• Nie Znaleziono Wyników

„Depositional setting of the Oligocene sequence of the Western Carpathians in the Polish Spisz region – a reinterpretation based on integrated palynofacies and sedimentological analyses” – Discussion

N/A
N/A
Protected

Academic year: 2022

Share "„Depositional setting of the Oligocene sequence of the Western Carpathians in the Polish Spisz region – a reinterpretation based on integrated palynofacies and sedimentological analyses” – Discussion"

Copied!
6
0
0

Pełen tekst

(1)

„Depositional set ting of the Oligocene se quence of the West ern Carpathians in the Pol ish Spisz re gion – a re in ter pre ta tion based on in te grated

palynofacies and sedimentological anal y ses” – Dis cus sion

Przemys³aw GEDL1, *

1 In sti tute of Geo log i cal Sci ences, Pol ish Acad emy of Sci ences, Re search Cen ter in Kraków, Senacka 1, 31-002 Kraków, Po land

Gedl, P., 2018. „Depositional set ting of the Oligocene se quence of the West ern Carpathians in the Pol ish Spisz re gion – a re - in ter pre ta tion based on in te grated palynofacies and sedimentological anal y ses” – Dis cus sion. Geo log i cal Quar terly, 62 (3):

745–750, doi: 10.7306/gq.1422

INTRODUCTION

In their re cent pa per, Filipek et al. (2017) pro vided some data on age (dinoflagellate cyst biostratigraphy) and sed i men - tary set ting (sedimentological and palynofacial anal y sis) of the Podhale Flysch (Cen tral Carpathian Paleo gene) from the Pol - ish Spisz (their fig. 1). They car ried out their in te grated stud ies on the mid dle part of the Podhale Flysch suc ces sion – the up - per part of the Szaflary beds through the lower part of the Chocho³ów beds. These stud ies, as stated in In tro duc tion,

“…al low for a new ap proach to the knowl edge on the CCPB with re gard to stra tig ra phy, depositional palaeo environ ment, and changes dur ing de po si tion”. Au thors ac cented the in con - sis tency of some of pre vi ous stud ies (biostratigraphical in par - tic u lar), which pro voked them to un der take their stud ies in or der to re in ter pret the depositional set ting. In my opin ion, how ever, it is hardly pos si ble to find new re in ter pre ta tions, and those pre - sented are fre quently based on er ro ne ous, com monly ran dom and not com plete data and in ter pre ta tions; none of them are com pared nor dis cussed with pre vi ous re sults. Be low, these con tro ver sies are briefly pre sented.

GEOLOGICAL SETTING

The Podhale Ba sin was part of the Cen tral Carpathian Paleogene Ba sin (In ner Carpathians). Its sed i men tary suc ces - sion is tra di tion ally di vided into two parts: the lower, plat form car bon ates (the so-called Num mu lit ic Eocene; also known as the Tatra Eocene; Mid dle–Up per Eocene), and the up per part rep re sent ing a thick flysch suc ces sion (the so-called Podhale

Flysch; Oligocene–low er most Mio cene). Filipek et al. (2017) use the term “ba sin” in an im proper lithostratigraphic con text.

This may lead to false un der stand ing, par tic u larly by a reader not fa mil iar with re gional Cen tral Carpathian ge ol ogy. Sen - tences like “the Podhale Ba sin is … un der lain by Num mu lit ic Eocene” and “The Podhale Ba sin is com posed of … Podhale Flysch”, are in cor rect. In con sis tent lithostratigraphic ter mi nol - ogy may be the rea son of the au thors’ in con clu sive re fer ring to the age of the suc ces sion in ques tion by com par ing var i ous au - thors’ re sults in this field.

Filipek et al. (2017) pres ent also a care less ap proach to ci - ta tions, which can again mis lead the reader. For ex am ple, most of pa pers, cited in In tro duc tion to show the micro palaeonto - logical stud ies of the Podhale Flysch in the Spisz area, re fer in fact ei ther to the un der ly ing Num mu lit ic Eocene or re worked large foraminifera (Bieda, 1946, 1948, 1959; Alexandrowicz and Geroch, 1963), the Podhale Flysch in the Orawa area (Gedl, 1995) or to the Eocene-Oligocene tran si tion in the Outer Carpathians (Gedl, 1999). Sim i lar care less re fer ring ap plies to sedimentological stud ies when Filipek et al. (2017: p. 859) high - light a pi o neer ing na ture of their study in the Spisz area: among pa pers re ferred to sedimentological as pects of the Podhale Flysch (not Tatra Eocene), most re fers also to the Spisz area;

more over, many of them were based on stud ies from ex actly the same sec tions in Kacwinianka and £apszanka (see Radomski, 1958: fig. 23; Grzybek and Halicki, 1958: fig. 5;

Marschalko and Radomski, 1960: pl. 31; Pieñkowski and Westwalewicz-Mogilska, 1986: fig. 6).

BIOSTRATIGRAPHY

AGE

Filipek et al. (2017) stud ied 25 sam ples from the up per Szaflary beds–lower Chocho³ów beds in ter val, but only a few yielded dinoflagellate cyst as sem blages that, ac cord ing to the au thors, al low pre cise, Early Rupelian dat ing (see their fig. 3).

* E-mail: ndgedl@cyf-kr.edu.pl

Received: March 5, 2018; accepted: March 6, 2018; first published online: July 16, 2018

(2)

Un for tu nately, au thors did not carry out a re li able jus ti fi ca tion for this dat ing. Sum ma riz ing their biostratigraphical in ter pre ta tions, Filipek et al. (2017) sur pris ingly con cluded: “Based on the biostratigraphic anal y sis us ing dinoflagellate cysts, the age of the de pos its (…) can be de ter mined at the Early Rupelian. The pre sented re sults are com pletely dif fer ent from the pre vi ous biostratigraphic de ter mi na tions”. It re mains, how ever, com - pletely enig matic to the reader, what the au thors mean by these

“com pletely dif fer ent” re sults, as Filipek et al. (2017) to tally omit ted re sults of pre vi ous micropalaeontological stud ies of the Podhale Flysch; they nei ther com pared nor dis cussed their re - sults with the pre vi ous ones.

Filipek et al. (2017) sug gested Early Rupelian age of these sam ples based on the co-oc cur rence of sev eral spe cies, al - though most of them has ranges far be yond Oligocene (Wil - liams and Bujak, 1985; Stover et al., 1996; Wil liams et al., 2004): Caligodinium amiculum (Paleocene–Early Mio cene), Spini ferites ramosus (ear li est Cre ta ceous–re cent), Deflandrea phosphoritica (ear li est Eocene–Early Mio cene), Hystricho - kolpo ma rigaudiae (ear li est Eocene–Pleis to cene), Spiniferites pseudofurcatus (Late Paleocene–Late Mio cene), Thalassi - phora pelagica (Maastrichtian–Chattian), Reticulatosphaera actino coronata (mid-Priabonian–Pleis to cene). Wetzeliella arti - cul ata, W. gochtii and W. symmetrica are deemed more re li able for Rupelian dat ing, but omit ting their high intraspecific vari abil - ity, their known strati graphic ranges are highly re lated to palaeo latitudes and they also go be yond the Rupelian.

W. articulata is well-known from older, Eocene strata (e.g., Châteauneuf and Gruas-Cavagnetto, 1978; Wil liams and Bujak, 1985; Köthe and Piesker, 2008; Vasilyeva, 2013; Gedl, 2014) and ranges to the lower (e.g., Stover and Hardenbol, 1993) and mid–Up per Oligocene (Sachsenhofer et al., 2010;

Chattian: Costa and Downie, 1976: fig. 3; NP24: Mao et al., 2004; NP23: Soliman, 2012). W. symmetrica is pre dom i nantly known from the Oligocene (LO: lower NP22: Van Simaeys et al., 2005; NP21/22 tran si tion: Köthe and Piesker, 2008; up per - most NP21: Œliwiñska et al., 2012; HO: lower Chattian: Köthe, 1990; NP24/25 tran si tion: Van Simaeys et al., 2005; up per NP24: Köthe and Piesker, 2008; lower NP25: Œliwiñska et al., 2012; top of Chattian: Fensome et al., 2009; see also Pross, 2001: fig. 1), but it was also re ported from Eocene strata (e.g., Châteauneuf and Gruas-Cavagnetto, 1978; Köthe, 2009; Vasi - lyeva, 2013; Gedl, 2014). Filipek et al. (2017) ig nored the oc cur - rence of both spe cies in the youn ger part of the Podhale Flysch (Gedl, 2000), which sup ports their Chattian range (or they are re worked).

The range of W. gochtii is lim ited to the Oligocene; its LO data are usu ally re ported from the lower–mid dle Rupelian (e.g., NP23: Wil liams and Bujak, 1985; 33.6–33.2 Ma – NP21/22 tran si tion: Eldrett et al., 2004; lower part of NP22 of Van Simaeys et al., 2005; up per NP22: Köthe and Piesker, 2008;

up per most NP21: Œliwiñska et al., 2012; Med i ter ra nean: 33.1 Ma – up per most NP21: Pross et al., 2010, see also Brinkhuis and Biffi, 1993; Wilpshaar et al., 1996; see also Kempf and Pross, 2005), whereas HOs are from the lower Chattian (SchiÝler, 2005; NP25 of Van Simaeys, 2005; lower NP25:

Œliwiñska et al., 2012; see also Pross, 2001: fig. 1). Wil liams et al. (2004) re port its mid-Rupelian (32.8 Ma)–mid-Chattian (26.6 Ma) range at North ern Hemi sphere mid-lat i tudes. Bujak (in Van Couvering et al., 1981) and Gedl (2004a) sug gested its up per most Eocene (up per most part of the NP19-20 in the for - mer) LO in the Carpathians (see also Gedl, 2005: fig. 2).

Sum ma riz ing, the co-oc cur rence of all these spe cies in di - cates rather the lower–mid dle Rupelian–lower Chattian than the lower Rupelian as sug gested by Filipek et al. (2017). How - ever, per haps the most im por tant spe cies for dat ing these de -

pos its – Chiropteridium lobospinosum – was com pletely omit - ted by the au thors. Its oc cur rence in the low er most part of the Zakopane beds (sam ples 414a and 648) ex cludes lower Rupelian age of this unit and the over ly ing Chocho³ów beds.

The range of C. lobospinosum, al though also highly re lated to palaeolatitudes (as it is the case with C. ga lea, which first ap - peared 33.5 Ma at mid-lat i tudes and 31 Ma in equa to rial ar eas:

Wil liams et al., 2004), be gins in the lower (but not low er most) Rupelian (North Sea: NP21/22 tran si tion in Eldrett et al., 2004;

up per most NP22–low er most NP23 of Van Simaeys et al., 2005; NP23: Köthe and Piesker, 2008; NP22: Œliwiñska et al., 2012; Med i ter ra nean: NP23–NP25: Biffi and Manum, 1988;

NP23–24: Wilpshaar et al., 1996; com mon oc cur rence in lower NP24: Pross et al., 2010). Sim i lar as sem blages, with C.

lobospinosum, W. symmetrica and W. gochtii, were de scribed from the Al pine-Carpathian belt, all be ing dated Rupelian (mainly up per Rupelian; NP22–24)–lower Chattian (Aus trian Molasse Ba sin, Al pine Fore land Ba sin: Sachsenhofer et al., 2010; Soliman, 2012; West ern Carpathians: Barski and Bojanowski, 2010; East ern Carpathians: Þãbãra, 2017).

In the Med i ter ra nean-Al pine sec tions, the LO of W. gochtii usu ally pre ceded the LO of C. lobospinosum (Pross et al., 2010;

Sachsenhofer et al., 2010; Soliman, 2012). There fore, the oc - cur rence of C. lobospinosum in the low er most part of the ex - posed Szaflary beds (Gedl, 2000) was the rea son of its mid - -Rupelian dat ing. Filipek et al. (2017) omit ted also the strati - graphi cal sig nif i cance of Rhombodinium sp. B (557pod), Wetzeliella sp. A (706), and Caligodinium? sp. B (701, 8A³³);

these for mally un des cribed spe cies (Gedl, 2000) were all re - ported from the Zakopane beds and over ly ing strata (up per Rupelian–lower Chattian). Barski and Bojanowski (2010) found these two Wetzeliellacean spe cies in sam ples dated up per Rupelian–lower Chattian; it was not dis cussed by Filipek et al.

(2017).

Nei ther had they dis cussed any pre vi ous re sults (Gedl, 2000: dinoflagellate cysts; Garecka, 2005: cal car e ous nanno - plankton), which clearly sug gest the Rupelian (but not low er - most) and the NP24 Zone (up per Rupelian–lower Chattian, see Berggren et al., 1995; Luterbacher et al., 2004), re spec tively.

These re sults clearly show that age in ter pre ta tion given by Filipek et al. (2017) is er ro ne ous. Pos si bly, the low er most part of the Szaflary beds (2410–2970 m) of the Chocho³ów IG 1 bore hole rep re sents the lower Rupelian, as it is miss ing Chiro - pteridium (Gedl, 2000). From this part of the Szaflary beds, Garecka (2005) re ported an im pov er ished, poorly pre served as sem blage that might be in dic a tive for the mid -Rupelian NP23 Zone or the up per part of the NP22 Zone (Late Eocene cal car e - ous nannoplankton and foraminifera found in this in ter vals are pre sum ably re worked; see Dudziak in Jaromin et al., 1992a, b, and Gonera in Soko³owski, 1992). In the out crops, also in the Spisz area, C. lobospinosum oc curs in the stratigraphically low - er most Szaflary beds (Gedl, 2000).

REDEPOSITION

There are two com mon pro cesses dur ing flysch sed i men ta - tion: redeposition (resedimentation) and re cy cling (re work ing).

These terms are fre quently used in ter change ably (see Jack - son, 1997), but they are not syn onyms. Redeposition (resedi - mentation) gen er ally re fers to ap prox i mately synsedimentary re lo ca tion of par ti cles (fos sils, min eral grains, etc.) from one sed i men tary set ting to an other, usu ally un der the in flu ence of ei ther grav ity (for ex am ple trans por ta tion of shal low-ma rine, near-shore or gan isms into deep, abys sal plains by a turbidite cur rent) or hy dro dy nam ics (sub aque ous cur rents, waves, etc.).

(3)

Re cy cling (re work ing), in turn, means a pro cess by which par ti - cles are re moved or dis placed from their orig i nal rock (older), trans ported, de pos ited and in cor po rated into a new, youn ger sed i men tary rock. Filipek et al. (2017) stated: “Dinoflagellate cyst redeposition mainly takes the form of co-oc cur rence of taxa with dis cor dant strati graphic ranges”, which means that they use these terms in the lat ter mean ing. How ever, in some cases, as for ex am ple re fer ring to the ap pear ance of near - -shore taxa in oce anic set tings, Filipek et al. (2017: p. 864) also use the same term “redeposition” (mean ing: “resedimented”), which can mis lead the reader.

It is not a prob lem to dis tin guish re worked (re cy cled) dino - flagellate cysts with a known pre-Oligocene strati graphic range:

Filipek et al. (2017) list two Ju ras sic forms ev i dently re worked.

But the prob lem be gins when long-rang ing spe cies are con sid - ered. Filipek et al. (2017) de cided to solve this prob lem us ing the state of pres er va tion as a de ter mi nant of re work ing (but not resedimentation). This, how ever, in my opin ion, is a sig nif i cant sim pli fi ca tion based on the as sump tion that re cy cled forms are al ways much worse pre served than the in situ ones. Par tic u larly in case of Podhale Flysch strata, which show a clear trend of grad ual wors en ing of palynomorph pres er va tion from west to east, this phe nom e non was re lated to a sup posed in creas ing dis tance from the source area lo cated to the now a days west (Gedl, 2000: figs. 82, 84). How ever, Œrodoñ et al. (2006) linked it with in creas ing tem per a ture due to grow ing sub si dence and sed i men tary cover in the Spisz area (cf. their figs. 5 and 9). Al - though Filipek et al. (2017) noted better pre served palyno - morphs in the west ern part of their study area (£apszanka), but they nei ther com mented this nor com pared with re sults of pre vi - ous stud ies. More over, their as sump tion that worse pre served palynomorphs are re worked may lead to con fu sion as fre - quently re worked microfossils are better pre served than the in situ ones (see e.g., Bat ten, 1991). Par tic u larly in flysch strata, where trans por ta tion pro cesses (resedimentation) and/or early post-depositional pro cesses (e.g., py rite crys tal growth) can dam age in situ fos sils to a much greater ex tent than re worked fos sils that are com monly pro tected by sed i ment coat ing. An ex am ple could be the Eocene dinoflagellate cysts from a sec - ond ary de posit within the Rupelian Szaflary beds in the Leœnica sec tion (Gedl, 2004b): al though var i ously pre served, many of them are better pre served than in situ forms from the host flysch de pos its (cf. Gedl, 2000). Filipek et al. (2017: fig. 4G) showed a spec i men of Tityrosphaeridium (now Cordosphaeridium) sp. as an ex am ple of poorly pre served re worked dinoflagellate cyst.

How ever, in my opin ion, this is rather a spec i men with an api cal archaeopyle and a prom i nent antapical pro cess (Hystricho - kolpoma?); more over, its pres er va tion is not worse than of spec i mens rec og nized as in situ and shown in their fig ure 4.

Filipek et al. (2017) in tro duced a pi o neer ing method to the Podhale Flysch stud ies – the UV-ex cited flu o res cence ob ser va - tions. They used this method to dis tin guish re cy cled (not rese - dimented) dinoflagellate cysts and to de ter mine the or i gin of amor phous or ganic mat ter (for de tails of this method see, i.a., van Gijzel, 1967; Tyson, 1995) in four sam ples se lected. In the first case, Filipek et al. (2017) noted a dif fer ent bright ness of ul - tra vi o let ex cited spec i mens: dull spec i mens were treated as re - cy cled, whereas bright ones – as be ing in situ. How ever, this in - ter pre ta tion was pre sented in a slightly un clear way and, in my opin ion, in suf fi ciently sup ported by ev i dence, it was not dis - cussed and, what is most sur pris ing, it was com pletely omit ted in fur ther palaeoenvironmental in ter pre ta tions. Au thors men tion a group of poorly pre served dinoflagellate cysts that show dull autofluorescence, which con sists of “stratigraphically older spe - cies and spe cies with long strati graphic ranges” – but no spe cies list is given, ex cept for an ex am ple of Deflandrea phosphoritica

that be longs to the “long strati graphic range” group. From ear lier chap ters, the reader can de duce that the only true “older spe cies”

among the taxa de ter mined are Ju ras sic Ctenidodinium and Nannoceratopsis. How ever, none of them oc curs in sam ples in - ves ti gated for flu o res cence (see their ta ble 1)… The sec ond group dis tin guished by Filipek et al. (2017) con tains well-pre - served spec i mens that show bright flu o res cence colours, which are in ter preted as in situ. But again, ex cept for a sin gle ex am ple of Rhombodinium, no spe cies list is given. And this in for ma tion would be cru cial for pre cise age de ter mi na tion of the de pos its in ques tion. More over, in clud ing Rhombodinium to the in situ group, au thors do not spec ify which spe cies they have in mind (there are at least three: R. freien waldensis, R. longimanum, and R. sp. B). In ter est ingly, Filipek et al. (2017) noted that Rhombo - dinium spec i mens show bright flu o res cence light in de pend ently of their pres er va tion state. Re gret ta bly, this very im por tant in for - ma tion for the ap pli ca tion of palynomorph ul tra vi o let light ob ser - va tions is not fur ther elu ci dated.

An other im por tant ob ser va tion made by Filipek et al. (2017) was find ing, in the same sam ple, rep re sen ta tives of the same spe cies (Deflandrea phosphoritica) show ing var i ous pres er va - tion states. Al though it was not stated in text, the reader may guess that poorly pre served spec i mens (in con trast to Rhombo - dinium) show dull flu o res cence light (as shown in their fig. 7G, H;

cf. with fig. 7E, F). The au thors in ter preted the “dull” spec i mens as re cy cled, al though they did not re port their fre quency. I can guess their pro por tion to “bright” spec i mens (“in situ”) is sig nif i - cant in their sam ples, as Filipek et al. (2017) re ferred to Deflandrea “blooms” de scribed in the Podhale Flysch (Gedl, 2000) in the fol low ing way: “Such high abun dance of Deflan drea is rather re lated to the redeposition of this taxon, which may cause er ro ne ous en vi ron men tal in ter pre ta tions”. Sur pris ingly, in their chap ter ded i cated to palynological in di ca tors of palaeo - environment, they list three ma jor dinoflagellate cyst palaeo - environmental groups, one of which con sist ing chiefly of Deflan - drea spec i mens. On their ba sis, they re con struct sed i men tary set ting of the de pos its in ques tion (Filipek et al., 2017: p. 864), with out not ing that a few pages away they treat them as re cy cled, and an nounce their omit ting from fur ther in ter pre ta tion (pp.

870–872); fi nally, in the con clu sions, they again men tion Deflan - drea as one of palaeoenvironment in di ca tors (p. 874).

Be side this in con se quence, Filipek et al. (2017) did not dis - cuss the other pos si ble ex pla na tion of dif fer ent in ten si ties of flu - o res cence light of rep re sen ta tives of the same spe cies. Some other fac tors may in flu ence its in ten sity: ox i da tion, py rite crys tal - li za tion, bioturbation, trans por ta tion, etc. (e.g., Fos ter et al., 1986: p. 147: fide Tyson, 1995). A pos si ble ex pla na tion might be the mix ing of dinoflagellate cysts resedimented (but not re cy - cled!) by turbidite cur rents from near-shore set tings, and of those, which in hab ited wa ters di rectly above the de po si tion site.

In this case, how ever, it is not cer tain, which group would be char ac ter ized by duller flu o res cence light. A valu able clue to solve this prob lem would be a full list of “dull” spe cies.

PALAEOENVIRONMENT AND SEDIMENTARY SETTING

SEDIMENTATION RATE

Filipek et al. (2017) cal cu lated a pre cise sed i men ta tion rate of the ana lysed de pos its at 1600 m/Ma (1.6 mm per year) – with out spec i fy ing how this value was re ceived. The au thors nei ther cal cu lated the true thick ness of strata they stud ied

(4)

(omit ting the de gree of com pac tion) nor pre cisely dated them.

In my opin ion, such a value is a re sult of in cor rect dat ing of the in ter val in ques tion (see above). With out know ing the pre cise time in ter val when a given se quence was de pos ited (the term

“Early Rupelian” is vague), cal cu la tion of its sed i men ta tion rate makes no sense (the Rupelian lasted 5.45 Ma ac cord ing to Luterbacher et al., 2004). Filipek et al. (2017) nei ther com pared their in ter pre ta tion with the pre vi ous ones nor dis cussed them.

For ex am ple Soták (1998) cal cu lated ap prox i mate sed i men ta - tion rates of the Cen tral Carpathian Paleogene as fol lows:

800 m/Ma for the Šambron Fm. (Szaflary beds; du ra tion:

~3 Ma), 80–160 m/Ma for the mud-rich ac cu mu la tion (Huty Fm./Zako pane beds) dur ing ~5 Ma, and 320–370 m/Ma for the sand-rich flysch-molasse de po si tion of the Zuberec and Biely Potok for ma tions (Chocho³ów and Ostrysz beds) that lasted

~7 Ma.

PALAEOBATHYMETRY

It is very dif fi cult to de ter mine pre cisely the ba sin depth dur - ing flysch de po si tion, es pe cially in an ox y gen-de pleted ben thic en vi ron ment al most de void of ben thic fos sil com mu ni ties as it is in the case of the Podhale Flysch. De spite this, Filipek et al.

(2017) sug gested a shal low-wa ter sed i men tary set ting of the lower part (up per Szaflary beds–lower Chocho³ów beds) of the Podhale Flysch in Spisz based on palynological and sedi - mento logical pre mises. Al though the au thors did not spec ify the ab so lute value of wa ter depth, but the reader can de duce it was not deeper than 40–50 m. This very in ter est ing, but also con tro - ver sial con clu sion, was not re ferred, un for tu nately, to the pre vi - ous re con struc tions, which al most unan i mously sup port a deep -wa ter, basinal sed i men tary set ting of the flysch de pos its of the Cen tral Carpathian Paleogene (e.g., Marschalko, 1964;

Soták, 1998; Sotak et al., 2001; Starek and Fuksi, 2017).

Palynological ev i dences, par tic u larly planktic dinoflagellate cysts that, ac cord ing to Filipek et al. (2017), point to a shal - low-wa ter set ting, can not serve as a di rect clue in this type of re - con struc tions (al though com monly in cor rectly used in bathy - metrical in ter pre ta tions, e.g., Gedl, 2000: p. 150). Par tic u larly in case of turbiditic sed i men ta tion when im mense resedi men - tation of near-shore forms into deeper parts of the ba sin can be ex pected (see Gedl, 2000: p. 143, 150). Hence, their fre quent oc cur rence in the Podhale Flysch re flects rather sed i men ta tion mode than true ba sin depth. Filipek et al. (2017) omit ted the pres ence of off shore Impagidinium and Nematosphaeropsis in the Podhale Flysch (Gedl, 2000), which, al though highly dis - persed among near-shore spe cies, may be the trace of the only pe lagic el e ments (note: but they can not be treated as ab so lute wa ter-depth in di ca tors). The same re fers to palynofacies dis tri - bu tion in turbiditic de pos its, where fre quency changes of par tic - u lar el e ment groups (e.g., cu ti cles) re flect the in ten sity of rese - dimentation and dis tance from the source area rather than ba - sin depth; their pro por tions dif fer sig nif i cantly in a sin gle tur - bidite se quence (Gedl and Suru³o, 2005).

The most re li able in di ca tor of shal low-wa ter con di tions of Podhale Flysch de po si tion pre sented by Filipek et al. (2017) is the hummocky cross-strat i fi ca tion struc ture (see Swift et al., 1983: fig. 1; Dumas et al., 2005), which is a sed i men tary struc - ture tra di tion ally be lieved to be formed by os cil la tory wa ter move ment in volved by storm-gen er ated waves (Harms et al., 1975). This makes that they are treated as an in di ca tor of shal - low-wa ter con di tions, as storm wave-base reaches typ i cally 15–40 m (e.g., Allaby, 2008). Ac cord ing to Dumas and Ar nott

(2006), hummocky cross-strat i fi ca tion ap pears at a wa ter depth of 13–50 m (at shal lower depths it is re placed by swaley cross strat i fi ca tion), Selley (2000: p. 151) re ports re cent hummocky cross-strat i fi ca tion from 1–40 m deep wa ter. How ever, some au thors sug gest pos si ble greater depths of hummocky cross- strat i fi ca tion for ma tion. Shanmugan (2012: p. 148) ob served hummocky cross-strat i fi ca tion at large depths in the North Sea and the Nor we gian Sea. Mulder et al. (2009) re ported hummocky cross strat i fi ca tion-like struc tures from deep-sea (be low 1 000 m depth) turbidites in the Pyr e nees (see also dis - cus sion: Higgs, 2011; Mulder et al., 2011). Os cil la tory wa ter move ments, re spon si ble for the hummocky cross-strat i fi ca tion for ma tion, may also be a re sult of in ter nal waves (as so ci ated with pycnocline cur rents at the in ter face of two mov ing flu ids with dif fer ent den si ties, which may ap pear even at large depths ex ceed ing sev eral hun dreds of metres (see, e.g., dis cus sion in Basilici et al., 2012 and ref er ences therein).

Un for tu nately, Filipek et al. (2017) did not dis cuss this prob - lem. The au thors did nei ther re port the fre quency of hummocky cross-strat i fi ca tion in their study area [“hummocky cross-strat i fi - ca tion (HCS) was also ob served”], which makes that the reader has no idea if this struc ture is wide spread in the Podhale Flysch or it is rare and oc curs at a cer tain level only. Read ing the text, it can be traced that the hummocky cross-strat i fi ca tion was found in sec tions 525 and 579 in Kacwinianka (fig. 10G, H), but their lo ca tion is un known (it is miss ing in fig. 1C). An other two sites with hummocky cross-strat i fi ca tion are sec tions 635 and 558 (see fig. 9), both rep re sent ing the up per most part of the lower Zakopane beds (see their figs. 1C and 2). In ter est ingly, ac cu - mu la tion of the Zakopane beds (mudstone fa cies, mud-rich subflysch, dis tal flysch of var i ous au thors) is be lieved to have taken place dur ing sea-level highstand as so ci ated with a si mul - ta neous ba sin sub si dence (e.g., Soták, 1998; Sotak et al., 2001). Al though none of the pre vi ous pa pers gives an ab so lute value of wa ter depth in the Pol ish part of the Podhale Ba sin dur - ing flysch de po si tion, but it can be in di rectly de duced from data of the plat form and pe lagic stages that pre ceded the flysch de - po si tion (Tatra Eocene and Globigerina Marl, re spec tively).

Bartholdy et al. (1995) noted a deep en ing trend among bio - facies in the Tatra Eocene, and es ti mated bathymetry of the youn gest (deep est) ones be tween 20 and 80 m (Kulka, 1985 re - ports that num mu lit ic fau nas pre ferred bot tom depths not in - creas ing 50–80 m; see also Soták, 2010: p. 398). Olszewska and Wieczorek (1998) re ported a sim i lar deep en ing dis tri bu tion pat tern of small foraminifera in the Tatra Eocene sec tion; the up per most biofacies con tains spe cies that pre fer calm, rel a - tively deep (outer shelf) wa ters. Grey marl that over lies Num - mu lit ic rocks of the Tatra Eocene yielded ben thic foraminifera that show up per bathyal (i.e. above 200 m) depths of their ac cu - mu la tion (Olszewska and Wieczorek, 1998; see also Bartholdy et al., 1999, their 3rd Com pos ite Se quence). If we as sume that, af ter the pe lagic stage and Eocene/Oligocene sea-level fall, an in tense sub si dence (see e.g., Sotak et al., 2001: fig. 12) took place si mul ta neously with Rupelian sea-level rise (3rd or der cy - cles 4.4. and 4.5 of Haq et al., 1988) then the ba sin depth dur ing de po si tion of the Zakopane beds most likely ex ceeded 200 m.

Ac cep tance of much shal lower depths, not ex ceed ing 40–50 m as de duced from au thors’ data, is dif fi cult to ex plain in the light of the gen er ally ac cepted ba sin ge om e try in volv ing a ba sin length of sev eral tens of kilo metres with pre dom i nately east - ward -ori ented (now a days; see Márton et al., 1999) palaeo - current di rec tions (Radomski, 1958; Marschalko and Radom - ski, 1960).

(5)

REFERENCES

Alexandrowicz, S.W., Geroch, S., 1963. As so ci a tion de pe tits ForaminifÀres dans l’Eocene de la Tatra (in Pol ish with French sum mary). Rocznik Polskiego Towarzystwa Geologicznego, 33: 219–228.

Allaby, M. ed., 2008. A Dic tio nary of Earth Sci ences. Ox ford Uni ver - sity Press, Ox ford.

Barski, M., Bojanowski, M., 2010. Or ganic-walled dinoflagellate cysts as a tool to rec og nize car bon ate con cre tions: an ex am ple from Oligocene flysch de pos its of the West ern Carpathians.

Geologica Carpathica, 61: 121–128.

Bartholdy, J., Belass, S.M., Mertmann, D., Machaniec, E., Manutso glu, E., 1995. Fazies-Entwicklung und Biostrati gra - phie einer Sequenz eozäner Sedimente im Steinbruch Pod Capkami, Tatra Gebirge, Polen. Ber liner Geowissenschaften Abhandlungen, E16: 409–425.

Bartholdy, J., Bellas, S.M., Æosoviæ, V., Fuèek, V.P., Keupp, H., 1999. Pro cesses con trol ling Eocene mid-lat i tude larger foraminifera ac cu mu la tions: mod el ling of the strati graphic ar chi - tec ture of a fore-arc ba sin (Podhale Ba sin, Po land). Geologica Carpathica, 50: 435–448.

Basilici, G., de Luca, P.H.V., Poiré, D.G., 2012. Hummocky cross - -strat i fi ca tion-like struc tures and com bined-flow rip ples in the Punta Negra For ma tion (Lower–Mid dle De vo nian, Ar gen tine Pre - cordillera): a turbiditic deep-wa ter or storm-dom i nated pro delta in ner-shelf sys tem? Sed i men tary Ge ol ogy, 267–268: 73–92.

Bat ten, D.J., 1991. Re work ing of plant microfossils and sed i men tary prov e nance. Geo log i cal So ci ety Spe cial Pub li ca tions, 57: 79–90.

Berggren, W.A., Kent, D.V., Swisher, C.C. III, Aubry, M.-P., 1995.

A re vised Ce no zoic geo chron ol ogy and chronostratigraphy.

SEPM Spe cial Pub li ca tion, 54: 129–212.

Bieda, F., 1946. Le stratigraphie du Flysch des Karpates centrales po lo naises basée sur les grands ForaminifÀres (in Pol ish with French sum mary). Rocznik Polskiego Towarzystwa Geolo - gicznego, 16: 1–58.

Bieda, F., 1948. Sur quelques foraminifÀres nou veaux ou peu connues du flysch des Karpates po lo naises (in Pol ish with French sum mary). Rocznik Polskiego Towarzystwa Geolo - gicznego, 18: 151–167.

Bieda, F., 1959. Paleontological stra tig ra phy of the Tatra Eocene and of the Podhale Flysch (in Pol ish with Eng lish sum mary).

Biuletyn Instytutu Geologicznego, 149: 215–221.

Biffi, U., Manum, S.B., 1988. Late Eocene–Early Mio cene dino - flagellate cyst stra tig ra phy from the Marche Re gion (Cen tral It - aly). Bolletino della SocietÀ Paleontologica Italiana, 27: 163–212.

Brinkhuis, H., Biffi, U., 1993. Dinoflagellate cyst stra tig ra phy of the Eocene–Oligocene tran si tion in Cen tral It aly. Ma rine Micro - paleontology, 22: 131–183.

Châteauneuf, J.-J., Gruas-Cavagnetto, C., 1978. Les zones de Wetzeliellaceae (Dinophyceae) du bassin de Paris. Bul le tin du Bu reau Recherches Géologiques et MiniÀres, (2-Àme Série), Sec tion IV, 2-1978: 55–93.

Dumas, S., Ar nott, R.W.C., 2006. Or i gin of hummocky and swaley cross-strat i fi ca tion – the con trol ling in flu ence of uni di rec tional cur rent strength and aggradation rate. Ge ol ogy, 34: 1073–1076.

Dumas, S., Ar nott, R.W.C., Southard, J.B., 2005. Ex per i ments on os cil la tory-flow and com bined-flow bed forms: im pli ca tions for in ter pret ing parts of the shal low-ma rine sed i men tary re cord.

Jour nal of Sed i men tary Re search, 75: 501–513.

Eldrett, J., Har ding, I.C., Firth, J.V., Rob erts, A.P., 2004.

Magneto stratigraphic cal i bra tion of Eocene–Oligocene dinofla - gellate cyst biostratigraphy from the Nor we gian–Green land Sea. Ma rine Ge ol ogy, 204: 91–127.

Fensome, R.A., Wil liams, G.L., MacRae, R.A., 2009. Late Cre ta - ceous and Ce no zoic fos sil dinoflagellates and other palyno - morphs from the Sco tian mar gin, off shore east ern Can ada.

Jour nal of Sys tem atic Palae on tol ogy, 7: 1–79.

Filipek, A., Wysocka, A., Barski, B., 2017. Depositional set ting of the Oligocene se quence of the West ern Carpathians in the Pol - ish Spisz re gion – a re in ter pre ta tion based on in te grated palyno -

facies and sedimentological anal y ses. Geo log i cal Quar terly, 61 (4): 859–876.

Fos ter, C.B., O’Brien, G.W., Wat son, S.T., 1986. Hy dro car bon source po ten tial of the Goldwyer For ma tion, Barb wire Ter race, Can ning Ba sin, West ern Aus tra lia. Aus tra lian Pe tro leum Ex plo - ra tion As so ci a tion Jour nal, 26: 142–55.

Garecka, M., 2005. Cal car e ous nannoplankton from the Podhale Flysch (Oligocene–Mio cene, In ner Carpathians, Po land). Stu - dia Geologica Polonica, 124: 353–369.

Gedl, P., 2000. Biostratigraphy and palaeoenvironment of the Podhale Palaeogene (In ner Carpathians, Po land) in the light of palynological stud ies. Part I, Part II. Studia Geologica Polonica, 117: 69–154, 155–303.

Gedl, P., 2004a. Dinoflagellate cyst re cord of the Eocene–Oligo - cene bound ary suc ces sion in flysch de pos its at Leluchów, Carpathian Moun tains, Po land. Geo log i cal So ci ety Spe cial Pub - li ca tions, 230: 309–324.

Gedl, P., 2004b. Eocene dinoflagellate cysts from ex otic clasts in a sub ma rine slump, Podhale Flysch (Oligocene), In ner Carpa - thians, Po land. Studia Geologica Polonica, 123: 199–222.

Gedl, P., 2005. Late Eocene–early Oligocene or ganic-walled dino - flagellate cysts from Folusz, Magura Nappe, Pol ish Carpa - thians. Acta Palaeobotanica, 45: 27–83.

Gedl, P., 2014. Eocene dinoflagellate cysts from the So³okija Gra - ben (Roztocze, SE Po land): biostratigraphy and palaeoenviron - ment. Geo log i cal Quar terly, 58 (4): 707–728.

Gedl, P., Suru³o, M., 2005. Palynology of the Mid dle Eocene off - shore sed i ments at Tenczyn, Magura Nappe, Flysch Carpa - thians, Po land. In: 5th Micropalaeontological Work shop MIKRO-2005 (eds. J. Tyszka and M. Oliwkiewicz-Miklasiñska), Ab stract Book: Lec tures.

Grzybek, K., Halicki, B., 1958. Sub ma rine slides in the Podhale Flysch (Carpathians) (in Pol ish with Eng lish sum mary). Acta Geologica Polonica, 8: 411–450.

Harms, J.C., Southard, J.B., Spear ing, D.R., Walker, R.G., 1975.

Depositional en vi ron ments as in ter preted from pri mary sed i - men tary struc tures and strat i fi ca tion se quences. SEPM Short Course, 2.

Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Me so zoic and Ce no zoic chronostratigraphy and cy cles of sea-level change. SEPM Spe - cial Pub li ca tion, 42: 71–108.

Higgs, R., 2011. ‘Hummocky cross-strat i fi ca tion-like struc tures in deep-sea turbidites: Up per Cre ta ceous Basque bas ins (West - ern Pyr e nees, France)’ by Mulder et al. (2009), Sedimentology, 56, 997–1015: Dis cus sion. Sedimentology, 58: 566–570.

Jack son, J.A. ed., 1997. Glos sary of Ge ol ogy. Amer i can Geo log i cal In sti tute, Al ex an dria, Vir ginia.

Jaromin, A., Kêpiñska, B., Nagel, J., Soko³owski, J., Wieczorek, J., 1992a. Dokumentacja geosynoptyczna otworu geotermal - nego Bia³y Dunajec PAN-1 (in Pol ish). Geosynoptyka i Geoter - mia, 2: 1–121.

Jaromin, A., Kêpiñska, B., Nagel, J., Soko³owski, J., Wieczorek, J., 1992b. Dokumentacja geosynoptyczna otworu geotermal - nego Poronin PAN-1 (in Pol ish). Geosynoptyka i Geotermia, 3:

1–88.

Kempf, O., Pross, J., 2005. The lower ma rine to lower fresh wa ter Molasse tran si tion in the north ern Al pine fore land ba sin (Oligo - cene; cen tral Swit zer land–South Ger many): age and geodyna - mic im pli ca tions. In ter na tional Jour nal of Earth Sci ences, 94:

160–171.

Köthe, A., 1990. Paleogene dinoflagellates from North west Ger - many – biostratigraphy and palaeoenvironments. Geologisches Jahrbuch A, 118: 3–111.

Köthe, A., 2009. Cal car e ous nannoplankton and dinoflagellate cysts Paleogene biostratigraphy of the Loburg I/90 cored bore - hole (Sax ony-Anhalt, cen tral Ger many). Zeitschrift für Geolo - gische Wissenschaften, 37: 381–425.

Köthe, A., Piesker, B., 2008. Stratigraphisches Vorkommen von Dinoflagellatenzysten (Dinozysten) im Tertiär von Deutsch land.

Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.

(6)

Kulka, A., 1985. Arni sedimentological model in the Tatra Eocene.

Kwartalnik Geologiczny, 29 (1): 31–64.

Luterbacher, H.P., Ali, J.R., Brinkhuis, H., Gradstein, F.M., Hooker, J.J., Monechi, S., Ogg, J.G., Powell, J., Rohl, U., Sanfilippo, A., Schmitz, B., 2004. The Paleogene Pe riod. In: A Geo logic Time Scale 2004 (eds. F.M. Gradstein, J.G. Ogg and A.G. Smith): 384–408. Cam bridge Uni ver sity Press.

Mao, S., Wu, G., Li, J., 2004. Oligocene–early Mio cene dino - flagellate stra tig ra phy, Site 11448, ODP Leg 184, South China Sea. Pro ceed ings of the Ocean Drill ing Pro ject, Sci en tific Re - sults, 184: 1–29.

Marschalko, R., 1964. Sed i men tary struc tures and paleocurrents in the mar ginal lithofacies of the cen tral-Carpathian flysch. De vel - op ments in Sedimentology, 3: 106–126.

Marschalko, R., Radomski, A., 1960. Pre lim i nary re sults of in ves ti - ga tions of cur rent di rec tions in the flysch ba sin of the Cen tral Carpathians. Rocznik Polskiego Towarzystwa Geologicznego, 30: 259–272.

Márton, E., Mastella, L., Tokarski, A.K., 1999. Large coun ter clock - wise ro ta tion of the In ner West Carpathian Paleogene Flysch – Ev i dence from paleomagnetic in ves ti ga tions of the Podhale Flysch (Po land). Phys ics and Chem is try of the Earth, Part A:

Solid Earth and Ge od esy, 24: 645–649.

Mulder, T., Razin, P., Faugeres, J-C., 2009. Hummocky cross - -strat i fi ca tion-like struc tures in deep-sea turbidites: Up per Cre - ta ceous Basque bas ins (West ern Pyr e nees, France).

Sedimento logy, 56: 997–1015.

Mulder, T., Razin, P., Faugères, J-C., Gérard, J., 2011. Re ply to the Dis cus sion by Roger Higgs on ‘Hummocky cross-strat i fi ca - tion-like struc tures in deep-sea turbidites: Up per Cre ta ceous Basque bas ins (West ern Pyr e nees, France)’. Sedimentology, 58: 571–577.

Olszewska, B., Wieczorek, J., 1998. The Paleogene of the Podhale Ba sin (Pol ish In ner Carpathians) – micropaleonto - logical per spec tive. Przegl¹d Geologiczny, 46: 721–728.

Pieñkowski, G., Westwalewicz-Mogilska, E., 1986. Trace fos sils from the Podhale Flysch Ba sin, Po land – an ex am ple of eco log i - cally based lithocorrelation. Lethaia, 19: 53–65.

Pross, J., 2001. Dinoflagellate cyst biogeography and biostrati - graphy as a tool for palaeoceanographic re con struc tions: an ex - am ple from the Oligocene of west ern and north west ern Eu rope.

Neues Jahrbuch für Geologie und Paläontologie, Abhandlun - gen, 219: 207–219.

Pross, J., Houben, A.J.P., van Simaeys, S., Wil liams, G.L., Kotthoff, U., Coccioni, R., Wilpshaar, M., Brinkhuis, H., 2010.

Umbria–Marche re vis ited: a re fined magnetostratigraphic cal i - bra tion of dinoflagellate cyst events for the Oligocene of the West ern Tethys. Re view of Palaeobotany and Palynology, 158:

213–235.

Radomski, A., 1958. The sedimentological char ac ter of the Pod - hale Flysch (in Pol ish with Eng lish sum mary). Acta Geologica Polonica, 8: 335–410.

Sachsenhofer, R.F., Leitner, B., Hans-Gert Linzer, H.-G., Bechtel, A., Æoriæ, S., Gratzer, R., Reischenbacher, D., Soli - man, A., 2010. De po si tion, ero sion and hy dro car bon source po - ten tial of the Oligocene Eggerding For ma tion (Molasse Ba sin, Aus tria). Aus trian Jour nal of Earth Sci ences, 103: 76–99.

SchiÝler, P., 2005. Dinoflagellate cysts and acritarchs from the Oligocene–Lower Mio cene in ter val of the Alma-1X well, Dan ish North Sea. Jour nal of Micropalaeontology, 24: 1–37.

Selley, R.C., 2000. Ap plied Sedimentology. Ac a demic Press, San Diego.

Shanmugan, G., 2012. New Per spec tives on Deep-wa ter Sand - stones. Or i gin, Rec og ni tion, Ini ti a tion and Res er voir Qual ity.

Elsevier, Am ster dam.

Soko³owski, J., 1992. Dokumentacja geosynoptyczna otworu geo - termalnego Bañska IG-1 (in Pol ish). Geosynoptyka i Geotermia, 1: 1–122.

Soliman, A., 2012. Oligocene dinoflagellate cysts from the North Al - pine Fore land Ba sin: new data from the Eggerding For ma tion (Aus tria). Geologica Carpathica, 63: 49–70.

Soták, J., 1998. Se quence stra tig ra phy ap proach to the Cen tral Carpathian Paleogene (East ern Slovakia): eustasy and tec ton - ics as con trol of deep-sea fan de po si tion. Slo vak Geo log i cal Mag a zine, 4: 185–190.

Soták, J., 2010. Paleoenvironmental changes across the Eocene - -Oligocene bound ary: in sights from the Cen tral-Carpathian Paleogene Ba sin. Geologica Carpathica, 61: 393–418.

Sotak, J., Pereszlenyi, M., Marschalko, R., Milicka, J., Starek, D., 2001. Sedimentology and hy dro car bon hab i tat of the sub ma - rine-fan de pos its of the Cen tral Carpathian Paleogene Ba sin (NE Slovakia). Ma rine and Pe tro leum Ge ol ogy, 18: 87–114.

Starek, D., Fuksi, T., 2017. Sta tis ti cal anal y sis as a tool for iden ti fi - ca tion of depositional palaeoenvironments in deep-sea fans (Palaeogene for ma tions, Cen tral West ern Carpathians, north Slovakia). Acta Geologica Slovaca, 9: 149–162.

Stover, L.E., Hardenbol, J., 1993. Dinoflagellates and depositional se quences in the Lower Oligocene (Rupelian) Boom Clay For - ma tion, Bel gium. Bul le tin de la Société Belge de Géologie, 102:

5–77.

Stover, L.E., Brinkhuis, H., Damassa, S.P., de Verteuil, L., Helby, R.J., Monteil, E., Par tridge, A.D., Powell, A.J., Rid ing, J.B., Smelror, M., Wil liams, G.L., 1996. Me so zoic-Ter tiary dino - flagellates, acritarchs and prasinophytes. In: Palynology: Prin ci - ples and Ap pli ca tions, 2 (eds. J. Jansonius and D.C. McGregor):

641–750. Amer i can As so ci a tion of Strati graphic Paly nolo gists Foun da tion, Dal las, Texas.

Swift, D.J.P., Figueiredo, A.G.Jr., Freeland, G.L., Oertel, G.F., 1983. Hummocky cross-strat i fi ca tion and megaripples: a geo - log i cal dou ble stan dard? Jour nal of Sed i men tary Pe trol ogy, 53:

1295–1317.

Œliwiñska, K.K., Abrahamsen, N., Beyer, C., Brünings-Hansen, T., Thom sen, E., Ulleberg, K., Heilmann-Clausen, C., 2012.

Bio- and magnetostratigraphy of Rupelian–mid Chattian de pos - its from the Dan ish land area. Re view of Palaeobotany and Palynology, 172: 48–69.

Œrodoñ, J., Kotarba, M., Biroñ, A., Such, P., Clauer, N., Wójtowicz, A., 2006. Diagenetic his tory of the Podhale-Orava Ba sin and the un der ly ing Tatra sed i men tary struc tural units (West ern Carpathians): ev i dence from XRD and K-Ar of illite-smectite. Clay Min er als, 41: 751–774.

Þãbãra, D., 2017. Dinoflagellate cysts stra tig ra phy and palynofacies of Oligocene se quences in the north ern East ern Carpathians.

Acta Palaeontologica Romaniae, 13: 49–63.

Tyson, R.V., 1995. Sed i men tary Or ganic Mat ter. Or ganic Fa cies and Palynofacies. Chapmann and Hall.

Van Couvering, J.A., Aubry, M.-P., Berggren, W.A., Bujak, J.P., Naeser, C.W., Wieser, T., 1981. The ter mi nal Eocene event and the Pol ish con nec tions. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 36: 321–362.

Van Gijzel, P., 1967. Palynology and flu o res cence mi cros copy. Re - view of Palaeobotany and Palynology, 2: 49–79.

Van Simaeys, S., Munsterman, D., Brinkhuis, H., 2005. Oligocene dinoflagellate cyst biostratigraphy of the south ern North Sea Ba - sin. Re view of Palaeobotany and Palynology, 134: 105–128.

Vasilyeva, O.N., 2013. Paleogene dinocysts from the east ern Cas - pian De pres sion (the Uspenskaya SP-1 well, Kazakhstan).

Litho sphere, 1: 102–127.

Wil liams, G.L., Bujak, J.P., 1985. Me so zoic and Ce no zoic dino - flagellates. In: Plank ton Stra tig ra phy (eds. J. Bolli, K. Saunders and K. Perch-Niel sen): 847–964. Cam bridge Uni ver sity Press, Cam bridge.

Wil liams, G.L., Brinkhuis, H., Pearce, M.A., Fensome, R.A., Weegink, J.W., 2004. South ern Ocean and global dinoflagellate cyst events com pared: in dex events for the Late Cre ta ceous - -Neo gene. Pro ceed ings of the Ocean Drill ing Pro ject, Sci en tific Re sults, 189: 1–98.

Wilpshaar, M., Santarelli, A., Brinkhuis, H., Visscher, H., 1996.

Dinoflagellate cysts and mid-Oligocene chronostratigraphy in the cen tral Med i ter ra nean re gion. Jour nal of the Geo log i cal So - ci ety, 153: 553–561.

Cytaty

Powiązane dokumenty

Gen era of dinoflagellate cysts iden ti fied in the palynological slides, el e ments of palynofacies anal y sis (cu ti cle), and sed i - men tary struc tures (HCS) in di cate

Ob ser va tions on the land slide on the Bystry Stream (Fig. 1) con cerned per ma nence of the land slide ponds; reg is tra tion of the lo ca tion and type of al ter ations

The sec tion stud ied is com posed of the Sub-Grybów Beds, the Grybów Marl For ma tion (GMF), and the Cergowa Beds, rep re sent ing the mid dle to up per part of the Oligocene suc

The old est de pos its known from the Koszalin–Chojnice Zone are up per Llanvirnian and Caradocian strata (Bednarczyk, 1974; Modliński, 1987; Podhalańska and Modliński, 2006),

The top surface of the consolidated basement, the surface of the Carpathian overthrust and the base surface of the Magma unit have been accepted as the main surfaces

The lower part of the unit is a massive complex of light coloured, cavernous dolomites without any fossils (Fig. 2), whereas the upper part is built of light

Microfauna occurring in the marls of Frydek type (grey marls in the Subsilesian, Silesian units and Bacu- lites Marls in the Skoie unit) in the Polish Outer

In the western part of the Polish Carpathians, where the thickness of the Miocene strata is small, the overthrust surface is more flat than in the eastern