• Nie Znaleziono Wyników

Simulation of stopping manoeuvre of ship in restricted waters

N/A
N/A
Protected

Academic year: 2021

Share "Simulation of stopping manoeuvre of ship in restricted waters"

Copied!
14
0
0

Pełen tekst

(1)

ARCH1EF

60 Zu IJ

*055$8

Reprinted from TRANSACTIONS OF

THE WEST-JAPAN SOCIETY OF

NAVAL ARCHITECTS No. 60 AUGUST 1980

Lab.

y. Scheepsbouwkund.

Technische Hogeschool

DeUt.

k

m rj

ji

Simulation of Stopping Manoeuvre of Ship in Restricted Waters

by Shosuke moue, Member

Katsuro Kijima, Member

Shinichiro Tanaka

Toyohiko Eto, Member

(2)

jJ.

r'

tiE*

5 ic < ¿ ' ,

&èLt?LIt,

oÏøjj

* **

*r (Lft

a

I (Ll#

C U 55 5 60

evr)

33

a L' 'a '

ìE

J

¡E IE 11:1

_**

IE W

Simulation of Stopping Manoeuvre of Ship in Restricted Waters

by Shosuke moue, Member

Katsuro Kijima, Member

Shinichiro Tanaka

Toyohiko Eto, Member

Summary

Stopping is a important ship manoeuver, particularly, for operation in crowd-ed waters and in restrictcrowd-ed waters such as harbor or canal from the point of view

of avoiding collision.

It is also necessary to know the characteristics of this manoeuvers because

the ship motion during stopping is quite complex.

In this paper, the shallow water and narrow water effects for stopping of a large tanker with a single screw are investgated about the stopping path, drift angle and heading aigle depended on time by the simulation study as the

tran-cient characters during stopping manoeuver. And the following remarks will be

concluded;

Stopping distance and stopping course deviation will be affected by the water depth, particularly in less values of water depth (H) and ship draft (d) ratio H/d=1. 5. and stopping distance and stopping deviation will be

shorter and longer respectively with decreasing water depth.

Stopping distance and stopping deviation will be also affected by the initial drift angle and initial turning angular velocity at the propeller reversing.

As the most important concluding remarks, it will be able to estimate the

critical values of advance coefficient by this present simulation for the stopp-ing without collision to the canal banks, because the ship will collide to canal bank before a stop in some conditions.

(3)

JQ).t5 <

c

tu

ut

t

,te

L±tb

,

lGo)

±ThrJoY

tlIo

.

-Lt SR 175'

tt-c

rLt, *

ti

, L

,-

l:Jz, fiIGQ)

t**o

Lft0 2.

)Q)ft

Fig. 2. 1(b) Coordinate Systems in

Fig. 2.1(a) l Canal

fi, V,

cos flsin fl.]+(m'+m) sin fl.' = X'

(m'+m',) #[si fl+cosfl.ì]+(m'+m) cos fl.r' = Y'

(2.1)

n'(.)2['Ç+ ç?']

= N'

L*

Fig. 2.1(b) Fig. 2.1(a) Q) OX i4iC'

rj

flkJ4Ø,

ø(2.1)Ø,

Lt

(2. 1)O)

to) è1t0

= X(fr, r', )+XP!-/ J2

J2 = Y(fi, r', )+YWJ2 (2.2) N' = N(fl, r', )+N,'/J2

±O) X,

è

LtGlt,

<ØML,

Ltfo

X,

tl

fi, r',

iØ*JØ«L 1

tt

r' r'

ØèLtØ

Ct.O

Fig. 2. I(a) Coordinate Systems

(4)

l-a)

Fig. 3.1-.Fig. 3.3 lcLC0

flO,

r'=O

n= -3e. 25..

20, -15, -19

(r. p.s.) 1i!

F=0. 118 7'L 4 %. 62.0%, 49.6%,

7.2%, 24.86è,

n=0 y Fig. 3.4 3.2. . .

-j - -1.0

rIO r.p.s. v--flrl5 r.p.s. r20 r.p.S. n 25 r. P.S. n30r.p.S. Iß=O,rO. rt0 Hid roe 0.002 y 35 -p004 0002-3.1.

lif;13 ø

Wj*;I

---

L,

(in) :2.500 B (m):0.500 d (in) : 0.180' 4 (kg) :188.0 Ch : 0.820 :1/55 -Table 1

t0

(H) ujJ( (d) Ø

H/d=6.0, 2.0, 1.5, 1.3 a)C1

1L

*r-V' H/d=2.O a)

i

7i L--0.002. -0.004 . . -. -0-006

Fig. 3. 1 Measured Results for Lateral

.Fig. 3.

Méásured Reults fòr Lateral

Force Induced by Propeller - Force Induced by Propeller

Tablè i articu1ars of Model Ship

-I-0 Propeller Dia. D Çm/m): 60.34 Propeller Pitch P (rn/rn): 36. 63 Number of blade 5 - -0.5 Hîdl.i -0.5 H/d 1 3 Vp 0.004 -0 Vp 0.0021 --- 0.002 - 0004.

(5)

L

G-

-

L

cJ*5,

15C0

ttO)

* -< 7'

è -

-4.1. -

y2)Ø

è

Lft0 ft (2.2) Yfl(fi), Nff(fi), Yp, J\p

l53«ft, Y,,Nr

: t

tLtø

i7 ThI

Fig. 4.1j

43

LC v, O J0

V4è<L,filCi

LtiJ

30-9Ò H/d=1. 3

JlA

'&

øht-c

èLt

è-sa

Fig. 3. 3 Mèàsúred Resülts for Yaw Moment

Induced byPrope11er 3.0 1.0 Hid1.3 H/d1.5 2.0 . -o.

r

50 ioo:__

Fig. 3.4 LáteralFórce and Moment

Acting on Ship

In0,r.0

H/d 20

(6)

5

0.5

10 20 30

t (sec)

Fig. 4. 1 SimulatiorL Results for Stopping of

Large Tanker in Deep Water

*Gbø '

" '

20 40 50 t (sec) fl(deg) lIds 13 V. 0.40mis n s-19.Or.p.s. J. s-0.349 Sr .2.Esec Experiment -- -Estimation

Fig. 4. 3 Simulation Results for Stopping of Large Tanker in Shallow Water

o 2L 3L ¿L SL 6L

Sm

20 40 50

s. t(sec)

Fig. 4. 2 Simulation Results for Stopping of Large Tanker in Shallow Water

10m lid .2-0 V. sO.37mls n s-22.3r.p.s. J. s-0.275 tr 2.5 sec Experiment -.--Estimation 15m

Fig. 4. 4 Calculation Results for Course

Deviation and Stopping Distance

FØU

t,

%(]Gi V0, n, fix, [J

F0 Xs, Y5 s

° Fig. 4.4

jJj- (X5/L) ¿±- (Y5/L)

Lt ii-t:.

X5/L

CIO)

DtL, D r

IEJIC

1juLt0 YS/L

7VÇ t

tClÁLt0

tQ

JL-CI

X5

u-o

t,

(-2-t,

t,=O

t,=O J0

Fig. 45 lCLtI

jj

o iL 2L 3L LL 5L SL o 5 Io O IL 2L 3L ¿L 5,L SL 00 10m 15m Sr IO.0 205.c

.--305.5 Hid V. 0.37m/s n =-30.3r.p.s. J. s-0.202 tr s3.Osec Sm Experiment Estimation

(7)

....-

-sIL

"

XsIL&YsI L

t

H/dc R/d2.O HId=1.5 H/dr 1.3 tr0sec

-.5

-0.4 -0.3 -0.2 -0.1

Fig. 4. 5 Calculation Results for Stopping

Distance and Course Deviation

H!dc»

-. - H/d2.0

H/d01.5 -j H/drl.3 t ro O sec \ s(deg) t t 50° -0.5 -0.4 -0.3 -0.2 -0.1

Fig. 4.6 Calculation Results for Heading Angle at Stopping 120° 90 60° 300

Jal ø't' X i<, Y5

J0! t: Fig. 4.6 L l ¡Jo! ø'J'

7JcIAD1Ø

ttL.O

(Po) (r0)

i-t Lt0

QJ

Fig. 4.7-4.10

Lt0

tL fi r0

Po, r0<t .a

X0 I< Y0

I

18JItO

Po Q

X,/L lcZ(<

4.2..

..

.. . 4.2. 1.

.'.

.

Fig. 411-414L0 ±iJLc Yfl(fi)

, fi

&'

Mikelis4

,

lLt

t

Y,

t

. , .

It*

j<t

H/d=2..0

ttO

fi

4l <LCO

J0=-0.1,

0.2,.

0.4.

(W/L) V

DZ(X/L)

±t

(.Y/B.)

(8)

Fig. 4.7 Effects of Initial.Drift Angle for

Stopping Distance and Course

Deviation in DeepWater -0.2 -0.1 o 0.1 0.2 0.2 0.1 o -0.1 -0.2 -05 -0.4 -0.3 -02 Xs!L&YSIL I HId=oe.r0.tr=0S!Çi t I H/d.ß.Q',tr0sec I XSIL,r. Xs/L&Vs/L 7f

Fig. 4.9 Effects of Initial Angular Velòcity for Stopping Dïstance and Course

éviation.in Deep Wter

i-,. ,- ,

., 39

Fig. 4. 8 Effects of Initial Drift Angle for

Stopping Distance and Course

Deviation in Shallow Water -.

Fig. 4. 10 Effects of Initial Angular Velocity fr Stopping Distance and Course Deviation in Shallow Water

(9)

2L IL

9 20 25 30 35

Fig. 4. 11 Simulation Results for Stopping of Large Tanker in Canal

(t)

UiQ)

Fig. 4.15m.r4.21 5

ø*,

, V, X/L, Y/B V' -c l

1, ø

,f

W/L 1iJ < ,j

li

IJ3I W/L jiJ

fJ

LtI

Jol

0

,J\

U-c,

OtLV'O c XO/L è Ye/B 'ä mt O (7j( tj)

otL-

gs Fig. 4.22

4.23 c5c

è

X5/L,ç3 l IJol

nLtV'.0

tJ0

LSè XS/L,

Y0/B, W/L

tti.0 W/L lV't

IJol k Jo! £U. Tim) 1310.20 V. 0209m!. n .-22r.n.. J.. - Dino ir. il S.0 E.p.nrn.ni -ßJ6 059) iS 20 25 30 35

Fig. 4. 13 Simulation Results for Stopping

of Large Tanker in Canal

9dn9)

.501

Vini)

Vim!.)

Fig. 4. 12 Simulation Results for Stopping of Large Tanker in Canal

V)3) 10 (deg) 5 iO 22 32 5 3L 5 6 25 20 25 30 35

Fig. 4. 14 Simulation Results for Stopping of Large Tanker in Canal

V.s 0.2mFs n -33.l r.p.s. J. s-0.10 H!dm2-0 v. 0.2 m/s n s-16-6r.p.s. J. s-0.20 H/d=2.0 DL 3L -Tim) 3L! ni) W/L sl-O W/L mO.8 W/LmO-6 W/LsO-4 310.2.2 WIL. i-O 9. .0.595ml. n. -lOip.. J.. - 0.322 VIO 0-0 WV.. 0.5 C. .3-200m?. J. E.p.rlm.nt EslimSi Ion 10 20 30 40

0-

50 t(sec) WIL5I.0 W/ L 30-8 WILsO-6 W/LsO.4 10 20 30 40 50

- t(sec)

Fig. 4. 15 Time History for Heading Angle in Stopping of Large Tanker

40 30 20 lo (deg) o 30 20

(10)

(de g) 30 20 10 (deg) 30 20 10 0.2 V.cos)) (mis) V. 0.20 mIs n .-11.1 r.p.s. J. .-0.30 HId 2.0 W/L 0.6 W/L 0.1. 10 20 30 ¿0 50

' t(sec)

V.. 0.20 mis n .- 8.3 r.p.s. J. - 0.40 H Id. 2 .0 10 20 30 40 50 60 '. ((sec)

Fig. 4. 16 Time History for Heading Angle in Stopping of Large Tanker

0 10 20 30 ¿0 50 t(sec) 0.1 10 L.0.6 W/L.O.8 W/L.1. W W/ W/L.0.8 W/ L 0.6 W/L.0.4 20 30 40 50 60 t (sec)

Fig. 4. 18 Time History for Speed Drop

0.2 V. sos S (mis) W/L_-1.0

I

W/L.0.8 0.1

Ø°) fol

t1tL0 W/L

ètIO

0

Lft4.0

Fig. 4.24'4.27

<0Q) J,

1.0 0.5

Fig. 4. 17 Time History for Speed Drop

X/L&V/B WI .0.6 W 1.0.4 - .4 IL..-W/L.0.8 W/L. 1.0 X/L& V/B V/B V. .0.20m15 n ...33.lr.p.5. J.. -0.10 HId .2-0 10 15 20 25 s. t(sec) V. .0.20m/s n .-16-6r.p.s. J. - 0-2 H/d .2.0 10 20 30 ¿0 50 W/L.1. V. .0-2 rs /s n ..33.lr.p.s. J..-0.10 H/d .2.0 30 40 50 w ((sec) W/L.1-0 WIL 0.8 W1L.0-6 V/B WIL.0.4 10 20 30 40 50 tCsec) V. 02mb n .-16-6 r.p.s. J. =-0.20 H/d.2.0

Fig. 4. 19 Course Deviation and Stopping Distance

41

(11)

X/L&Y/B Fig. 4.22 V. 020mb n .11.lr.p.S. J. fl-0.30 H/d 2 .0 -

-WIL.l.0

- - __Ye,L.0.6 - WIL.0.6 Vs/B

---WILO.4

00 O-2 O-3

Course Deviation and Stopping

Distance as Function of J0 in Canals OIL (WIl. 0 (WIl.

0.0

-/WIL.O.5 5_5 ìÌ1 w,L.o.4\J/ /L WiLYJI WIL.0. 0_J VU L.I. 5

Fig. 4.24 Effects of Canal Width for

Trajectory of Large Tanker

in J0O.2

W/L l.0 W/ L OB W/L= 0.6 o0 50 0 30 20 0.5 lo VIL V.0.2 rn/s n =-8. 3r.p.s. J -0.4 H/d= 2.0 (UIL ¶5 (WIL 0.8 C WI!. 0.0 V CWIL.0.4 10 20 30 40 50 60 0 10 20 30 40 50 60 -- t (sec) Fig. 4. 20 Course Deviation and Stopping

Distance

Fig. 4.21 Course Deviation and Stopping Distance

--- WlL.0.8 w,I_.0.0

Fig. 4.23 Heading Angle at Stopping of Large Tanker as Function of

J0 in Canals VOL.1.0 Z W/ L 1.0

/

W/L sOB W/L=0.6

01L

FIg. 4. 25 Effects of Canal Width for

Trajectory of Large Tanker

in J5=O.4

(12)

Y,'.

Fig. 4.26 Effects of J0 for Trajectory of Large Tanker in W/L=1. O 4.2.2.

Fig. 4.28 lcL't0

. ¿ (2.2) Çt2fjoJ Y(), N()

ØØ

ii Fig. 4.28

LtLJz5l

thLtiI 02t <

Lt10

Fig. 4. 29-4.33

ItO

0/B=0 Jo

IC

70/B 7<

t3 L 1 - Li tølfiJ l

L-r' < Y,

N

( bank suction force bank suction

mo-ment) ìJ

n

2ø*rJl&Lt

,9=O, r'=O L-c

30 00 30 '0

Fig. 4.28 Simulation Results for Stopping

of Large Tanker with Initial

Lateral Deviation in Canal

.L--

a:'

43

Fig. 4. 30 Trajectory of Large Tanker as Function of J0 for Initial Late-ral Deviation o0/B= 0.625 and

W/L=I.O

VIL

Fig. 4. 27 Effects ofJ0 for Trajectory of

Large Tanker in W/L=0.4

50 20 30 3.0

Fig. 4. 29 Effects of Initial Lateral

Devia-tion for Trajectory of Large

Tanker in 10= 0.3

V.

o-5 V/L

Fig. 4. 31 Trajectory of Large Tanker

as Function of

J for Initial

Lateral Deviation o70/B0. 625

and W/L=1.0 IO 00

OIL

'-o 30 '3 OIL 330M

::f:

05 VIL 2L O i(m) -- V. .0240mal 2. .-039 'L,8.3.25 - E,p.rlm.nI Estim.II.n VOn)

(13)

44

k6O

V/L

Fig: 4. 32 Trajectory, of Lafge Tanker

as Fucti6n f J0 for Initial

Lateràl Deviation o0/B=1.25 and W/L=1.O y ('io/B)

Lttl, ø*

ltøø J0

èo4I

*o

W/L=1. O Ajjj i W/4

]1&øt

tLtHøIQ fol

W/4 ø n-

Ì4Zf

t

<

Lò1,,

IJol k.3 1G

rt4thcA7

.

k l'Lt

]i V0

jJ4Ík n

(V0/n)

fli.l±

M,

(H) fl2J( (d) ø.H. Hid O)1C

7J

ttDlH/d<1.5Di«

, (

èirl<72,

i1:*

l<

Jlo

f n

ØFffiIEJ

t'0

±1t

< t. ¿JÇ <, 7j(r- 7D t ., l 'l ø

Lb17

-*

GlwjlCLt,

tQ.Iø

-jj

frø1th1Ejj- è

:'

Ut0

è Lt

GIE,

ìjj

, - FACÖM-'o VIL 1.0 20 30- '.0 VIL

FIg. 433 Trajectory of Lârge Tanker

as Function of J0 for Initial Lateral Deviation o0/B=l. 6

and W/L=1.O

(14)

SR 175

553

E:

$ICC"

124-, 1968

5E:

H--c (ø2,

ø3) 9*ìG

106 , 1960

N. E. Mikelis & W. G. Price: sT*o Dimensional Sway Added Mass Coefficient for Vèssels Manoeuvring in Restricted Waters" The Royal Institute of Naval Architects 1978

i:

131, 1972 L: B:

d:

V: fi:

r:

m,rn7: x,y 7/:

n:

II4

V0: n*Bï

D: 7a-1

J:mV/nD

J0: V0/nD

X,

'- pn2D4 Y'

'

-- pLd(nD)2

N'

N pL2d(nD)2 Q) ,

1 :'

45

Cytaty

Powiązane dokumenty

Included were original studies that assessed the effects and/or elements of footwear or footwear characteristics on aspects such as fit, comfort, foot health, foot pain, balance,

(...) Warunki konspiracji nie pozwalają na szeroką propagandę żywego słowa – tym więc ko- nieczniejsze staje się oddziaływanie za pomocą słowa pisanego 51. Drugim

[r]

gogicae Cracoviensis.. Но в Си- бирь попала лишь незначительная их часть. Именной указ «О наказании участвовавших в Польском мяте- же»,

A Method to Improve Resistance prediction in Shallow Water S hallow water effects on the three main components of ship resistance, i.e., the frictional resistance, the viscous

[r]

The results were then used to feed a Gradient Enhanced Gaussian Process Regression algorithm for which a non-stationary Kernel method based on local variation estimates using

T eodorow icz-F Iellm an: „S zw edzkie przekłady Pana Tadeusza”. Stanisław em Falkow skim