• Nie Znaleziono Wyników

BUT91

N/A
N/A
Protected

Academic year: 2022

Share "BUT91"

Copied!
7
0
0

Pełen tekst

(1)

BUT91

FAST SWITCHING POWER TRANSISTOR

■ HIGH CURRENT CAPABILITY

■ LOW SATURATION VOLTAGE

■ FAST TURN-ON AND TURN-OFF

DESCRIPTION

High current, high speed transistor suited for low voltage application.

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

<O m < Collector-emitter Voltage( Vb e = - 1.5V) 300 V

VcEO Collector-emitter Voltage ( Ib =0) 200 V

Ve b o Emitter-base Voltage(lc =0) 10 V

lc Collector Current 50 A

IcM Collector Peak Current 70 A

Ib Base Current 10 A

Ib m Base Peak Current 15 A

P t o t Total Dissipation at T c < 25°C 250 W

T s t g Storage Temperature - 65 to 200 °C

T, Max. Operating Junction Temperature 200 °C

December 1988 1/7

(2)

THERMAL DATA

»th j-case Thermal Resistance Junction-case Max 0.7 °C/W

ELECTRICAL CHARACTERISTICS (Tcase = 25°C unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

IcER Collector Cutoff > o UJ II > o >

0.4 mA

Current (Rbe= 10C2) Vc e = Vc e v T c = 100°c 4 mA

IcEV Collector Cutoff Vc e =Vc e v Vb e =- 1.5V 0.2 mA

Current < O m II < o m < <03 m II 1.5V T c = 100°C 2 mA

Ie b o Emitter Cutoff

Current (lc = 0)

>h-II

CD>

1 mA

VcEO (sus) Collector Emitter lc = 0.2A 200 V

Sustaining Voltage L = 25mH

OCD>

Emitter-base Voltage (lc = 0)

Ie= 50mA 10 V

V cE (sa t)* Collector-emitter lc = 20A I b= 1A 0.55 0.9 V

Saturation Voltage lc = 40A lB =4A 0.7 1.2 V

lc = 20A ls = 1A T j = 100°C 0.7 1.2 V

lc = 40A lB =4A T, = 100°C 0.95 1.8 V

VBE(sat)* Base-emitter lc = 20A l B = 1A 0.95 1.3 V

Saturation Voltage lc = 40A lB = 4A 1.25 1.8 V

l c = 20A lB =1A T j = 100°C 0.9 1.4 V

lc =40A lB =4A Tj =100°C 1.3 1.9 V

RESISTIVE LOAD < o o II cn o < lc = 40A 0.5 0.8 gs

t , Rise Time CD II I CD CM II < tp » 30gs 0.65 1.2 ps

t s Storage Time 0.15 0.3 gs

t f Fall Time

t r Rise Time V c c - 150V lc = 40A 0.7 1.2 gs

t s Storage Time CD II 1 CD CM II < t p = 30gs 0.85 1.5 gs

t f Fall Time T j = 100°C 0.32 0.65 gs

INDUCTIVE LOAD Vcc - 150V Vciamp = 2 0 0 V 0.7 1.5 gs

t s Fall Time lc = 40A IB1 = - IB2 =4A 0.08 0.2 gs

t f Storage Time Lc = 70gH

ts Storage Time Vcc - 150V Vciamp = 200V 1.1 1.8 gs

t f Fall Time lc = 40A m II I m II 't < 0.18 0.4 gs

Lc = 70gH T j = 100°C Pulsed : Pulse duration = 300gs, duty cycle = 2%.

r z7 SCS-THOMSON

“ ■7# MKmEUCqrMNBgCS 2/7

(3)

DC and AC Pulse Area.

t 2 4 6 10 20 40 60 100 200 V CE (V)

Transient Thermal Response.

DC Current Gain.

Collector-emitter vs. Base-emitter Resistance.

~TT r I

_ !

_L

T

I J.

10 20 40 60 100 200 400 1000 2000 RBe(S2>

Collector Current Spread vs. Base-emitter Voltage.

0 20 40 60 80 100 IqIA)

r z7 SGS-THOMSON

* 7# MgCMUCTKSMICa

3/7

(4)

Base Characteristics.

Saturation Voltage Low Gain.

Collector Saturation Region.

SW ITCH IN G OPE RATING AND OVE RLOAD AREAS TRANSISTOR FORWARD BIASED

. During the turn-on

_ During the turn-off without negative base emitter voltage and Rbe < 50Q.

TRANSISTOR REVERSE BIASED

- During the turn-off with negative base-emitter voltage.

4/7 r z 7 SCS-THOMSON

ssiesumacros-aiics

(5)

Forward biased Safe Operating Area (FBSOA). Reverse biased Safe Operating Area (RBSOA).

Forward biased Accidental Overload Area

is not limited if the normal v

^conditions under forward bias arej$

^ respected (l§ /B . Tj rnax)

1 T j^ 1 0 0 ° C

VBE = - 3 V

VCE (V)

Reverse biased Accidental Overload Area

® O A k

Tj « 1oo°c —

V [

\

E = - 3 V V

N

•)

___

50 100 150 200 250 300 V cE IV)

After the accidental overload current, the RBAOA has to be used for the turn-off.

50 10O 150 200 Vc eIVI

The Kellog network (heavy point) allows the calcu­

lation of the maximum value of the short-circuit cur­

rent for a given base current IB (90% confidence).

High accidental surge currents (I > Icm) are allowed if they are non repetitive and applied less than 3000times during the component life.

f Z T SGS-THOMSON

“ •7# ssicBBHJScraaosffis

5/7

(6)

Switching Times vs. Collector Current (resistive load).

Switching Times vs. Collector Current (inductive load).

SW ITCHIN G TIMES AT C O NS TAN T GAIN Inductive Load with Negative Base Drive.

t (ps)

2

1

0,4

0,2 0.1

0,04

0,02

0.01

0 10 20 30 40 lc <A)

Inductive Load without Negative Base Drive.

SW ITCHIN G TIMES AT CO NSTAN T DRIVE Switching Times vs. Junction Temperature.

£ t7 SGS-THOMSON MCtmjSCTMMCS 6/7

(7)

SWITCH ING ON RESISTIVE LOAD

SW ITCH ING ON INDU CT IVE LOAD

Rc = 37,507

R1 = 2,20 Resistance non inductive

lc Ibi

= 40A

= - Ib2 = 4A dlBl R2 = 3,30 f

C = 60nF Vcci

VcCclamp

= 150V

= 200V

dt

VB = 6V

Ve = 25V dlB2

Lc =190nH dt

Di

> 40A/|as

Switching on resistive load tp = 20ns

8 < 1 %

Switc hing on inductive load tp = 50|iS

8< 1%

r ZT SGS-THOMSON

“ ■ /# MCBffiSUISTOOHSIC*

7/7

Cytaty

Powiązane dokumenty

The study of the Sicilian productive districts – and particularly the industrial districts – suggests that the regional district system expresses a lack of ca- pacity to

We analyze data on population and migration for urban and rural municipalities in seven metropolitan areas delimited by Gorzelak, Jałowiecki and Smetkowski (2009; Figure 1) from 1995

Two main factors are associated with the pathogenesis of itch in diabetes, namely skin xerosis and diabetic polyneu- ropathy.. It is still poorly defined how glycaemic control

The variables regarding disease severity, itch and quality of life could be analyzed only in the CU patients group.. The majority of the group (48%) suffered from itch

Świąd przewlekły sromu (trwający ponad 6 tyg.) to- warzyszy przede wszystkim różnym dermatozom mani- festującym się na skórze okolicy intymnej, tj.: łojotoko- wemu zapaleniu

There are many maintenance management concepts and improvement strategies like TPM (total productive maintenan- ce), RCM (reliability centered maintenance, RBI (risk based

43: Geomorphic map of the central portion of the Geleen fault in the Belgian Maas River valley, showing surface deposits (Paulissen, 1973; Beerten et al., 1998), the surface

In the Early Cretaceous the rate o f the oceanic crust form ation in the Caribbean area was probably reduced as a result of the change in the relative m otion between