with perm ission to conduct researches in the cave. The authors also wish to thank Ewa Fila M.Sc., Ewa Starnawska M.Sc. and Dr Pawel Zawidzki for their assistance during SEM observations and EDS analyses, and for taking the microphotographs; M. Bus M.Sc.

for carrying out chemical analyses, Dr Tadeusz Kawiak for help with interpretation o f XRD analyses and Mr. Stanisław Olbrych for prepearing thin-sections. The authors are also indebted to Beata M ichalska, Wojciech Uhl and all colleagues for help during field work. Special thanks are adressed to M arek Kucharski for improving the English version o f the m anuscript and to Professors W itold Żabiński and W ojciech Narębski for their helpful com­

ments.

R E F E R E N C E S

Bac, M. & Grochocka, K.. 1965. La structure du pli de Czerwone

Wierchy sur le versant est de la valle Kościeliska. (In Polish, French summ.). Acta Geol. Polon., 15: 331-354.

Böhm, F. & Brecheit, T. C., 1993. D eep-w ater strom atolites and Frutexites M aslov from the Early and M iddle Jurassic o f S-Germany and Austria. F a d es, 28: 145-168.

Bolton, B. R., Both, R., Exon, N. F., Hamilton, T. F., Ostwald, J.

& Smith, J. D„ 1988. Geochem istry and m ineralogy o f seafloor hydrothermal and hydrogenetie Mn oxide deposits from the M anus Basin and Bism arck A rchipelago region o f the southwest Pacific. Mar. Geol., 85: 65-87.

Broughton., P. L. 1971. Secondary mineralization in the cavern environment. Stud. Speleol., 2: 191-207.

Carlile, M. J., 1979. Bacterial, fungal and slim e mould colonies. In:

Larwood, G. & Rosen, B. R. (Eds), Biology a nd Systematics o f Colonial Organisms. Academ ic Press, London, pp. 3-27.

Chapnick, S. D., M oore, W. S. & N ealson, K. H., 1982. M icrobiogi- cally mediated manganese oxidation in a fresh w ater lake.

Limnol. Oceanogr., 27: 1004-1014.

Cilek, V. & Fâbry, J., 1989. Epigenetic manganese-rich layers in karst fillings o f the Zlatÿ kûn Hillock, Bohemian Karst. (In Czech, English summ.). Ceskoslovensky Kras, 40: 37-55.

Cronan, D. S., 1977. Deep-sea nodules: distribution and geochem ­ istry. In: Glasby, G. P. (Ed.), Marine M anganese Deposits.

Elsevier, Amsterdam, pp. 11-44.

Crear, D. A., Fischer, A. G. & Plaza, C. L., 1980. M etallogenium and biogenic deposition o f manganese from Precainbrian to Recent time. In: Varentsov, 1. M. & G rasselly G. (Eds), Geology and G eochem istiy o f M anganese, Vol. Ill - M anga­

nese on the Bottom o f Recent Basins. A kadémiai Kiadó, Bu­

dapest, pp. 285-303.

Dean, W. S., Moore, W. S. & Nealson. K. H., 1981. Manganese cycles and the origin o f m anganese nodules, O neida Lake, N ew York, USA. Chem. Geol.. 34: 53-64.

Diem, D. & Stumm, W., 1984. Is dissolved M n"' being oxidized by O i in absence o f M n-bacteria or surface catalysts? Geo- chim. Cosmochim. Acta, 48: 1571-1573.

Dixon, J. B. & Skinner, H. C. W., 1992. M anganese m inerals in surface environments. In: Skinner, H. C. W. & Fitzpatrick, R.

W. (Eds), Biom ineralization Processes o f Iron a n d M anga­

nese: Modern and A ncient Environments. Catena Supplem ent 21. Catena Verlag, Cremlingen, pp. 31-50.

Dubynina, G. A., 1980. The role o f m icroorganism s in the form a­

tion o f the Recent iron-manganese lacustrine ores. In: V arent­

sov. I. M. & Grasselly, G. (Eds), G eology a nd Geochemistry>

o f Manganese, Vol. Ill - Manganese on the Bottom o f Recent Basins. Akadémiai Kiadó, Budapest, pp. 305-326.

Ehrlich, H. L. & Zapkin, M. A., 1985. M anganese-rich layers in calcareous deposits along the western shore o f the Dead Sea may heve a bacterial origin. G eom icrobiology J.. 4: 207-221.

Emerson, S., Kalhom, S., Jacobs, L., Tebo, B. M., Nealson, K. H.

& Rosson. R. A., 1982. Environm ental oxidation rate o f m an­

ganese (II): bacterial catalysis. Geochim. Cosmochim. Acta, 46: 1073-1079.

Folk, R. L., 1993. SEM imaging o f bacteria and nannobacteria in carbonate sediments and rocks. J. Sediment. P e tro l, 63: 990- 999.

Garber, R. A.. Nishiri, A., Nissenbaum. A. & Friedman. G. E., 1981. Modern deposition o f m anganese along the Dead Sea shore. Sediment. Geol., 30: 267-274.

Gascoine, W., 1982. The formation o f black deposits in som e caves o f South East Wales. Cave Science, 9: 165-175.

Giovanolli, R., 1980. On natural and synthetic m anganese nodules.

In: Varentsov, 1. M. & Grasselly, G. (Eds), G eology and G eochem istiy o f Manganese. Vol. I - Mineralogy, G eochem ­ istiy, Methods. Akadémiai Kiadó. Budapest, 159-202.

4 — A nnales Societatis...

(8)

26

M. GRADZIŃSKI, M. BANAŚ & A. UCHMAN

Ghiorse, W. C. & Ehrlich, H. L., 1992. Microbial biomineralization o f iron and manganese. In: Skinner, M. C. W. & Fitzpatrick, R. W. (Eds), Biom ineralization Processes o f Iron and Manga­

nese: Modern and Ancient Environments. Catena Supplement 21. Catena Verlag, Cremlingen, pp. 75-100.

Głazek, J., Grodzicki, J.. Rudnicki, J. & W ójcik, Z., 1979. Karst in the Tatra Mts. (In Polish, English summ.). Przegl. Geol., 27:

377-381.

Golden, D. C., Chen, C. C., Dixon, J. B., 1987. Transformation o f birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays a nd Clay M inerals, 35: 271- 280.

Golden, D. C., Zuberer, D. A. & Dixon, J. B., 1992. M anganese oxide produced by fungal oxidation o f manganese from siderite and rodochrosite. In: Skinner, II. C. W. & Fitzpatrick, R. W. (Eds), Biom ineralization Processes o f Iron an d M anga­

nese: Modern a n d Ancient Environments. Catena Supplement 21. Catena Verlag, Cremlingen, pp. 161-168.

Gradziński. M., Banaś, M. & Uchman. A., 1995. Geneza man­

ganowych nacieków z Jaskini Czarnej. In: Materiały Sym- pozjalne. X X IX Sym pozjum Sekcji Speleologicznej Polskiego Towarzystwa Przyrodników im. Kopernika, Zakopane, 20-22 Październik 1995, pp. 8-9.

Gradziński, R., Borowiec, W., Górny, A.. Haczewski, G. &

W iśniewski, W. W., 1985. Hydrogeologia, Speleologia. In:

Trafas, K. (Ed.), Atlas Tatrzańskiego Parku Narodowego, Tatrzański Park N arodow y, Polskie Towarzystw o Przyjaciół N auk o Ziemi O ddział w Krakowie, Zakopane - Kraków, p. 7.

Greene. A. C. & M adgwick, J. C., 1988. Heterotrophic manganese- oxidizing bacteria from Groote Eylant, Australia. Geomicro- b i o l o g y 6: 119-127.

Greenslate. J., 1974. M icroorganism s participate in the construc­

tion o f manganese nodules. Nature, 249: 181-183.

Grochocka-Rećko, K., 1963. Geology o f W yżnia Swistówka (W estern Tatra). (In Polish. English summ.). Acta Geol.

Polon.. 13:239-270

Grodzicki, J., 1978. N ew structural elements o f the Organy Unit situated between the K ościeliska and the Miętusia Valleys. (In Polish, English sum m.). Kras i Speleologia, 2: 77-83.

Guo. L. & Riding, R., 1992. M icrobial carbonates in upperm ost Perm ian reefs. Sichuan Basin, southern China: some similari­

ties with Recent travertines. Sedimentology. 39: 37-53.

Chio, L. & Riding, R., 1994. Origin and diagenesis o f Quaternary shrub fades, Rapolane Terme, central Italy. Sedimentologv, 41: 499-520.

Hariya, Y. & Kikuchi, T., 1964. Precipitation o f manganese by bacteria in mineral springs. Nature, 202: 416-417.

Hem, J. D., 1981. Rates o f m anganese oxidation o f aqueous system.

Geochim. Cosmochim. Acta, 45: 1369-1374.

Hill, C. A., 1982. Origin o f black deposits o f caves. Nat. Speleol.

Soc. Bull., 44: 15-19.

Jones, B., 1992a. M anganese precipitates in the karst terrain o f Grand Cayman. British W est Indies. Can. J. Earth Sei., 29:

1125-1139.

Jones. B., 1992b. Construction o f spar calcite around spores. J.

Sediment. Petrol., 62: 1054-1057.

Jones, B. & Kahle. C. F.. 1985. Lichen and algae: agents o f biodiagencsis o f karst breccia from Grand Cayman Island.

Can. Soc. Petrol. Geol. Bull., 33: 446-461.

Jones, B. & Kahle. C. F., 1986. Dendritic calcite crystals formed by calcification o f algal filam ents in a vadose environment. J.

Sediment. Petrol., 56: 217-227.

Jones, B. & M acDonald, R. W., 1989. M icro-organism s and crystal fabrics in cave pisoliths from Grand Cayman, British W est Indies. J. Sediment. Petrol., 59: 387-396.

Jones, B. & Motyka, A., 1987. Biogenic structures and inicrite in stalagmites from Grand Cayman Island, British W est Indies.

Can. J. Earth Sei., 24: 1402-1411.

Jones, B. & Pemberton, S. G., 1987. The role o f fungi in the diagenetic alteration o f spar calcite. Can. J. Earth Sei., 24:

903-914.

Jones, D. & Keddie, R. M.. 1992. The genus A rthrobacter. In:

Balows, A., Truper, H.G., Dworkin, M., Harder, W. &

Schleifer, K. H. (Eds), The Prokatyotes. A H andbook on the Biology o f Bacteria: Ecophysiolog}1, Isolation, Identification, Applications. Springer-Verlag, Berlin, pp. 1281-1299.

Kashima, N., 1983. On the w ad-m inerals from the cavern environ­

ment. Int. J. Speleol., 13: 67-72.

Klappa, C. F., 1979. Calcified filam ents in Q uaternary calcretes:

organo-mineral interactions in the subaerial vadose environ­

ments. J. Sediment. Petrol., 49: 955-968

Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J., M artin-Algarra, A., Prévôt, L., Tewari, V. C., Gaspar. L., Knight, R. I.. & Lamboy, M., 1994. B iological processes and apatite formation in sedim entary environments. Ecloge Geol.

Helv., 87: 701-745.

Krauskopf. K. B., 1957. Separation o f manganese from iron in sedimentary processes. Geochim. Cosmochim. Acta, 12: 61- 84.

Krumbein, W. E., 1971. M anganese-oxidizing fungi and bacteria.

Naturwissenschaften, 58: 56-57.

Lefeld, J., 1979. Jura. In: Lefeld, J. (Ed.), Przew odnik L I Zjazdu PTG, Zakopane, 13-15 września 1979. W ydawnictwa Geologiczne, Warszawa, pp. 38-47.

Lefeld, J., 1985. Part A. H igh-Tatric Succession. In: Lefeld, J.

(Ed.), Jurassic and Cretaceous lithostratigraphic units o f the Tatra Mountains. Studia Geol. Polon.. 84: 10-37.

Marshall, K. C., 1979. Biogeochem istry o f manganese minerals.

In: Trudinger, P. A. & Swaine, D. J. (Eds), Biogeochem ical Cycling o f M ineral-Forming Elements. Elsevier, Amsterdam, pp. 253-292.

M artin-Algarra, A. & Vera, J. A., 1994. M esozoic pelagic phos­

phate stromatolites from the Penibetic (B etic Cordillera, Southern Spain). In: Bertrand-Sarfati, J. & Monty, C. (Eds), Phanerozoic Stromatolites II. Kluwer Academ ic Publishers, Dordrecht, pp. 345-391.

Moore, G.W., 1981. M anganese deposition in limestone caves. In:

Beck, B. F. (Ed.), Proc. 8th Int. Congress o f Speleology, Bowling Green, Kentucky, pp. 642-644.

Moore, G. W. & Sullivan, G. N., 1978. Speleology, The Study o f Caves. Zephyrus Press, St. Louis, 150 pp.

Mustoe, G. E., 1981. Bacterial oxidation o f m anganese and iron in a modem cold spring. Geol. Soc. Am. Bull., 92. Part 1:147-153.

Nealson, K .11., 1983. The microbial manganese cycle. In: Krum­

bein, W. E. (Ed.). M icrobial Geochemistry. Blackw ell Scien­

tific Publications, Oxford, pp. 191-221.

Nealson, K. H. & Ford, J., 1980. Surface enhancem ent o f bacterial manganese oxidation: im plications for aquatic environments.

Geomicrobiology J., 2: 21-37.

Nealson, K. H. & T ebo, B. M., 1980. Structural features o f m anga­

nese precipitatin bacteria. O rigins o f Life, 10: 117-126.

Ostwald, J., 1992. Biochem istry, paleoenvironm ents and Mil ore genesis. In: Skinner, H. C. W. & Fitzpatrick, R. W. (Eds), Biom ineralization Processes o f Iron an d M anganese: Modern an d Ancient Environments. Catena Supplem ent 21. Catena Verlag, Cremlingen, pp. 337-350.

Palmer, F. E., Staley, J. T., Murray, R. G. E., Counsell, T. & Adams, J. B., 1986. Identification o f m anganese-oxidizing bacteria from desert varnish. Geomicrobiology J., 4: 343-361.

Peck, S. B., 1986. Bacterial deposition o f iron and manganese

(9)

MANGANESE FLOWSTONES

27

oxides in North American caves. Nat. Speleol. Soc. Bull., 48:

26-30.

Post, 1992. Crystal structures o f manganese oxide minerals. In:

Skinner, H. C. W. & Fitzpatrick. R. W. (Eds), Biomineraliza­

tion Processes o f Iron and Manganese: Modern and Ancient Environments. Catena Supplem ent 21. Catena Verlag, Crem­

lingen, pp. 51-73.

Ramsay. .1. G. & Huber, M. I., 1989. Modern Structural Geolog)'.

V.I - Strain Analyses. A cadem ic Press, London, 307 pp.

Raymond. R. Jr., Guthrie, E. D. Jr., Bish, D. L., Reneau, S. L. &

Chipera, S. J., 1992. Biom ineralization o f manganese in rock varnish. In: Skinner, H. C. W. & Fitzpatrick, R. W. (Eds), Biom ineralization Processes o f Iron a nd Manganese: Modern and Ancient Environments. Catena Supplem ent 21. Catena Verlag, Cremlingen, pp. 321-337.

Richardson, L. L., Aguilar, C. & N ealson, K. H., 1988. Manganese oxidation in pH and O2 m icroenvironments produced by phy­

toplankton. Limnol. Oceanogr., 33: 352-363.

Robbins, E. I., D 'Agostino, J. P.. Ostwald, J., Fanning, D. S., Carter, V. & Van Hoven, R.L., 1992. M anganese nodules and micro­

bial oxidation o f m anganese in the Huntley Meadows wetland, Virginia, USA. In: Skinner, H. C. W. & Fitzpatrick, R. W.

(Eds), Biom ineralization Processes o f Iron a nd Manganese:

Modern a nd Ancient Environments. Catena Supplement 21.

Catena Verlag, Cremlingen, pp. 179-201.

Rogers, B. W. & Williams. K. M., 1982. Mineralogy o f Lilburn Cave, Kings Canyon. Nat. Speleol. Soc. Bull., 44: 23-31.

Rudnicki, .1., 1967. Origin and age o f the Western Tatra cavcrns.

(In Polish. English summ.). Acta Geol. Polon., 17: 521-592.

Schweisfurth, R.. 1971. M anganknollen im Meer. Naturwissen­

schaften, 58: 344-347.

Sieciarz, K., 1963. Geology o f the east side ot'M t. K opa Kondracka.

(In Polish, English summ.). Acta Geol. Polon., 13: 271-293.

Skinner, I I. C. W. & Fitzpatrick, R. W., 1992. Iron and Manganese Biomineralization. In: Skinner, H. C. W. & Fitzpatrick, R.W.

(Eds), Biomineralization Processes o f Iron a nd Manganese:

Modern a nd Ancient Environments. Catena Supplement 21.

Catena Verlag, Cremlingen, pp. 1-6.

Stanton. R.L.. 1972. Ore Petrology. McGraw-Hill Company, New York. 713 pp.

Szulc, J. & Smyk. B., 1994. Bacterially controled calcification o f freshwater ScfcorW.Y-Stromatolites: an example from the Pi­

eniny Mts., Southern Poland. In: Bertrand-Sarfati, J. & Monty, C. (Eds). Phanerozoic Stromatolites II. Kluwer Academic Publishers. Dordrecht, pp. 31-51.

Szulczewski, M., 1963a. The geology o f the M ala Swistówka. (In Polish, English summ.). Acta Geol. Polon., 13: 199-216.

Szulczewski, M., 1963b. The Bathonian stromatolites in the Tatra Mts. (In Polish, English summ.). A d a G eol Pol.. 35: 125-141.

Usui, A. & Mila, N „ 1995. G eochemistry and mineralogy o f a modern buserite deposit from a hot spring in Hokkaido, Japan.

Clays a n d Clay Minerals, 43: 116-127.

Verecchia, E. P. & Verecchia, K. E., 1994. Needle-fibre calcite: a critical review and a proposed classification. J. Sediment.

Research. A64: 650-664.

White, W. B., 1976. Cave m inerals and speleothems. In: Ford. T.

D. & Cullingford, C. H. D. (Eds), The Science o f Speleology’.

Academic Press, London: pp. 2 6 1 - i ll .

S t r e s z c z e n i e

B I O G E N I C Z N E P O C H O D Z E N I E P O L E W M A N G A N O W Y C H W J A S K I N I C Z A R N E J

W T A T R A C H , K A R P A T Y Z A C H O D N I E

M ic h a ł G ra d ziń ski, M ic h a ł B a n a ś & A lfr e d U ch m a n We wschodniej części Jaskini Czarnej stwierdzono w ystę­

powanie polew zbudowanych ze związków manganu. Polewy mają miąższość od 2 do 20 mm i w ystępują w postaci nieregu­

larnych płatów na ścianach jaskini. Platy m ają rozm iary od kilku­

nastu centym etrów do kilku decymetrów. Polewy m ają korozyjną zew nętrzną powierzchnią. Części polew manganow ych sąp o k iy te polewami kalcytowym i o miąższości do 4 mm. Celem badań było określenie genezy polew manganowych.

W ystępowanie polew manganow ych je s t związane z kontak­

tem utworów środkowego triasu i malm o-neokom u widocznym w wielu miejscach we wschodniej części Jaskini Czarnej (Fig. 1).

Kontakt ten błędnie uważany za kontakt tektoniczny, ma w rze­

czywistości charakter luki stratygraficznej związanej z usunięciem osadów i okresowym brakiem depozycji. Zarówno utwory triasu jak i malmo-neokomu w pobliżu kontaktu są diagenetycznie wzbogacone w tlenki żelaza i manganu. Ograniczone w ystępow a­

nie polew manganowych wskazuje na pochodzeniu budującego je manganu ze strefy kontaktu utworów triasu i malmo-neokomu.

Średnią zawartość głównych pierwiastków w polewach man­

ganowych i ich podłożu przedstawia Tabela 1. Badane polewy są zbudowane głównie z amorficznych tlenków manganu (Fig. 2).

Obserwacje w SEM wykazały, że polewy zbudowane są z form kopulowatych o średnicy ok. 100-150 |.im (Fig. 3). Centralne części kopuł charakteryzują sie zwartą, a peryferycznc porowatą mikrow ięźbą (Fig. 4). Elementami budującym i porow atą mik- rowięźbę są nieregularnie zwinięte klaczki o średnicy do 2 (im (Fig. 5), oraz ciała globularne o owalnych lub okrągłych kształtach i średnicy 0,5 - 3 (.un (Fig. 6-8).

Formy analogiczne do opisanych cial globularnych są w lite­

raturze opisywane jako zmineralizowane ciała bakterii. Są one powszechne przede wszystkim w formie skalcyfikowanej w róż­

norodnych osadach węglanowych, ale opisano także podobne for­

my zbudowane z tlenków manganu. A nalogiczne struktury otrzy­

mane w wyniku eksperymentalnej m ineralizacji cial bakteryjnych są opisywane w literaturze. Również w wyniku eksperymentów, po inkubacji grzybów na podłożu bogatym w mangan, otrzymano formy o charakterystycznej mikrowięźbie podobnej do w ystępu­

jącej w opisywanych polewach manganowych.

Obecność struktur biogenicznego pochodzenia (bakteryjnego i grzybowego) sugeruje czynny udział m ikroorganizmów w w y­

trącaniu tlenków manganu budujących om aw iane polewy. W nio­

sek powyższy potwierdza: (i) amorficzna form a tlenków manganu, która zdecydowanie częściej charakteryzuje utwory biogenicz­

nego niż abiogeniczncgo pochodzenia, (ii) miąższość polew, która gdyby były one wytrącane wyłącznic na drodze fizykochemicznej świadczyłaby o długotrwałym (rzędu setek tysięcy lat) czasie po­

wstania polew, co jest trudne do przyjęcia, oraz (iii) oraz separacja manganu od żelaza św iadcząca o preferencyjnym wytrącaniu manganu (Tab. I).

Cytaty

Powiązane dokumenty

The lithium manganese oxide in a powder form was studied at room temperature and at elevated temperature in pressure loading cycles using DAC.. Gold has been chosen as a

We investigated physical, chemical and biological properties of soils in the Edmonson Point area (northern Victoria Land) and their local var- iability within and among

Although, Paenibacillus polymyxa showed higher adsorption by pyrolusite mineral but FTIR results proved that the type of adsorption occurred on hematite is mainly chemical

To the west of the Mała Łąka Valley, the nummulitic Eocene deposits located on the Hruby Regiel covering the Tatra Massif from the north, are structurally linked with flysch

Fig. A – Late Miocene collision of the Central Carpathian Block and North-European Platform after subduction of oceanic-type crust from the bottom of the Outer Carpathian flysch

Those blocky crystals are usually lining the pores in the travertine allowing precipitation of the manganese oxides and occasionally bizzare composite calcite

Left – sche matic se quence strati graphic di vi sion; in the lithological log, iron-rich mudstone ho ri zons (Fe), di no saur foot print (tridactyl) ho ri - zons and con glom

The Cracow Canyon, situated in the eastern part of the Koscieliska Valley in the Western Tatra Mts (Text-fig. 1), has developed mainly within the Triassic and Upper