• Nie Znaleziono Wyników

SAMPLING DESIGNS PROPORTIONATE TO NON-NEGATIVE FUNCTIONS OF TWO QUANTILES OF AUXILIARY VARIABLE

N/A
N/A
Protected

Academic year: 2021

Share "SAMPLING DESIGNS PROPORTIONATE TO NON-NEGATIVE FUNCTIONS OF TWO QUANTILES OF AUXILIARY VARIABLE"

Copied!
17
0
0

Pełen tekst

(1)

Janusz L. Wywiał

Uniwersytet Ekonomiczny w Katowicach

SAMPLING DESIGNS PROPORTIONATE TO NON-NEGATIVE FUNCTIONS OF TWO QUANTILES OF AUXILIARY VARIABLE

1. Sampling design

Let U be a fixed population of size N. The observation of a variable un- der study and an auxiliary variable are denoted by yi and xi, i=1,...,N, re- spectively. Moreover, let xixi+1, i=1,..., N−1. Our problem is estimation of the population average

= ∑

U k

y

k

y N 1

.

Let us consider the sample space S of the samples s of the fixed effective size 1<n <N. The sampling design is denoted by

P (s )

. We assume that

0 ) ( ≥ s

P

for all sS and

=

s S

P ( s ) 1

.

Let

( X

( j)

)

be the sequence of the order statistics of observations of auxilia- ry variable in the sample s. It is well known that the sample quantile of order a

α

∈(0;1) is defined as follows:

Q

s,α

= X

(r) where

r = [ n α ] + 1

, the func- tion

[ n α ]

means the integer part of the value

[ n α ]

, r =1,2,...,n. Let us note that

X

(r)

= Q

s,α for

n r n

r1 ≤ α <

. In this paper it will be more conveniently to consider the order statistic than the quantile.

Let

G ( r , u , i , j ) = { s : X

(r)

= x

i

, X

(u)

= x

j

}

, r=1,...,n−1; u=2,...,n, u

r < be the set of all samples whose r-th and u-th order statistics of the auxi- liary variable are equal to xi and

x

j, respectively where ri< jNn+u. Moreover,

U U

-n r

N

S

+

= +

+

=

=

r i

u n N

r u i j

j i u r

G ( , , , )

(1)

(2)

The size of the set G(r,u,i,j) is denoted by ))

, , , ( ( )

, , ,

(r u i j Card G r u i j

g = and

⎟⎟ ⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

= −

u n

j N r

u i j r

j i i u r

g 1

1 1

) 1 , , ,

(

(2)

Let

f ( x

j

, x

j

, c )

be non-negative function of values of the order statistics

X

(r) and

X

(r) and

⎟⎟ ⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

= −

u n

j N r

u i j r

j i i u r

g 1

1 1

) 1 , , ,

(

(3)

The straightfoward generalization of the Wywiał’s (2009) sampling design is as follows.

Definition 1.1. The conditional sampling design proportional to the non- negative functions of the order statistics

X

(u)

, X

(r) is as follows:

) , , (

) , , ) (

|

(

( ) ( )

,

z r u c

x X X c f

s

P

ru

=

u r (4)

where i < j and riNn+rand r<ujNn+u. Particularly, let

f ( x

j

, x

i

, c ) = x

j

x

i and

⎩⎨

<

= −

. 0

) , , ,

( for x x c

c x x for x c x

x x f

i j

i j i j i

j (5)

We say that the above sampling design is (conditional) unconditional when

)

0

( > c

c=0. In general this concept is agree with definition of the conditional sampling design considered by Tillé (1999; 2006).

As it is well known the inclusion probability of the first order is determined

by the equations:

= ∈ = ∑

} :

{ ,

,

( : ) ( | )

) , ,

(

ru sk s ru

k

r u c P s k s P s c

π

, k=1,...,N

. We assume that if x≤0 then

δ ( x ) = 0

otherwise

δ ( x ) = 1

. Let us note that

)

1 ( ) 1 ( )

( x δ x − = δ x

δ

.

Theorem 1.1. Under the sampling design

P

r,u

( s )

the inclusion probabili- ties of the first degree are as follows. If k <r,

) , , 1 (

1 2

2 )

, , (

) ( ) 1 ) (

, ,

( f x x c

u n

j N r

u i j r i c

u r z

k r c r

u

r j i

r n N

r i

u n N

r u i j

k ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

= −

∑ ∑

+

= +

+

=

δ

π δ (6)

(3)

If rkNn+u,

− ⋅

= −

) , , (

) ( ) 1 ) (

, ,

( z r u c

k r c r

u

k r

δ π δ

⎜ +

⎛ ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

∑ ∑

+

=

+

=

) , , 1 ( 1 1

1 1

) 1 ( ) (

1 1

c x x u f

n j N r

u i j r u i

n u

k j i

r u k

r i

k

r u i j

δ δ

+ ⎟⎟⎠ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− + −

+

=

) , , 1 ( 1 1

) 1 1

( f x x c

r u

i k r i u

n k u N

k j i

r u k

r i

δ

∑ ∑

= +

+

=

⎟⎟ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

− +

+ 1

1

) , , 1 (

1 1

) 1 1 (

) (

) (

k r i

i j u

n N

k j

c x x u f n

j N r u

i j r r i

u k u n N r

k δ δ

δ (7)

⎟⎟ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− + −

− +

+

+

+

=

) , , 1 (

1 1

) 1 1

( f x x c

u n

j N r

u k j r

k k r n

N j k

u n N

r u k j

δ

⎟⎟

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

− +

+

∑ ∑

+

+

= +

+

= r n N

k i

i j u

n N

r u i j

c x x u f n

j N r

u i j r r i

k r n N

1

) , , 1 (

1 2

) 2 1 ( )

( δ

δ

If k>Nn+u,

) , , 1 (

1 1

1 1

1 )

, , (

) ) (

, ,

( f x x c

u n

j N r u

i j r i c

u r z

u n N c k

u

r j i

r n N

r i

u n N

r u i j

k ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− − +

= −

∑ ∑

+

= +

+

=

π δ (8)

The inclusion probabilities of the second order are defined by

=

=

=

} , : {

, ,

,

,

( , , ) ( , , ) ( : , ) ( | )

s t s k s

u r u

r k

t t

k

r u c π r u P s k s t s P s c

π

where k<t=1,...,N.

Theorem 1.2. The inclusion probabilities of the second degree of the sam- pling design

P

r,u

( s | c )

are as follows.

+

∈ +

= +

= ( , ) ( , ) ( , )

) , ,

(

3 ( ) 3 2 3

,t

r u c P k t s P X

u

x

k

t s P k s t s

π

k

+

∈ +

∈ +

=

+ P ( X

(r)

x

k

, t s

3

) P ( k s

1

, t s

3

) P ( k s

2

, X

(u)

x

t

)

(9)

+

∈ +

=

∈ +

=

=

+ P ( X

(r)

x

k

, X

(u)

x

t

) P ( k s

1

, X

(u)

x

t

) P ( k , t s

2

)

) , ( ) ,

( ) , ( ) ,

( X

( )

x t s

2

P k s

1

t s

2

P k s

1

X

( )

x P k t s

1

P

r

=

k

∈ + ∈ ∈ + ∈

r

t

+ ∈

+

(4)

where

( +

= −

( k N n u )

) c , u , r ( z

) u n ) ( s t , k (

P δ 1 δ

3

. ⎟⎟ + + +

⎜⎜

⎟⎟

⎜⎜

⎟⎟

⎜⎜

∑ ∑

+

= +

+

=

) ( _ 1 (

) , , 2 ( 2 1

1 1

1 f x x c N n u k k u

u n

j N r u

i j r i

i j r

n N

r i

u n N

r u i j

δ δ

.

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

∑ ∑

+

= +

=

) , , 2 ( 2 1

1 1

1

1

c x x u f

n j N r u

i j r i

i j r

u N

r i

u n N

k j

, (10)

+ ⋅

− +

= −

= ( , , )

) 1 (

) ( ) ) (

,

( ( ) 3

c u r z

k u n N u n k s N

t x X

P u k δ δ δ

. ( , , )

1 1 1

1 1

1 f x x c

r u

i k r

i u

n k N

i j r

n k

r i

+

= ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− , (11)

+ ⋅ +

= −

∈ ( , , )

) 1 (

) ( ) 1 ) (

,

(

2 3

c u r z

r u k t u n r

s u t s k

P δ δ δ

⎜ +

⎛ ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− + −

− +

∑ ∑

=

+

=

) , , 1 ( 1 2

2 1

1 1 (

1 1

c x x u f

n j N r

u i j r t i

u n

N j i

k r i

t r u i j

δ (12)

⎟⎟⎠

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− − +

+

∑ ∑

= +

+

=

) , , 1 ( 1 2

2 1

) 1 (

1

c x x u f

n j N r

u i j r u i

n N

t j i

k r i

u n N

r u i j

δ ,

+ ⋅

= −

∈ ( , , )

) 1 (

) ( ) ) (

,

( ( ) 3

c u r z

r k k N u s n

t x X

P r k

δ δ δ

+

⎟⎟

⎜⎜

⎟⎟

⎜⎜

⎟⎟

⎜⎜

+

+

+

+

=

) , , 1 (

1 1

1 1

) 1 1 (

) (

1

c x x u f n

j N r u

k j r

t k u n N r u k

t j i

t r u k j

δ

δ (13)

)

) , , 1 ( 1 1

1 1

) 1 (

) 1

( f x x c

u n

j N r u

k j r

u k n N t r k n

N j k

u n N

r u k

j ⎟⎟

⎜⎜

⎟⎟

⎜⎜

⎟⎟

⎜⎜

+

+ +

+

+

+

=

δ

δ ,

(

− − + − ⋅

= −

∈ ( ) ( )

) , , (

) ( ) 1 ) (

,

( 1 3 r k t N n u

c u r z

u n s r

t s X

P δ δ δ δ

+

+

⎟⎟ +

⎜⎜

⎟⎟

⎜⎜

⎟⎟

⎜⎜

∑ ∑

+

= +

+

=

) ( ) 1 (

) ( ) , , 1 ( 1 1

1 2

2 f x x c r k N n u t t u

u n

j N r u

i j r i

i j r

n N

r i

u n N

r u i j

δ δ

δ

⎟⎟ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

∑ ∑

+

=

+

=

) , , 1 (

1 1

1 2

2

1 1

c x x u f

n j N r u

i j r

i

i j r

u t

r i

t r u i j

(14)

− +

− +

− +

+δ(k r 1)δ(t N n u)δ(N n r k)δ(t u)

⎟⎟

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

∑ ∑

+

+

=

+

=

) , , 1 (

1 1

1 2

2

1

1 1

c x x u f

n j N r

u i j r i

i j r

u t

k i

t

r u i j

,

(5)

) , , 1 ( 1 1

1 )

, , (

) ( ) ) (

, (

1 )

(

2 f x x c

r u

i t r i u

n t N c u r z

r u u x t

X s X

P j i

r u t

r i t

u

+

= ⎟⎟

⎜⎜

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

=

δ δ .

⎟⎟ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

∑ ∑

+

=

+

=

) , , 1 (

1 1

1 2

2

1 1

c x x u f

n j N r

u i j r

i

i j r

u t

r i

t r u i j

(15)

− +

− +

− +

+ δ ( k r 1 ) δ ( t N n u ) δ ( N n r k ) δ ( t u )

⎟ ⎟

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

∑ ∑

+

+

=

+

=

) , , 1 (

1 1

1 2

2

1 1

1

c x x u f

n j N r

u i j r

i

i j r

u t

k i

t r u i j

,

=

= , )

( X

(r)

x

k

X

(u)

x

t

P

(

( , , )

1 1 1

1 )

, , (

) 1 (

) 1

( f x x c

u n

t N r

u k t r k c

u r z

t u n N r

k

i

⎟⎟ j

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− + −

− +

− +

=

δ

δ

, (16)

− ⋅

= −

=

∈ ( , , )

) ( ) 1 ) (

,

(

1 ( )

c u r z

r u x r

X s k

P

u t

δ δ

⎜⎜⎝

⎛ ⎟⎟ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− + −

+

=

) , 1 ( 1 2

) 2 1 (

)

( j i

r u t

r i

x x r f

u i t r

i u

n t u N

t k

r

δ

δ

(17)

, ) , 1 ( 1 2

) 2 (

) 1 (

1 ⎟⎟⎠

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− − +

− +

+

+

= j i

r u t

k i

x x r f

u i t r

i u

n t k N r u t r

k

δ

δ

− ⋅

− +

= −

∈ ( , , )

) 2 (

) 1 ) (

,

(

2

c u r z

r u k

t r s u

t k

P δ δ

(18)

)

, , 3 (

3 1

1

1 1

c x x u f n

j N r

u i j r

i

i j k

r i

u n N

t

j

⎟⎟ ⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⋅ ∑ ∑

= +

+

=

,

− ⋅

− +

+

= −

∈ ( , , )

) 1 (

) 1 ) (

,

(

( ) 2

c u r z

r u r

k n s N

t x X

P

r k

δ δ

) , , 2 (

2 1

1 f x x c

u n

j N r

u k j r

k

i j u

n N

r u k

j ⎟⎟

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⋅ −

+

+

=

,

(19)

(6)

− ⋅ +

= −

∈ ( , , )

) )

1 (

) 1 ) (

,

(

1 2

c u r z

t u n N r

u s r

t s k

P δ δ δ

⎜ ⎜

⎛ ⎟⎟ +

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

⋅ ∑ ∑

= +

+

=

) , , 2 (

2 2

) 2 (

1 1

c x x u f n

j N r

u i j r

k i

r

j i

t r i

u n N

t j

δ

(20)

, ) , , 2 (

2 2

) 2 1 (

1

1 1

⎟ ⎟

⎟⎟ ⎞

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− + −

+ ∑ ∑

+

= +

+

=

c x x u f n

j N r

u i j r

r i

k

j i

t k i

u n N

t j

δ

− ⋅ +

= −

=

∈ ( , , )

) (

) 1 ( ) 1 ) (

,

(

1 ()

c u r z

t u n N k

x r X s k

P

r t

δ δ δ

(21) )

, , 1 (

1 2

2

1

c x x u f n

j N r

u k j r

k

k j u

n N

t

j ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⋅ −

+

+

=

,

⎜ +

⎛ ⎟⎟⎠

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

= −

∑ ∑

+

= +

+

=

) , 1 (

1 3

) 3 ) (

, , (

) 2 ) (

,

( 1

r n N

r i

u n N

r u i j

i jx c x u f n

j N r u

i j r t i

c r u r z s r t k

P δ δ

).

, 1 (

1 3

) 3 1 (

∑ ∑

+1 +

=

+

+

=

⎟⎟

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

⎟⎟ −

⎜⎜ ⎞

− −

+

N n r

t i

u n N

r u i j

i j

x c x u f n

j N r

u i j r

r i δ t

(22)

2. Sampling scheme

The sampling scheme implementing the sampling design

P

r,u

( s | c )

P is as fol- lows. Firstly, population elements are ordered according to increasing values of the auxiliary variable. Let s=s1∪{i}∪s3 ∪{j}∪s3, s1 ={k:kU,xk <xi},

} ,

:

2

{ k k U x

j

x

k

x

i

s = ∈ > >

and

s

3

= { k : kU , x

k

> x

j

}

. Moreover, let )

, 1 ( } { ) 1 , 1 ( } { ) 1 , 1

( i i U i j j U j N

U

U= − ∪ ∪ + − ∪ ∪ + where U(1,i−1)=

) 1 , ...

, 1

( −

= i , U(i+1, j−1)=(i+1,..., j−1), U(j+1,N)=(j+1,...,N). Let

)

);

1 , 1 (

( U i s

S

be sample space of the sample

s

1 of size )

);

1 , 1 ( ( ,

1SU i j s

r− + − be sample space of the sample

s

2 of size )

);

, 1 ( ( ,

1SU j N s

r

u− − + be sample space of the sample

s

2 of size n −u. Similarly,

S = S ( U , s )

.

The sampling scheme is given by the following of probabilities:

) ( )

| ( ' ) ( )

| ( ) ( )

|

(

1 1 , 2 2 , 3 3

,

s c P s p i c P s p j c P s

P

ru

=

ru ru (23)

(7)

where

1 3

3 1 2

2 1 1

1 , ( )

1 ) 1

( 1 ,

) 1 (

⎟⎟⎠

⎜⎜ ⎞

= −

⎟⎟⎠

⎜⎜ ⎞

= −

⎟⎟⎠

⎜⎜ ⎞

= −

u n

j s N

r P u

i s j

r P s i

P (24)

) , (

) , ,

) ( ,

| (

)

| (

) ( ,

) ( )

( , )

( )

(

, P X x c

c x X x X c P

x X x X P c i P

j u u r

j u i r u r j

u i r u

r =

=

= =

=

=

= (25)

+

=

=

=

= N n r

r i

i j j

u u r u

r f x x c g r u i j

u r c z x X P c j

p ( , ) ( , , , )

) , , ( ) 1 , (

)

| (

' , , ( ) (26)

) , , (

) , , , ( ) , ) (

| ( )

,

| (

) , , , (

, )

( )

(

,

z r u c

j i u r g c x x c f s P c

x X x X

P

j i

j i u r G s

u r j

u i r u

r

=

=

=

(27)

In order to select the sample s, firstly the j-th element of the population should be selected, according to the probability function

p '

r,u

= ( j | c )

. Next, the i-the element of the population should be drawn according to the probability function

p '

r,u

= ( i | c )

. Finally, the samples

s

1,

s

2 and s3 should be selected, according to the sampling designs

P

1

( s

1

)

,

P

2

( s

2

)

and P3(s3), respectively.

3. Some sampling strategies

The well known Horvitz-Thompson (1952) estimator is as follows:

=

s

k k

k s

HT

y y N

π 1

, (28)

The statistic is unbiased estimator of the population mean value if

π

k >0 for k=1,...,N. The variance and its estimator are determined by the expressions (32) and (34), respectively.

The particular case of the above estimator is the well known sampling desi- gn of the simple sample drawn without replacement is as follows:

1 0( )

⎟⎟⎠

⎜⎜ ⎞

=⎛ n s N

P . The variance of the mean from the simple sample

(8)

=

s k

s

y

k

y n 1

drawn without replacement is s

v

y

nN

n s N

P y

D

2

( ,

0

( )) = −

where

=

− −

=

N

k k

y

y y

v N

1

)

2

1 (

1

.

The results of the previous chapter lead to construction of the regression sampling strategy for the population mean =

ks

s yi

y n1 . We assume that

i i

i a bx e

y = + + for all i ∈U,

=

U i

e

i

0

and the residuals of that linear re- gression function are not correlated with the auxiliary variable. The linear corre- lation coefficient between the variables y and x will be denoted by

ρ

. Let

) ,

( X

(r)

Y

r be two dimensional random variable where

X

(r) is the r-th order statistic of an auxiliary variable and Yr is the variable under study. Wywiał (2009) considered the following estimator:

)

(

,

, , , ,

,us HTs rus HTs

r

y b x x

y = + −

(29)

where

) ( ) ( , ,

r u

r u s

u

r X X

Y b Y

= − (30)

Wywiał (2009) showed that under the sampling design stated in the defini- tion 1.1 the parameters of the following strategies

y

r,u,s

, P

r,u

( s | c ))

, are approximately as follows.

( y P s c ) y

E

r,u,s

,

r,u

( | ) ≈

+

≈ ( , ( | )) 2 ( , , ( | ))

))

| ( ,

( , , , , ,

2 , ,

,

2 y P s c D y P s c bCov y x P s c

D rus ru HTs ru HTs HTs ru (31)

))

| ( ,

( , ,

2

2D x P s c

b HTs ru

+ where

⎟⎟⎠

⎜⎜ ⎞

⎛ Δ

=

∑∑

∈ ∈U

k l

l k k U

l l u k

s r s HT HT

x y c N

s P x y

Cov , , , 2 ,

π π

)) 1

| ( , ,

( (32)

l k l k l

k,

= π

,

− π , π

Δ

,

))

| ( , , ( ))

| ( ,

( , , , , ,

2 x P s c Cov x x P s c

D HTs ru = HTs HTs ru ,

))

| ( , , ( ))

| (

,

, , , ,

,

2

y P s c Cov y y P s c

D =

HTs ru

=

HTs HTs ru .

Cytaty

Powiązane dokumenty

C’est Roger Caillois, sociologue de formation, qui, n’étant ni peintre ni écrivain, a toutefois créé et présenté sa propre théorie du genre fantas tique dans sa célèbre

Początek Dekady EZR oraz ogłoszenie strategii EZR nastąpiły w  2005  r. Działania te podjęła Organizacja Narodów Zjednoczonych, będąca przedstawicielstwem wszystkich

I gdy Ognisko próżności domaga się od czytelnika współczu­ cia dla yuppie, American Psycho chce, byśmy znienawidzili Batemana i wszystko to, co sobą reprezentuje; podczas gdy

The atypical chemical composition of the studied pool water can be controlled by: (i) the lateral inflow of water from the Vistula river, (ii) the downward seepage of water, (iii)

Numerical simulations of the thermomechanical behaviors of Styrene and PU SMP foams in cubic and cylindrical shapes at different temperatures subjected to compressive loading with

L'amicizia puo fondarsi o su una comunanza di vita^ o di beni*&#34; oppu- re sulla virtCi&#34; : tra le diverse amicizie la piii profonda, la piii vera e quella che nasce dalla

The independent variables whose predictive value has been checked include age related factors (Age, Age of Learning), language experience (Language Use and

Nato- miast znaczna liczba gorzelni w guberni kieleckiej nie przekładała się na znacz- ny ich udział w globalnej wartości produkcji, który wynosił zaledwie 2,6%