• Nie Znaleziono Wyników

Measurement of the $\phi \rightarrow \pi^{0}e^{+}e^{-}$ transition form factor with the KLOE detector

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the $\phi \rightarrow \pi^{0}e^{+}e^{-}$ transition form factor with the KLOE detector"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the φπ 0 e + e transition form factor with the KLOE detector

KLOE-2 Collaboration

A. Anastasi

e

,

d

, D. Babusci

d

,

, G. Bencivenni

d

, M. Berlowski

u

, C. Bloise

d

, F. Bossi

d

,

P. Branchini

r

, A. Budano

q

,

r

, L. Caldeira Balkeståhl

t

, B. Cao

t

, F. Ceradini

q

,

r

, P. Ciambrone

d

, F. Curciarello

e

,

b

,

l

, E. Czerwi ´nski

c

, G. D’Agostini

m

,

n

, E. Danè

d

, V. De Leo

r

, E. De Lucia

d

, A. De Santis

d

, P. De Simone

d

, A. Di Cicco

q

,

r

, A. Di Domenico

m

,

n

, R. Di Salvo

p

,

D. Domenici

d

, A. D’Uffizi

d

, A. Fantini

o

,

p

, G. Felici

d

, S. Fiore

s

,

n

, A. Gajos

c

, P. Gauzzi

m

,

n

, G. Giardina

e

,

b

, S. Giovannella

d

, E. Graziani

r

, F. Happacher

d

, L. Heijkenskjöld

t

,

W. Ikegami Andersson

t

, T. Johansson

t

, D. Kami ´nska

c

, W. Krzemien

u

, A. Kupsc

t

, S. Loffredo

q

,

r

, G. Mandaglio

f

,

g

, M. Martini

d

,

k

, M. Mascolo

d

,

, R. Messi

o

,

p

, S. Miscetti

d

, G. Morello

d

, D. Moricciani

p

, P. Moskal

c

, M. Papenbrock

t

, A. Passeri

r

, V. Patera

j

,

n

, E. Perez del Rio

d

, A. Ranieri

a

, P. Salabura

c

, P. Santangelo

d

, I. Sarra

d

, M. Schioppa

h

,

i

, M. Silarski

d

, F. Sirghi

d

, L. Tortora

r

, G. Venanzoni

d

, W. Wi´slicki

u

, M. Wolke

t

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiFisicaeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy

fDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy gINFNGruppocollegatodiMessina,Messina,Italy

hDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy iINFNGruppocollegatodiCosenza,Rende,Italy

jDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy kDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy lNovosibirskStateUniversity,630090Novosibirsk,Russia

mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

tDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden uNationalCentreforNuclearResearch,Warsaw,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received26January2016

Receivedinrevisedform6April2016 Accepted7April2016

Availableonline11April2016 Editor:M.Doser

Ameasurementofthevectortopseudoscalarconversiondecayφ

π

0e+ewiththeKLOEexperiment is presented. A sample of ∼9500 signal events was selectedfrom a data set of 1.7 fb1 of e+e collisions at√

smφ collectedatthe DANEe+e collider. Theseevents wereusedto performthe first measurement ofthe transition formfactor|Fφπ0(q2)| anda newmeasurement of thebranching

*

Correspondingauthors.

E-mailaddresses:danilo.babusci@lnf.infn.it(D. Babusci),mascolo.matteo@gmail.com(M. Mascolo).

http://dx.doi.org/10.1016/j.physletb.2016.04.015

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Keywords:

e+ecollisions Conversiondecay Transitionformfactor

ratioofthedecay:BR

π

0e+e)= (1.35±0.05+00..0510)×105.Theresultimprovessignificantlyon previousmeasurementsandisinagreementwiththeoreticalpredictions.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The conversion decays of a light vector resonance (V) into a pseudoscalarmeson (P) anda lepton pair, VP

γ

P



+



, represent a stringent test for theoretical models of the nature of mesons. In these processes, the squared dilepton invariant mass,m2,correspondstothevirtual photon4-momentumtrans- fer squared, q2. The q2 distribution depends on the underlying electromagneticdynamicalstructureofthetransitionVP

γ

.

Thedescription ofthe couplingofthe mesonsto virtual pho- tons is typically parametrized by the so-called Transition Form Factor(TFF), FV P

(

q2

)

.TFFs arefundamental quantities playingan importantroleinmanyfieldsofparticlephysics,suchasthecalcu- lationofthehadronicLight-by-Lightcontributionto theStandard Modelpredictionofthemuonanomalousmagneticmoment[1].

Recently, the increasing interest in conversion decays was mostly drivenby the discrepancybetweentheexperimental data from NA60 [2] and Lepton G [3], and the Vector Meson Domi- nance(VMD)predictionforthe

ω

π

0

μ

+

μ

TFFFω π0

(

q2

)

.Over theyears, severaltheoretical modelshave beendeveloped toex- plainthisdiscrepancy[4–7]. Inorderto check theconsistencyof themodels,a measurementofthe Fφπ0

(

q2

)

TFF,whichhasnever been measured so far, was strongly recommended. In particular, becauseofitskinematics,the

φ

π

0e+eprocessisaverygood benchmarktoinvestigatetheobservedsteepriseinNA60dataat q2 closetothe

ρ

resonancemass.

Atpresent, theexistingdata on

φ

π

0e+e come fromSND [8]and CMD-2[9] experiments which were able to extract only thevalueoftheBranchingRatio(BR).TheFφπ0

(

q2

)

TFFhence,was nevermeasuredsofar.Itsmodulussquareentersinthecalculation ofthe

φ

π

0e+edouble-differentialdecaywidth:

d2

π

0e+e

)

dq2d cos

θ

=

3

8



q2

q2

+

2m2e



(

2

− β

2sin2

θ

)

×

d

π

0e+e

)

dq2 (1)

with

β

=

1−4m2e

/

q21/2

and[10]:

d

π

0e+e

)

dq2

= (φ → π

0

γ ) α

3

π β

|

Fφπ0

(

q2

)|

2 q2



1

+

2m2e

q2



×



1

+

q2 m2φ

m2π

2

4m

2 φq2

(

m2φ

m2π

)

2

3/2

,

(2)

whereme isthemassoftheelectron,and,mπ arethemasses ofthe

φ

and

π

0mesons,respectively.

θ

istheanglebetweenthe

φ

and the e+ direction in the e+e rest frame. Its cosine is an invariantquantitywhichcanbewrittenas[11]:

cos

θ

= (

q2

+

m2φ

m2π

)

4 pφ

·

pe+

β

q2

m2φ

m2π



2

4 m2πm2φ

,

(3)

wherepφ isthe4-momentumof

φ

andpe+ ofthepositron.

Thankstothelargeamountofcollected

φ

decays(∼5

.

109), theKLOEexperimenthasbeenablebothtoperformthefirstmea- surement of the Fφπ0

(

q2

)

TFF and to significantly improve the determinationofthebranchingratioof

φ

π

0e+e.

2. TheKLOEdetector

DA



NE, the Frascati

φ

-factory,is an e+e colliderrunning at a center-of-mass energy of ∼1020 MeV. Positron and electron beams collide at an angle of

π

-25 mrad, producing

φ

mesons nearlyatrest.

TheKLOE apparatusconsistsofa largecylindricalDriftCham- ber (DC) surrounded by a lead-scintillating fiber electromagnetic calorimeterbothinsertedinside asuperconductingcoil, providing a 0.52 Taxial field. The beampipe attheinteraction region isa sphere with 10 cm radius, made of a 0.5 mm thick Beryllium–

Aluminum alloy. The drift chamber [12], 4 m in diameter and 3.3 mlong,has12,582all-stereotungsten sensewiresand37,746 aluminum field wires, with a shell made of carbon fiber-epoxy compositewithaninternalwallof∼1 mmthickness.Thegasused is a 90% helium,10% isobutane mixture. The momentum resolu- tionis

σ (

p

)/

p0

.

4%.Verticesarereconstructedwithaspatial resolutionof∼3 mm.Thecalorimeter[13],withareadoutgranu- larityof∼(4.4×4.4) cm2,foratotalof2440cellsarrangedinfive layers,covers98% ofthesolid angle.Eachcellisreadout atboth endsbyphotomultipliers,bothinamplitudeandtime.Theenergy depositsare obtainedfromthesignal amplitude whilethearrival timesandtheparticlepositionsareobtainedfromthetimeofthe signals collected at the two ends. Cells close in time and space aregroupedintoenergyclusters. Energyandtime resolutionsare

σ

E

/

E=5

.

7%

/

E

(

GeV

)

and

σ

t=57 ps

/

E

(

GeV

)

100 ps, re- spectively.Thetrigger[14] usesbothcalorimeterandchamberin- formation.Inthisanalysistheeventsareselectedbythecalorime- tertrigger,requiringtwoenergydepositswithE

>

50 MeV forthe barrelandE

>

150 MeV fortheendcaps.

Large angle Bhabha scattering events are used to obtain lu- minosity,center-of-massenergyandcrossingangleof thebeams.

Aprecision measurement of√

s,withnegligible statisticaluncer- tainty anda systematicerrorof∼30 keV,isroutinelyperformed onthebasisof200 nb1 ofintegratedluminosity.Thesystematic errorisinfactontheabsolutemomentumscale,derivedfromthe analysisofthe

φ

lineshape[15].Thecenter-of-massenergydistri- butionwidthisabout330 keVfromthecontributionsofi)DA



NE beam energy spread (0.06%) and ii) radiative corrections/effects.

Collected data are processedby an eventclassification algorithm [16],whichstreams various categoriesofevents indifferentout- putfiles.

3. Dataanalysis

The analysisofthe decay

φ

π

0e+e (

π

0

γ γ

),has been performedonadatasampleof1.69 fb1 fromthe2004/2005data takingcampaign.

The simulationofboth signal andbackgroundeventsis based on the KLOE Monte Carlo (MC), GEANFI [16], that includes ra- diative contributions to the process under study and takes into account variations of beam energy, crossing angle and machine backgroundconditions ona run-by-runbasis. The MC simulation

(3)

Fig. 1. Data-MCcomparisonafteralltheanalysiscutsfortheinvariant-massspectrumofe+e(left)andofthetwophotons(right).Blackdotsaredata,solidredlineisthe sumofMChistogramcomponents:signal(cyan),φπ0γ background(orange)andradiativeBhabhascattering(green).(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

ofthesignal hasbeenproduced accordingtoEq.(1),assuming a point-like TFF (i.e. |Fφπ0

(

q2

)

|2=1). The radiative emission from theleptonsinthefinalstateofthechannelunderstudyisalsoin- cludedin thesimulationby means ofthePHOTOS MCgenerator [17].Thesignal productioncorresponds toanintegratedluminos- ity 1000 times larger than for the collected data. The dominant contributions to background events originate fromdouble radia- tiveBhabhascattering(e+ee+e

γ γ

)andfromthe

φ

π

0

γ

decay,wherethe

γ

convertstoae+epairintheinteractionwith thebeampipeordriftchamberwalls.(The

φ

π

0

γ

withthe

π

0

Dalitzdecayto

γ

e+ealsocontributestothebackgroundbutitis almostcompletelysuppressedbytheanalysiscuts.) Allotherback- ground events, i.e. the other

φ

meson decays, the non-resonant e+e

ωπ

0 process andthe

π

0 production via

γ γ

interaction, e+e

π

0e+e,werealsosimulated,resultingfullynegligibleat theendoftheanalysispath.

Asafirststepoftheanalysis,eventsareselectedrequiringtwo opposite-chargetracksextrapolatedtoacylinderaroundtheinter- actionpoint(IP)withradius4cmand20 cmlongandtwoprompt photoncandidatesfromIP(i.e.withenergyclustersEclu

>

7 MeV not associatedto anytrack, inthe angularregion |cos

θ

γ|

<

0

.

92 andin the time window |

/

c|

<

min

(

3

σ

t

,

2ns

)

). In order toenhance thesignal-to-background ratio,furtherconstraintsare appliedonthispreselecteddatasample:

a cut on the energies of the final state particles requiring:

(

30

<

Ee±

<

460

)

MeV,

>

70 MeV,

(

300

<

1 +2

<

670

)

MeV and

(

470

<

Ee++Ee

<

750

)

MeV;

angular cuts: 45

< θ

e±

, θ

γ

<

135,

θ

e+e

<

145 and 27

<

θ

γ γ

<

57;

two cuts on the invariant mass of the two photons and on the recoil mass against e+e to select events with a

π

0 in thefinalstate,i.e.

(

90

<

mγ γinv

<

190

)

MeV and

(

80

<

memiss+e

<

180

)

MeV;

acutontheinvariantmassandthedistancebetweenthetwo trackscalculated atthe surfacesofthe beampipe (BP)or of theDCwallsurfaces;

a cut based on the time of flight (ToF) of the tracks to the calorimeter.

All the cuts have been optimized in order to maximize the available rangeof the e+e invariant mass spectrum fortheTFF extraction.The constraints on angularand energyvariables have beenobtained looking atthe differencesbetween thesignal and

Bhabhareconstructedangularandenergydistributionsoffinallep- tons and photons. The cuts on the energies and on the opening angles

θ

e+e and

θ

γ γ oftracksandclustersallowtostronglysup- press the dominant background (S/B∼5×104) from the QED process e+ee+e

γ γ

. The

θ

e+e145 requirement is also very effectiveinrejecting oftheirreducible backgroundfromthe

γ γ

processe+ee+e

π

0,inwhichthefinal stateleptons are emitted in the forward direction(i.e. atsmall polar angles with respect to the beam line) forthis kind ofevents. The

φ

π

0

γ

contamination, withthe

γ

converting on the BP or DCwalls, is suppressed by tracing back the tracks of the e+

/

e candidates, by reconstructing the invariant mass (meBP+e,DC ) and the distance (deBP+e,DC ) of the track pair both at the BP and DC wall surfaces.

Both variables are expected to be small for photon conversion events,so that thisbackgroundis suppressedby rejecting events with:meBP+e

<

10 MeV anddeBP+e

<

2 cm,ormeDC+e

<

80 MeV and deDC+e

<

3 cm. Thecut on the time offlight tothe calorimeteris usedtoremoveresidualbackgroundeventswithmuonsorcharged pions in the final state. When an energy cluster is associated to a track, the ToF to the calorimeter is evaluated using both the calorimeter timing (tclu) and the time along the tracktrajectory, namely ttrk=Ltrk

c,where Ltrk is the length ofthe trackpath.

The difference



t=ttrktclu is then evaluated in the electron hypothesis; all events with



t

<

0

.

8 ns are retained for further analysis. Thisalgorithm, together withthe cut ontheenergies of thefinalparticles,turnsouttobecrucialforreducingthecontam- inationfromthedecay

φ

π

+

π

π

0 toanegligiblelevel.

Afteralltheabovedescribedcutstheoverallefficiency,asesti- mated bytheMC, is15.4%.Theefficiencyis19.5%atlowere+e invariant masses, decreasing to afew percent atthe highestval- uesofmomentumtransfer. Forthisreasontheanalysisislimited up to 

q2=700 MeV. At the end of the analysis chain, 14670 events areselected, witharesidual backgroundcontamination of

35%,equallydividedbetweentheBhabhaand

φ

π

0

γ

compo- nent,correspondingtoabout9500signalevents.

The agreement betweendata andMonte Carlosimulation, af- ter all selection cuts, is shown in Fig. 1 for the 

q2 and mγ γ distributions. Asshownintheleft panelofthisFigure,in there- gion 

q2

>

400 MeV the

φ

π

0

γ

backgroundis negligibleand onlytheBhabhabackgroundispresent.Furthermore,asacheckof Eq.(3),inFig. 2weshow thedistributionof|cos

θ

|ascompared totheMCprediction.

(4)

Fig. 2. Data-MCcomparisonafteralltheanalysiscutsfor|cosθ|.Codeofsymbols andcolorsasinFig. 1.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

In order to subtract the residual background from data, the e+e invariant-massspectrum isdivided into15bins ofincreas- ingwidth(topreservethestatistics ofsignalcandidates). Ineach binof 

q2,the memiss+e distribution is fit by a sumof two Gaus- sianfunctions,parametrizingthesignal,andathird-orderpolyno- mial,parametrizingthebackground.Someexamples ofthefitsto thememiss+e distributions are shownin Fig. 3. Apartfrom a global normalization,theparameters oftheGaussian functionsare fixed by a fit of the MC signal distribution. The background contribu- tionisevaluatedbinbybin,withoutanyassumptionorconstraint for the polynomial parameters. Once the residual background is parametrized,itisbinbybinsubtractedfromdata.

Table 1

KLOEmeasurementofthetransitionformfactor|Fφπ0(q2)|ofthe φπ0e+e decay.

Bin # 

q2-range (MeV)

Bincenter (MeV)

q2(UChT) (MeV)

|Fφπ0(q2)|2

1 2me÷30 15.5 9.0 1.00±0.11

2 30÷60 45 43.3 1.18±0.22

3 60÷90 75 74.0 0.93±0.21

4 90÷120 105 104.2 1.09±0.19

5 120÷150 135 134.4 1.19±0.23

6 150÷190 170 169.0 1.42±0.33

7 190÷230 210 209.1 1.46±0.47

8 230÷270 250 249.1 1.22±0.58

9 270÷310 290 288.8 2.30±0.53

10 310÷350 330 327.5 2.17±0.65

11 350÷400 375 380.0 3.01±1.34

12 400÷450 425 426.6 3.14±1.71

13 450÷500 475 476.1 6.07±2.05

14 500÷550 525 526.0 8.49±4.27

15 550÷700 625 632.9 17.4±10.3

3.1. Measurementof|Fφπ0

(

q2

)|

2

ThemodulussquareoftheTFF,|Fφπ0

(

q2

)|

2,isafactorinfront oftheq2differentialcrosssection(seeEq.(2)),henceitcanbeex- tracted fromdataby dividing themeasured e+e invariant-mass spectrumbythespectrumofreconstructedMCsignalevents,gen- erated with a constant Fφπ0

(

q2

)

, after all the analysis cuts. The resultis reportedinTable 1.The measured TFFis normalizedso that |Fφπ0

(

q2

)

|2=1 inthefirst bin.The errors includeboth the statisticalandthesystematicuncertainty.

Thesystematicuncertaintyconsistsoftwomajorcontributions:

the first due to the experimental resolution of the variables to whichtheanalysiscutsare applied,andthe secondassociatedto thebackgroundfittingprocedure.

Fig. 3. mmisse+e distributions(unitsMeV)forsome

q2binsshowingthetotalbackgroundcontribution(redcurve)evaluatedfromafittothedata(blackpoints),withfixed signalshape(bluecurve).Thedashedgreencurverepresentstheglobalfitofdata,includingthebackgroundfunctionandthesignalparametrization.

(5)

Fig. 4. Comparisonbetweenthemeasurementof|Fφπ0(q2)|2(blackpoints)andthe theoreticalpredictionsforthisquantitybasedon:thedispersiveanalysisofRef.[5]

(orangeandcyanbands)andRef.[7](bluedashedline),thechiraltheoryapproach ofRef.[6](greenband),andtheone-poleVMDmodel(solidredline)(seeEqs. (49) and(50)ofRef.[7]).(Forinterpretationofthereferences tocolorinthis figure legend,thereaderisreferredtothewebversionofthisarticle.)

Thesystematicuncertaintyduetotheanalysiscutsisevaluated moving by±1

σ

allthevariables onwhicha selectionisapplied.

Cutsaremovedonceatatime,loggingthedeviationofcountsin each binof

q2 fromthe originalone. The relativedeviations of countscomingfromthedifferentcutsarethensummedbinbybin inquadraturetogetthetotalrelativeuncertainty.Whenavariable isselectedwithinawindow,itsedgesarealwaysmovedoppositely inordertomakethewindowwiderornarroweraccordingtothe resolution.Theresultingfractional uncertaintyisofafewpercent inmostofthebinsoflower

q2,increasingupto20%insomeof thebinsof higher4-momentumtransfer.There isnoevidence of asingledominantcutwithrespecttotheothers;thecontribution ofthevariousanalysiscutsisdifferentforeachbinof

q2. Thesystematicerrorassociatedtothefittingprocedureiseval- uated computing the deviation of the yield of the background function,withrespecttothenominalone,wheneach ofthefour parametersismovedby±1

σ

whilefixingtheotheronesaccording tothecorrelationmatrix.Thefourcontributionsthusobtainedare summed in quadrature to get the total uncertainty on the back- groundyield in each bin of 

q2. This error contributionis then propagated to Fφπ0

(

q2

)

through the numberofsignal candidates ineachbin,whichenters inthecomputation.The contributionin eachbinof

q2isofafewpercent.

InFig. 4,our resultson |Fφπ0

(

q2

)

|2 are compared withthree different theoretical predictions. The best agreement is obtained withthe Unconstrained ResonantChiralTheory (UChT), withpa- rametersextractedfromafitoftheNA60 data[6].We notethat, asa consequence of the steepness and nonlinearityof the e+e invariant-mass spectrum, theTFF measured in a 

q2 bin cannot be associated to the corresponding bin center. For this reason, each experimental pointof Fig. 4 isassociated witha 

q2 value weighted according to the theoretical shape predicted by UChT (seecolumnlabeled“

q2UChT”inTable 1).AsshowninTable 1, withthegivenbinwidths,thebincenterisagoodapproximation ofthe weighted 

q2 ineach bin,withthe exception ofthevery firstbin,wheretheme+e functionissteeper.

The transitionformfactors areoften representedby a simple, VMD-inspired,one-poleparametrization:

F

(

q2

) =

1

1

q2

/

2

,

(4)

Table 2

PreviousdeterminationofBR(φπ0e+e)bySND[8]andCMD-2[9].ThePDG averageis(1.12±0.28)×105[20].Thetheoreticalpredictionsarealsoreported.

ForRef.[5]“once”(“twice”)referstothedispersiveanalysiswithone(two)sub- tractions.

BRπ0e+e)×105

Experiment SND 1.01±0.28±0.29

CMD-2 1.22±0.34±0.21

Theory Schneider et al.[5](“once”) (1.39 . . . 1.51) Schneider et al.[5](“twice”) (1.40 . . . 1.53)

Danilkin et al.[7] 1.45

fromwhichtheformfactorslopeparameterisobtained:

b

=

dF

(

q2

)

dq2

 

q2=0

= 

2

.

By fitting our data according to (4), we get bφπ0 = (2

.

02± 0

.

11

)

GeV2, to be compared with the one-pole approximation expectation,bφπ0=Mφ2,andthepredictionofthedispersiveanal- ysis,bφπ0= (2

.

52· · ·2

.

68

)

GeV2,ofRef.[5].

3.2. MeasurementofBR

π

0e+e

)

The branching ratio of the

φ

π

0e+e decay was obtained fromthebackground-subtractede+e massspectrumbyapplying anefficiencycorrectionevaluatedbinbybin:

BR

π

0e+e

) =



iNi

/ 

i

σ

φ

× L

int

×

BR

( π

0

γ γ ) ,

(5) where

σ

φ istheeffective

φ

productioncross-section,

σ

φ= (3310± 120

)

nb[18],

L

int= (1

.

69±0

.

01

)

fb1[19]istheintegratedlumi- nosity ofdata,andBR

( π

0

γ γ )

thebranching ratioof

π

0 into twophotons[20].Niisthenumberofsignalcandidatesintheith binof

q2 and



i isthecorrespondingselectionefficiency,evalu- atedasthenumberofMCsignaleventsintheithbinafterallthe analysis steps, divided by the numberof the corresponding gen- erated events. The result covers the range 

q2

<

700 MeV (the upperedgeofthehigherbinof

q2)andisequalto:

BR

π

0e+e

; 

q2

<

700 MeV

) = (

1

.

19

±

0

.

05+00..0510

) ×

105

.

(6) Here,thefirsterrorresultsfromthecombinationofthestatistical one (2.2%infraction) withtheabove quoted uncertaintieson

σ

φ and

L

int.The secondisa systematiconeduetotheanalysiscuts andbackgroundsubtraction(see sec. 3.1). The erroron



i dueto theparametrizationoftheTFFintheMCisnegligible.

The result can be extended to the full 

q2 range evaluating the fraction ofthe integral in thee+e invariant-mass spectrum which isnot covered bythe analysis. Theextrapolation hasbeen computedaccordingtothetheoreticalmodelthatbestfitsthedata [6].Theestimateofthetotalbranchingratiois:

BR

π

0e+e

) = (

1

.

35

±

0

.

05+00..0510

) ×

105

.

(7) This result improves the previous measurements by SND and CMD-2experimentsandisinagreementwiththetheoreticalpre- dictionsshowninTable 2.

4. Conclusions

Analyzingtheconversiondecay

φ

π

0e+e,wemeasuredfor thefirsttimethemodulussquareofthe Fφπ0 transitionformfac- tor for

q2 below700 MeV.The dataare inagreementwiththe

(6)

theoreticalpredictionbasedontheUnconstrainedResonantChiral Theory(UChT),withparameters extractedfromafit oftheNA60 data. From the same data set we obtained a value of BR

π

0e+e;

q2

<

700MeV

)

= (1

.

19±0

.

05+00..0510

)

×105.Anextrap- olationbasedonthetheoreticalmodelinagreementwiththedata has been used to extend the result to the full 

q2 range. The value obtained is BR

π

0e+e

)

= (1

.

35±0

.

05+00..0510

)

×105, thatimprovessignificantlytheresultsobtainedbySNDandCMD-2 experiments,andisinagreementwiththeoreticalpredictions.

Acknowledgements

We warmly thank our former KLOE colleagues forthe access tothe data collected during the KLOE datataking campaign. We thankthe DA



NEteamfortheireffortsinmaintaininglowback- groundrunning conditionsandtheir collaboration during alldata taking. We want to thank our technical staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring efficient operation oftheKLOE computingfacilities;M. Anelliforhis continuousat- tentionto thegas systemanddetectorsafety;A. Balla, M. Gatta, G. Corradi and G. Papalino forelectronics maintenance; M. San- toni, G. Paoluzzi and R. Rosellini for general detector support;

C. Piscitelli for his help during major maintenance periods. We thankProf.B.KubisandDr.I.Danilkinforthedetailedresultofthe calculationofRefs.[5]and[7],respectively.Wearealsoverygrate- fultoDr.S.Ivashynforprovidingustheformulaforcos

θ

andfor the many enlightening discussions during all the phases of the analysis.Thisworkwas supportedinpartbytheEUIntegratedIn-

frastructureInitiativeHadronPhysicsProjectundercontractnum- berRII3-CT-2004-506078;bytheEuropeanCommissionunderthe 7thFramework Programme through the‘Research Infrastructures’

actionofthe‘Capacities’Programme,Call:FP7-INFRASTRUCTURES- 2008-1, Grant Agreement No. 227431; by the Polish National Science Centre through the Grants Nos. 2011/03/N/ST2/02652, 2013/08/M/ST2/00323,2013/11/B/ST2/04245,2014/14/E/ST2/00262, 2014/12/S/ST2/00459.

References

[1]F.Jegerlehner,A.Nyffeler,Phys.Rep.477(2009)1.

[2]G.Usai,etal.,Nucl.Phys.A855(2011)189.

[3]R.I.Dzhelyadin,etal.,Phys.Lett.B102(1981)296.

[4]C.Terschlusen,S.Leupold,Phys.Lett.B691(2010)191.

[5]S.P.Schneider,B.Kubis,F.Niecknig,Phys.Rev.D86(2012)054013.

[6]S.Ivashyn,Probl.At.Sci.Tech.2012 (1)(2012)179.

[7]I.Danilkin,etal.,Phys.Rev.D91(2015)094029.

[8]M.N.Achasov,etal.,JETPLett.75(2002)449.

[9]R.R.Akhmetshin,etal.,Phys.Lett.B503(2001)237.

[10]L.G.Landsberg,Phys.Rep.128(1985)301.

[11] S.Ivashyn,privatecommunication.

[12]M.Adinolfi,etal.,Nucl.Instrum.MethodsA488(2002)51.

[13]M.Adinolfi,etal.,Nucl.Instrum.MethodsA482(2002)364.

[14]M.Adinolfi,etal.,Nucl.Instrum.MethodsA492(2002)134.

[15]F.Ambrosino,etal.,J.HighEnergyPhys.12(2007)073.

[16]F.Ambrosino,etal.,Nucl.Instrum.MethodsA534(2004)403.

[17]E.Barberio,Z.Was,Comput.Phys.Commun.79(1984)291.

[18]D.Babusci,etal.,Phys.Lett.B742(2015)1,andreferencestherein.

[19]F.Ambrosino,etal.,Eur.Phys.J.C47(2006)589.

[20]K.A.Olive,etal.,Chin.Phys.C38(2014)090001.

Cytaty

Powiązane dokumenty

In the ρ – ω region the systematic error is computed by adding in quadrature the contributions due to the theoretical uncertainty of the Monte Carlo generator (0. 5% [26]),

T h e other param eters in the likelihood function are the B0 signal fraction f s, param eters describing the J / 0 0 mass distribution, param eters describing

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

Note that the generated Monte Carlo events were scaled according to the fit to data after preselection and that the sum of all Monte Carlo events remaining after all cuts is equal to

Additionally, the upper limit of the preliminary total cross section was determined for the first time for the ( 4 He–η) bound production in dd → 3 Henπ 0 reaction [15]2. This

In the analysis pre- sented here we have produced an acceptance-corrected Dalitz plot and extracted experimental values for parameters describing the density distribution..

The dominant background sources are normalised either using only data, as in the case of the W +jets background, or using data yields in an appropriate control region (CR) to

The global efficiency, which ranges from 0.086 at 0.605 GeV to 0.27 at 0.975 GeV, has been obtained from a μ + μ − γ events gen- eration with PHOKHARA interfaced with the