• Nie Znaleziono Wyników

Simulation of turning circle by CFD: Analysis of different propeller models and their effect of manoeuvring prediction

N/A
N/A
Protected

Academic year: 2021

Share "Simulation of turning circle by CFD: Analysis of different propeller models and their effect of manoeuvring prediction"

Copied!
10
0
0

Pełen tekst

(1)

Applied Ocean Research 39 (2012) 1-10

C o n t e n t s l i s t s a v a i l a b l e at S c i V e r s e S c i e n c e D i r e c t

Applied Ocean Research

j o u r n a l h o m e p a g e : w w w . e l s e v i e r , c o m / I o c a t e / a p o r

Simulation of turning circle by CFD: Analysis of different propeller models and their

effect on manoeuvring prediction

Riccardo Broglia^'", Giulio Dubbioso^ Danilo Du^ante^ Andrea Di Mascio^

'Maritime Researcli Centre, CNR-INSEAN, 00128 Rome. Italy

''Istituto per le Applicazioni del Calcolo, CNR-IAC, 00I6I Rome. Italy

A R T I C L E I N F O A B S T R A C T

Article history: Received 27 January 2012

Received in revised form 11 September 2012 Accepted 12 September 2012

Keywords:

Computational methods Marine engineering Twin screw ship Manoeuvring Propeller loads

Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. F r o m this point of v i e w , actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are c o m m o n l y used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical p h e n o m e n a w h i c h characterise the operating propeller in off-design condition, namely the in-plane loads that a r e of paramount importance w h e n considering n o n - s t a n d a r d or u n u s u a l p r o p e l l e r / r u d d e r arrangements. In order to e m p h a s i z e the importance of these c o m p o n e n t s (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle m a n o e u v r e of a self-propelled fully appended t w i n s c r e w tanker-like ship model w i t h a single rudder is simulated by the unsteady RANS solver xnavis developed at C N R - I N S E A N ; several propeller models able to include the effect of the strong oblique flow c o m p o n e n t encountered d uring a m a n o e u v r e have been considered and compared. It is e m p h a s i z e d that, despite these models account for very complex and f u n d a m e n t a l physical effects, w h i c h w o u l d be lost by a traditional actuator disk approach, the increase in computational resources is a l m o s t negligible. T h e accuracy of these models is assessed by comparison w i t h ex per ime nt al data from free r u n n i n g tests. The m a i n features of the flow field, w i t h particular attention to the vortical structures detached from the hull are presented as w e l l .

® 2012 Elsevier Ltd. A l l rights reserved.

1. Introduction

The n u m e r i c a l p r e d i c t i o n o f the t r a j e c t o r y f o l l o w e d b y a self-p r o self-p e l l e d h u l l i n free m o t i o n e x h i b i t s all t h e c o m self-p u t a t i o n a l issues t h a t can be m e t i n naval h y d r o d y n a m i c s ; t h e m a i n d i f f i c u l t i e s arise i n the accurate evaluation o f the h y d r o d y n a m i c forces and m o m e n t s on the appendages, w h i c h are o f p a r a m o u n t i m p o r t a n c e w h e n assessing the d y n a m i c response of the vessels and its t r a j e c t o r y . W i t h regards to the m a t h e m a t i c a l model, the equations o f r i g i d body m o t i o n m u s t be c o u p l e d w i t h the unsteady Reynolds averaged Navier-Stokes (uRANS) equations and m a n y n u m e r i c a l aspects m u s t be c a r e f u l l y considered. F r o m the discretization p o i n t o f v i e w , at least i n the context o f uRANS solvers f o r structured grids (like the one used here), a d y n a m i c over-l a p p i n g g r i d m e t h o d m u s t be i m p over-l e m e n t e d i n order to over-let the ship m o v e i n a f i x e d b a c k g r o u n d and a l l o w the r u d d e r to m o v e w i t h re-spect to the h u l l . Moreover, due to m e m o r y a n d CPU requirements, i t w o u l d be d i f f i c u l t to o b t a i n results accurate enough f o r practical purposes w i t h a serial code, and t h e r e f o r e p a r a l l e l i z a t i o n m u s t be considered.

H o w e v e r , i n spite of all these d i f f i c u l t i e s , s i m u l a t i o n s p e r f o r m e d

• Corresponding author. Tel.; +39 0650299297; fax: +39 065070519. E-mail address: riccardo.broglia@cnr.it (R. Broglia).

by means o f the n u m e r i c a l s o l u t i o n o f the uRANS equations can be extensively used f o r the analysis o f b o t h static a n d d y n a m i c m a n o e u -vres, as the latest w o r k s h o p s and i n t e r n a t i o n a l conferences (see f o r example [ 15-17,20,21 j ) ha ve d e m o n s t r a t e d .

In this w o r k , the p r e d i c t i o n o f the free t u r n i n g m a n o e u v r e o f a t a n k e r - l i k e ship, already considered i n a recent s t u d y [ 7 ] , has been f u r t h e r analysed to gain f u r t h e r i n s i g h t i n t o some aspects o f p r o p e l l e r m o d e l l i n g w h e n o p e r a t i n g under strong o b l i q u e flows. The test case considered is p a r d c u l a r l y challenging, since the unusual p r o p e l l e r / r u d d e r c o n f i g u r a t i o n (i.e. the t w i n screw vessel w i t h a single r u d d e r ) provides a poor s t a b i l i t y qualities o f the ship. In the previous w o r k , satisfactory results have been obtained i n t e r m s o f t r a j e c t o r y , d r i f t a n d speed d r o p i n the stabilized phase o f the t u r n i n g o n l y w i t h the use o f a "suitable" lateral force acting i n the propeller plane; t h i s approach was necessary because the simple actuator disk m o d e l used (the H o u g h a n d O r d w a y m o d e l [ 9 ] ) i n its o r i g i n a l version provides o n l y t h r u s t a n d t o r q u e .

As a m a t t e r o f fact, detailed measurements o f h y d r o d y n a m i c loads a n d flow features | 1 ) f o r a t w i n - s c r e w f r i g a t e - t y p e vessel d u r i n g a steady t u r n have s h o w n that the side forces g e n e r a t e d b y the p r o -peller can be r e l e v a n t (15-20% o f the t o t a l lateral f o r c e ) and t h e r e f o r e t h e i r c o n t r i b u t i o n to the t o t a l h y d r o d y n a m i c loads a c t i n g o n the h u l l

0141-1187/$ - see front matter ® 2012 Elsevier Ltd. All rights resereed. http://dx.doi.Org/10.1016/j.apor.2012.09.001

(2)

R. Brogliaet al./Applied Ocean Research 39 (2012) 1-10

and, consequendy, to its m a n o e u v r i n g behaviour is i m p o r t a n t . I t is ob-vious t h a t the best w a y to p r e d i c t the e x t r e m e l y c o m p l i c a t e d physical phenomena i n the p r o p e l l e r r e g i o n that are responsible f o r the lateral forces (and, i n general, f o r the c o m p l e t e system o f forces and m o -ments acdng o n the p r o p e l l e r disk) w o u l d be achieved by the d i r e c t c o m p u t a d o n o f the r o t a t i n g propellers, b u t the increase i n c o m p u t a -tional resources w o u l d be r a t h e r large. Therefore, w h e n the details of the f l o w are n o t r e q u i r e d , a c o n v e n i e n t choice m i g h t be the i n c l u -sion o f s i m p l i f i e d s e m i - e m p i r i c a l models w h i c h do n o t s i g n i f i c a n t l y increase the o v e r a l l c o m p l e x i t y and resource d e m a n d .

In this w o r k , several p r o p e l l e r models are investigated, w i t h par-ticular a t t e n t i o n t o the side forces they produce a n d t h e i r e f f e c t o n the m a n o e u v r i n g qualities o f the ship. A l l the models are based o n the actuator disk concept; therefore, the m o m e n t u m transferred i n t o the f l u i d b y the p r o p e l l e r is t a k e n i n t o account by means o f a b o d y -force field d i s t r i b u t e d w i t h i n a disk o f finite thickness. T w o p r o p e l l e r models are considered; the first one is based o n the classical H o u g h and O r d w a y m o d e l [ 9 ] ; the second is a m o d e l based o n the blade ele-m e n t t h e o r y (see [10,13,14]). I n the f o r ele-m e r a lateral force is evaluated by means o f t w o s e m i - e m p i r i c a l models, i.e. the m o d e l developed by Ribner [15] and the one already considered i n a previous w o r k [ 7 ] .

d y n a m i c b o u n d a r y conditions read;

p = Xijmnj + ~ + ~

1 W e ^ (2)

T i j n , t i = 0 T y n , t j = 0

w h e r e Ty is the stress tensor, K is the average curvature, W e =

[pUl^L/a)^'^ is the W e b e r n u m b e r ( o b e i n g the surface tension

c o e f f i c i e n t ) , whereas n, t ' and are the surface n o r m a l and t w o t a n g e n t i a l u n i t vectors, respectively.

The actual p o s i t i o n o f the free surface F(x,y,z,f) = 0 is c o m p u t e d f r o m the k i n e m a t i c c o n d i t i o n ;

m > ^ ^ , (4)

I n i t i a l c o n d i t i o n s ( i n d i c a t e d w i t h a stroke) have to be specified f o r the v e l o c i t y field and f o r the free surface c o n f i g u r a t i o n ;

u , ( x , y , z , 0 ) = W ( x . y . z ) , 1 = 1 , 2 , 3

F ( x , y , z , 0 ) = f ( x , y , z ) '

2. M a t h e m a t i c a l m o d e l

The g o v e r n i n g equations f o r the unsteady m o t i o n o f an i n c o m -pressible viscous fluid can be w r i t t e n i n i n t e g r a l f o r m as

S, U 1105 = 0

- / \idV + é> ( F c - F D ) n d S = 0

o t 7 V J S(V)

w h e r e V i s a c o n t r o l v o l u m e , S( its b o u n d a r y and n is the o u t w a r d u n i t n o r m a l . In the general f o r m u l a t i o n , the equations are w r i t t e n i n an i n e r t i a l f r a m e o f reference, i n o r d e r to take i n t o account the possibility o f g r i d m o t i o n . The equations are made n o n - d i m e n s i o n a l w i t h reference v e l o c i t y Uoc, l e n g t h L and the w a t e r d e n s i t y p.

I n Eq. (1), Fc and FD represent i n v i s c i d ( a d v e c t i o n and pressure) and d i f f u s i v e fluxes, respectively;

Fc = pl + ( U - V ) U

FD = ( j ^ + V t ) ( V U + V U ^ ) (2)

In the previous equation, p = P + z/Fr ^ is the n o n - d i m e n s i o n a l h y d r o d y n a m i c pressure (i.e. t h e d i f f e r e n c e b e t w e e n the t o t a l n o n -d i m e n s i o n a l pressure P an-d the h y -d r o s t a t i c pressure - z / F r ^, Fr =

Uoo/igiy^^ being the Froude n u m b e r and L is the reference l e n g t h ( i n

the present case is the l e n g t h b e t w e e n p e r p e n d i c u l a r ) ; m o r e o v e r g is the acceleration o f g r a v i t y p a r a l l e l to the v e r t i c a l axis z, positive u p w a r d ) , I is the i d e n t i t y tensor, V is the local v e l o c i t y o f the c o n t r o l v o l u m e boundary, Re = U^L/ v is the Reynolds n u m b e r , v is the k i n e m a t i c viscosity, and Vt is t h e n o n - d i m e n s i o n a l t u r b u l e n t viscosity, calculated by means o f a p r o p e r t u r b u l e n c e m o d e l . I n w h a t f o l l o w s , the Cartesian c o m p o n e n t s o f t h e v e l o c i t y vector w i l l be denoted b y u,-w i t h i n d e x n o t a t i o n or by u, v, u,-w .

The p r o b l e m is closed by e n f o r c i n g a p p r o p r i a t e c o n d i t i o n s at p h y s -ical and c o m p u t a t i o n a l boundaries. O n solid walls, the relative veloc-i t y veloc-is set at zero (whereas no c o n d veloc-i t veloc-i o n o n the pressure veloc-is r e q u veloc-i r e d ) ; at the ( f i c t i t i o u s ) i n f l o w b o u n d a r y , v e l o c i t y is set to the u n d i s t u r b e d flow value and pressure is e x t r a p o l a t e d f r o m inside; o n the contrary, pressure is set to zero at the o u t f l o w , w h e r e a s v e l o c i t y is extrapolated f r o m i n n e r points.

A t the free surface, w h o s e l o c a t i o n is one o f the u n k n o w n s o f the p r o b l e m , the d y n a m i c b o u n d a r y c o n d i t i o n requires c o n t i n u i t y o f stresses across the surface; i f t h e presence o f the air is neglected, the

3. N u m e r i c a l method

The n u m e r i c a l s o l u t i o n o f the g o v e r n i n g equations ( 1 ) is c o m -p u t e d b y means o f the solver x^avis, w h i c h is a general -pur-pose s i m u l a t i o n code developed at CNRINSEAN; the code yields the n u -m e r i c a l s o l u t i o n o f the unsteady Reynolds averaged Navier-Stokes (uRANS) equations f o r unsteady h i g h Reynolds n u m b e r ( t u r b u l e n t ) f r e e surface flows a r o u n d c o m p l e x geometries. The m a i n features o f t h e n u m e r i c a l a l g o r i t h m are b r i e f l y s u m m a r i z e d here f o r the sake o f b r e v i t y ; the interested reader is r e f e r r e d to D i Mascio et al. [ 3 - 6 ] , and Broglia et al. [ 2 ] f o r details.

The solver is based o n a cell-centred finite v o l u m e f o r m u l a t i o n . I n the code, the spatial d i s c r e t i z a t i o n can be chosen f r o m a l i b r a r y o f a p p r o x i m a t i o n schemes; i n the present w o r k , a t h i r d o r d e r u p w i n d scheme was used, whereas the d i f f u s i v e terms are discretized w i t h a second order centred scheme. The time i n t e g r a t i o n is made b y a f u l l y i m p l i c i t three points b a c k w a r d second order scheme and the s o l u -tion at each rime step is c o m p u t e d by a p s e u d o - t i m e i t e r a t i o n t h a t e x p l o i t s the Euler i m p l i c i t scheme w i t h a p p r o x i m a t e f a c t o r i z a t i o n , local p s e u d o - t i m e step and m u l t i - g r i d [8] f o r convergence acceler-a t i o n . T u r b u l e n t stresses acceler-are tacceler-aken i n t o acceler-account by the Boussinesq hypothesis; several t u r b u l e n c e models ( b o t h algebraic and d i f f e r e n -t i a l ) are i m p l e m e n -t e d . I n -the presen-t c o m p u -t a -t i o n s -the o n e - e q u a -t i o n m o d e l o r i g i n a l l y i n t r o d u c e d by Spalart and A l l m a r a s [ 1 9 ] has been used. Free surface effects are taken i n t o account by a single-phase level-set a l g o r i t h m [ 4 ] . Complex geometries a n d m u l t i p l e bodies i n relative m o t i o n are h a n d l e d by a d y n a m i c o v e r i a p p i n g g r i d approach [ 6 ] . H i g h p e r f o r m a n c e c o m p u t i n g is achieved b y an e f f i c i e n t shared a n d d i s t r i b u t e d m e m o r y p a r a l l e l i z a t i o n [ 2 ] .

3 . Ï . Propeller models

I n m a n y m a r i n e CFD simulations, the presence o f the p r o p e l l e r is t a k e n i n t o account by models based o n the a c t u a t o r d i s k concept, a c c o r d i n g to w h i c h a field o f body forces are d i s t r i b u t e d w i t h i n a disk o f finite thickness; d i s t r i b u t i o n s o f b o t h axial and t a n g e n t i a l b o d y forces are used i n order to simulate t h e acceleration a n d t h e increase i n s w i r l that the flow undergoes w h e n passing t h r o u g h the p r o p e l l e r . These force fields m i m i c the action o f the blades o n the flow fields a n d are o b t a i n e d b y blade loads averaging i n b o t h time a n d space. T i m e averages are taken over one p e r i o d o f r e v o l u t i o n , w h e r e a s space averages are o b t a i n e d b y d i s t r i b u t i n g blade loads i n c i r c u m f e r e n t i a l d i r e c t i o n over the w h o l e p r o p e l l e r disk.

(3)

R. Broglia et al./Applied Ocean Research 39 (2012) 1-10 3

Body forces depend o n the actual v e l o c i t y field, w h i c h i n t u r n de-pends on the action o f the blades; therefore any realistic m o d e l s h o u l d take i n t o account t h e i r m u t u a l i n t e r a c t i o n . Moreover, due to t h e n o n -l i n e a r i t y o f this i n t e r a c t i o n , an iterative procedure is r e q u i r e d . T w o m o d e l s are here considered; a m o d e l based o n the s i m p l e H o u g h a n d O r d w a y approach [9] and a m o d e l based o n the blade e l e m e n t m o m e n t u m t h e o r y (BEMT) [ 1 0 ] . The first one, i n its o r i g i n a l v e r s i o n , does n o t take i n t o account the h u l l - p r o p e l l e r i n t e r a c d o n v e l o c i t y ; i.e. i t considers a p r o p e l l e r w o r k i n g i n open w a t e r c o n d i d o n s ; as a consequence, o b l i q u e flow effects are also neglected. In this w o r k t h e o r i g i n a l m o d e l was m o d i f i e d i n order to take i n t o account b o t h the ax-ial f l o w r e d u c t i o n at the p r o p e l l e r disk and the lateral force g e n e r a t e d by an o b l i q u e i n f l o w ; t w o d i f f e r e n t s e m i - e m p i r i c a l m o d e l s f o r t h e side force are tested and b o t h w i l l be denoted as the m o d i f i e d H o u g h and O r d w a y models. The c o u p l i n g a l g o r i t h m b e t w e e n the p r o p e l l e r m o d e l a n d the uRANS solver is sketched in Fig. 3. In the same figure the flowcharts o f b o t h the m o d i f i e d Hough and O r d w a y ( w i t h the i n -c l u s i o n o f the Ribner m o d e l f o r the in-plane load e s t i m a t i o n ) and t h e BEMT models, described i n the f o l l o w i n g sections, are also sketched.

3.1.1. Modified Hough and Ordway models

I n these models,.the p r o p e l l e r l o a d i n g is c o m p u t e d a c c o r d i n g to the idea suggested b y H o u g h and O r d w a y [ 9 ] : g i v e n the advance, t h r u s t and t o r q u e coefficients (ƒ, K 7 , /Cq i n the f o l l o w i n g ) , the a x i a l , r a d i a l and t a n g e n t i a l force d i s t r i b u t i o n s are c o m p u t e d u n d e r the as-s u m p t i o n o f an o p t i m a l d i as-s t r i b u t i o n f o r the c i r c u l a t i o n . The o r i g i n a l m o d e l w a s m o d i f i e d to take i n t o account b o t h the axial flow r e d u c t i o n at the p r o p e l l e r disk and the side force developed b y the p r o p e l l e r . A x i a l flow r e d u c t i o n is accounted f o r by c o m p u t i n g , at each time step, an e s t i m a t i o n o f the advance c o e f f i c i e n t , i n the hypothesis o f c o n s t a n t speed o f t h e r e v o l u t i o n and by u s i n g the instantaneous average axial v e l o c i t y at the propeller d i s k i n f l o w section. Then, n e w values o f Kji^) and K q ( / ) are c o m p u t e d f r o m the propeller characteristic curves.

Lateral forces caused b y n o n a x i a l s y m m e t r y o f the i n f l o w is i n -stead m o d e l l e d by means o f t w o s i m p l i f i e d models; i n b o t h cases the lateral force is considered to be p r o p o r t i o n a l to a proper d r i f t angle. I n the first m o d e l ( r e f e r r e d t o as the m o d i f i e d ''heurxstxC H o u g h a n d O r -d w a y m o -d e l ) , alrea-dy a-dopte-d i n a previous stu-dy [7], the si-de force is e s t i m a t e d to be p r o p o r t i o n a l to the t h r u s t T a n d to the instantaneous angle b e t w e e n the p r o p e l l e r axis e a n d the ship v e l o c i t y Va, i.e.

Yp = Q; r sin ( ^ ) w i t h /3 = arccos (6)

a was chosen equal to 1/3 o n the basis o f e x p e r i m e n t a l obser-vations [ 7 ] . The side force is supposed to lie i n the plane n o r m a l t o e X Va w h e n the t w o vectors are n o t parallel, or i n the h o r i z o n t a l plane o t h e r w i s e (see Fig. 1). It has to be n o t i c e d that, w h e n the l a t e r a l force c o n t r i b u t i o n is e s t i m a t e d b y (6), differences b e t w e e n the lateral forces o f t h e external and the i n t e r n a l propellers are o n l y due to d i f -ferences i n the axial c o m p o n e n t s o f the i n f l o w via the t h r u s t T, t h e lateral c o m p o n e n t b e i n g neglected i n the c o m p u t a t i o n o f the advance c o e f f i c i e n t ] .

I n order to capture the effects o f the i n f l o w lateral c o m p o n e n t and o b t a i n a m o d e l m o r e consistent w i t h respect to the flow physics i n v o l v e d , the s e m i e m p i r i c a l m e t h o d o f Ribner [15] has been c o n -sidered as a plausible a l t e r n a t i v e to the previous one. A l t h o u g h t h e Ribner's m o d e l is v e r y p o p u l a r f o r the e v a l u a t i o n o f s t a b i l i t y q u a l i t i e s i n aeronautics, its a p p l i c a t i o n to m a r i n e propeller is n o t d o c u m e n t e d to the authors' k n o w l e d g e . The m e t h o d was developed o n the basis o f the m a i n flow characteristics a r o u n d the propeller i n o b l i q u e flow, and t h e r e f o r e is s t r o n g l y related to the loads acting i n the p r o p e l l e r plane and provides a reliable e s t i m a t i o n o f the propeller lateral f o r c e on the basis o f theoretical considerations.

Fig. 1 . Modified Hough and Ordway model: side force direction.

W h e n the propeller w o r k s w i t h y a w angle w i t h respect to the i n -c o m i n g flow, i t a-c-celerates the flow b e h i n d the disk, t h e r e f o r e redu-c- reduc-ing the angle o f attack w i t h respect to the shaft. This results i n a lateral m o m e n t u m exerted on the flow by the propeller, and consequently, the propeller experiences a lateral force. This f a c t is accounted f o r i n the Ribner's t h e o r y by means o f an h y b r i d blade e l e m e n t approach (for the e s t i m a t i o n o f the loads a c t i n g o n the p r o p e l l e r blades) and an actuator disk approach ( f o r the e v a l u a t i o n o f the e f f e c t i v e angle o f incidence due t o the p r o p e l l e r i n d u c t i o n e f f e c t ) . In the f o l l o w i n g o n l y the core o f the m o d e l a n d its i n c l u s i o n i n the n u m e r i c a l solver are presented; the interested reader is r e f e r r e d to [10] f o r the details o f its d e r i v a t i o n .

A propeller m o v i n g i n the h o r i z o n t a l plane, at incidence w i t h re-spect to the flow (the t r e a t m e n t is analogous i n the v e r t i c a l plane), experiences a lateral force ( i n the same d i r e c t i o n o f t h e i n p l a n e c o m -p o n e n t o f v e l o c i t y ) d e f i n e d b y the r e l a t i o n :

^PROP = CYPROP^ ^ C YPROP-VPROP (7)

w h e r e CYPROP is the h y d r o d y n a m i c d e r i v a t i v e o f the lateral force for the propeller, fi is the local angle o f attack o f the flow w i t h respect to t h e propeller disk, w h e r e a s VPROP and V are the lateral and the t o t a l speed at t h e p r o p e l l e r disk. It has to be h i g h l i g h t e d t h a t the i n f l o w angle is evaluated b y averaging the v e l o c i t y c o m p o n e n t s o f the fluid over the propeller disk; moreover, the velocities i n the previous r e l a t i o n are r e f e r r e d to the n o m i n a l c o n d i t i o n s , i.e. p r o p e l l e r i n d u c t i o n is n o t considered, its e f f e c t b e i n g i n c l u d e d i n CYPROP by the f o l l o w i n g r e l a t i o n ;

, , 3 aCt ^ F (a)

(8)

w h e r e Z is the n u m b e r o f blades,/4SIDE is the lateral blade p r o j e c t e d area, iJCt/ao; is t h e sectional l i f t c o e f f i c i e n t s , d e r i v e d f r o m t h i n a i r f o i l t h e o r y and F(a) is the p r o p e l l e r load factor, d e f i n e d as

F ( a ) :

(1 + a ) [ ( l -ha) + ( l ^ 2 a f

1 + ( 1 + 2 0 ) (9)

w h e r e a is the i n d u c t i o n factor. I t is to be n o t e d t h a t the lateral force is related to the propeller g e o m e t r y ( l a t e r a l p r o j e c t e d area); f r o m this p o i n t o f v i e w , the p r o p e l l e r can be considered as an a d d i t i o n a l fin w h o s e c o n t r i b u t i o n is analogous to those p r o v i d e d b y a r u d d e r o r a central skeg. Correction factors ka a n d ks are i n t r o d u c e d i n order to account f o r the n o n - u n i f o r m i t y o f the load over the p r o p e l l e r disk i n d u c e d by the s l i p s t r e a m a n d the presence o f the p r o p e l l e r h u b [18], respectively.

(4)

R. Broglia et al./Applied Ocean Research 39 (2012) 1-10

This m o d e l f o r the side force has been added to the m o d i f i e d H o u g h and O r d w a y m o d e l . In pracdce, the o n l y t e r m to be evaluated at every d m e step is the i n d u c t i o n factor a and the r e s u l t a n t l a t e r a l speed at the p r o p e l l e r disk; i n p a r t i c u l a r :

• the i n d u c t i o n f a c t o r a is easily d e t e r m i n e d f r o m m o m e n t u m c o n -s i d e r a t i o n once the in-stantaneou-s t h r u -s t c o e f f i c i e n t Kj ha-s been d e t e r m i n e d ;

• the r e s u l t a n t lateral speed is evaluated b y averaging the local l a t -eral speed over the disk; moreover, i n o r d e r to take i n t o account the n o m i n a l w a k e , the m o m e n t u m t h e o r y is also considered i n o r d e r to separate the c o n t r i b u t i o n o f s w i r l - i n d u c e d effect.

The a l g o r i t h m is represented by the flowchart d e p i c t e d i n Fig. 3. I t s h o u l d be e m p h a s i z e d that the a d d i t i o n o f the side force m o d e l does n o t increase the c o m p u t a t i o n a l b u r d e n ; this makes the h y b r i d H o u g h and O r d w a y / R i b n e r m o d e l v e r y attractive f o r those p r o b l e m s w h e r e the details o f the flow field a r o u n d the p r o p e l l e r are n o t r e q u i r e d , b u t r a t h e r o n l y the m a i n effects o f the p r o p e l l e r o n the flow field are r e l e v a n t f o r the s i m u l a t i o n . Ship m a n o e u v r i n g is a t y p i c a l f r a m e w o r k , the key issue b e i n g the correct e s t i m a t i o n o f forces and m o m e n t s o n the h u l l , w h o s e m a g n i t u d e has effects o f p a r a m o u n t i m p o r t a n c e f o r t r a j e c t o r y p r e d i c t i o n s .

3.1.2. Blade element momentum theory (BEMT) model

In t h e Blade e l e m e n t m o m e n t u m t h e o r y (BEMT) the p r o p e l l e r is m o d e l l e d as a series o f i n d e p e n d e n t t w o - d i m e n s i o n a l a i r f o i l s ; l i f t and d r a g a c t i n g o n the generic section are easily evaluated once the t w o -d i m e n s i o n a l h y -d r o -d y n a m i c properties o f t h e p r o f i l e are k n o w n ( i n t e r m s o f Q a n d Co) o n the w h o l e range o f incidence angles e x p e r i -enced b y the section d u r i n g a c o m p l e t e blade r o t a t i o n . Usually, w h e n the p r o p e l l e r is o p e r a t i n g d u r i n g a manoeuvre, the local angle o f i n -cidence can be large and stall ( p a r t i c u l a r i y at m o d e l scale) a n d / o r c a v i t a t i o n can occur, a f f e c t i n g the t o t a l load d e v e l o p e d b y the blade. Nevertheless, i f the h y d r o d y n a m i c characteristics o f the section are k n o w n f o r a r e l a t i v e l y broad range o f angles o f incidence, these effects can be reasonably taken i n t o account and m o d e l l e d and this m o d e l is an a t t r a c t i v e a l t e r n a t i v e f o r the purpose o f analysing p r o p e l l e r be-h a v i o u r o p e r a t i n g i n oblique flow.

This m o d e l has already been considered f o r n u m e r i c a l s i m u l a t i o n s of u n m a n n e d u n d e r w a t e r vehicle [13] and o s c i l l a t i n g captive m o d e l test o f a container m o d e l [ 1 4 | , y i e l d i n g p r o m i s i n g results.

In t h e present w o r k , the m o d i f i e d BEMT t h e o r y described i n d e t a i l in [ 1 0 ] has been i m p l e m e n t e d i n the Finite V o l u m e solver x n a W s . The m a i n features o f the t h e o r y are s u m m a r i z e d i n the f o l l o w i n g . The flowchart o f the a l g o r i t h m is r e p o r t e d i n Fig. 3.

A p r o p e l l e r advancing i n o b l i q u e flow at an angle ap is schemat-ically represented i n Fig. 2. Each p r o p e l l e r blade section experiences a flow v a r y i n g p e r i o d i c a l l y b o t h i n m a g n i t u d e and angle o f attack d u r i n g a r e v o l u t i o n ; l i f t and drag on each section can be w r i t t e n as

. 2 d C t ,

dL=0.5pV,'c^ab

dD = 0.5pV^c ( C D O + Com + C D 2 « Ö )

(10)

(11)

w h e r e p is the fluid density, c is the p r o f i l e c h o r d a n d ai, is the e f f e c t i v e sectional angle o f attack (Fig. 2 ) ; h y d r o d y n a m i c l i f t and d r a g c o e f f i c i e n t s are d e t e r m i n e d on the basis o f p r o f i l e g e o m e t r y .

In o r d e r to evaluate ( 1 0 ) and (11), the e f f e c t i v e angle o f attack ( a n d t h e r e f o r e the s e l f - i n d u c e d flow) m u s t be c o m p u t e d ; i n particular, i t can be expressed as (see Fig. 2 ) :

Off, = p - I (12)

Section A - A

Fig. 2. Propeller in oblique flow (from 112]).

w h e r e p is the zero l i f t l i n e angle, <p is the n o m i n a l i n f l o w a n -gle (i.e. w i t h o u t c o n s i d e r i n g i n d u c t i o n velocities) and e,- is the self-i n d u c e d angle o f attack. The e f f e c t self-i v e sectself-ional blade velocself-itself-ies ac-c o u n t f o r the i n d u ac-c t i o n effeac-cts a n d t h e i r expressions are

Vaxial = cos Oïp + Vvi

Vtan =ClrVx sin cZp sin Ö

-(13)

(14)

for the axial and the t a n g e n t i a l c o m p o n e n t s , respectively. In the previous relations, i2 is the angular velocity, r is the r a d i a l p o s i t i o n o f the section, 9 is the c i r c u m f e r e n t i a l p o s i t i o n and finally Vxi and V^i are the axial and t a n g e n t i a l c o m p o n e n t s o f t h e p r o p e l l e r w a k e i n d u c e d flow. These i n d u c e d v e l o c i t y c o m p o n e n t s can be d e t e r m i n e d once the s e l f - i n d u c e d angle o f attack is c o m p u t e d ; i n particular, o w i n g to the Betz c o n d i t i o n ( w h i c h states a r e l a t i o n b e t w e e n sectional c i r c u l a t i o n r and i n d u c e d t a n g e n t i a l speed V^, ):

TZ=Anr¥V0i

w h e r e F i s the Prandtl's tip loss factor:

F = c o s " ' e x p Z ( l 2 sin ((/), ' o r j

(15)

(16)

Z b e i n g the n u m b e r o f p r o p e l l e r blades and (pQj is t h e g e o m e t r i c p i t c h angle o f the blade at tip. F r o m g e o m e t r i c a l relations b e t w e e n sectional velocities r e p o r t e d i n Fig. 2, (15) can be rearranged as

Z c dCj

16r da

( P - c p - S i ) =

F t a n ( e i ) s i n ( 0 + Ê | ) ( 1 7 )

Once this n o n l i n e a r e q u a t i o n is solved i n t e r m o f e, ( b y an i t -erative technique), the e f f e c t i v e sectional i n f l o w is d e t e r m i n e d and loads can be evaluated. This procedure is repeated f o r each r a d i a l and c i r c u m f e r e n t i a l positions.

Finally, i n order to o b t a i n sectional t h r u s t (dT) and t o r q u e (dFp), sectional l i f t ( 1 0 ) a n d d r a g (11) are p r o j e c t e d i n the l o n g i t u d i n a l and c i r c u m f e r e n t i a l d i r e c t i o n 0 ; t o t a l t h r u s t and t o r q u e are calculated b y i n t e g r a t i n g sectional loads along the blade span and a v e r a g i n g over a

(5)

R. Brogliaet al./Applied Ocean Researcli 39(2012) 1-10 5

I n i l i j I ComiltiiHis

\

I'lvpJiicriiHHlcI

C.'ojiiputaiiou of iisnJv ^(^r£L•^;. liJJilioli or}.mjn,'o i c n i i ^ in (Itc

linplici! (irDc inri-riidiOiJ K A N ' S cijuuiioii^

OuiljiiiljlKMl dl' liydftHljnütiiic fofi^is uiiJ

l:iul ()l"?,iiii;!l.4lii!ii

Brrcclive wilkc estinialion

Eslrmatioii o f Kj(J) KQ(J)

Estimation o f liuluced factor (fl)

Esliiiiation or)n-j)laiie forces (RIBNER model) Estimation o f induced velocily: V!^=0 Estimation o f nominal wake as V'-Vi" B E M T mode! Iterative computation o f induced angle Compulation o f t h e induced velocity V,"

Open water curves

Propeller geometry: c(r), P(r)/D, 7. Rate o f revolution Blade section parameter:

dCi/da Estimation o f induced velocity: V , ' = W ' Propeller geometry: (•(/ ), P(i )/Ü, Z Rate of revolution Blade section parameters:

dCi/da. Cm. Cm, Cm

Fig. 3. Flowcharts of propeller model/uRANS coupling (left) and of the Hough and Ordway plus Ribner and the BEMT models (top right and bottom right, respectively).

propeller r e v o l u t i o n :

dT = dL cos ( 0 C C + Si) - dD s i n {(f>^ + £?,) dFv = dL sin {(j)oc + £,) + dD cos ( 0 ^ + et)

i-ln

/ / dTdrdO

fR 7 /•27r

In p r i n c i p l e , the i n p u t v e l o c i t y f o r the BEMT m o d e l s h o u l d be the u n d i s t u r b e d i n f l o w v e l o c i t y i n the f a r f i e l d , w i t h o u t the c o n t r i b u d o n o f the p r o p e l l e r acdon (i.e. the n o m i n a l w a k e , f o r a p r o p e l l e r w o r k -i n g b e h -i n d the h u l l ) . As a consequence, the f o l l o w -i n g operadons are ( 1 8 ) carried o u t b e t w e e n t w o successive t i m e steps n a n d n + 1 :

• i n d u c e d v e l o c i t y f i e l d [Vxi and V^-) evaluated at i n s t a n t n obtained by the previous procedure is stored. Propeller loads are evaluated

(6)

R. Brogliaet al./Applied Ocean Research 39(2012) 1-10

Fig. 4. Views ofthe model: top, 3D global; bottom, transom region.

and passed to the uRANS solver as a b o d y force d i s t r i b u d o n over the disk a n d the s o l u d o n o f t h e c o m p l e t e f l o w f i e l d is o b t a i n e d ; • at the n e x t d m e step ii + 1, the n e w i n f l o w p r o v i d e d by t h e uRANS

solver accounts f o r t h e p r o p e l l e r s e l f - i n d u c t i o n effects. The BEMT solver evaluates n e w loads and i n d u c t i o n v e l o c i t y c o m p o n e n t .

4. Geometry a n d test conditions

The t a n k e r l i k e m o d e l s h o w n i n Fig. 4 is considered f o r the n u -m e r i c a l s i -m u l a t i o n s . I t can be seen that the -m o d e l considered i n the s i m u l a t i o n has a rather unusual c o n f i g u r a t i o n , b e i n g a t w i n p r o p e l l e r ship w i t h a single r u d d e r ; the m o d e l is f u l l y appended w i t h bilge keels, struts, A-brackets and shafts. The m a i n charactenstics are r e p o r t e d in Table 1 o n l y i n n o n d i m e n s i o n a l f o r m , because o f r e s t r i c t i o n o n d i f -f u s i o n ; -f o r t h e same reason, all the quantities i n the -f o l l o w i n g are r e p o r t e d i n t e r m s o f n o n - d i m e n s i o n a l values (as already said, l e n g t h b e t w e e n perpendiculars tpp and approach v e l o c i t y at m o d e l scale w e r e used as reference q u a n t i t i e s ) . In all the s i m u l a t i o n s the Reynolds n u m b e r is Re = 5 . 0 x 1 0 ^ and the Froude n u m b e r is Fr = 0.217.

The t u r n i n g circle m a n o e u v r e is carried o u t at f i x e d t u r n i n g rate of the propeller. The t u r n i n g rate o f the r u d d e r is 12.23= per time u n i t (at m o d e l scale), and t h e r u d d e r d e f l e c t i o n is 35=. The t u r n i n g circle s i m u l a t i o n is p e r f o r m e d by the f o l l o w i n g steps:

• un-propelled steady state simulation with fixed sinkage and trim:

t h e c o m p u t e d resistance is used to fix the p r o p u l s i o n p o i n t o n the bases o f the o p e n w a t e r characteristics o f the p r o p e l l e r ( t h e p r o p u l s i o n p o i n t is r e p o r t e d i n Table 1);

• acceleration: time resolved 6DoF s i m u l a t i o n i n w h i c h the m o d e l

is accelerated f r o m rest f o r one n o n - d i m e n s i o n a l time u n i t ; an

Table 1

IVlain parameters ofthe model in non-dimensional form.

Dimension Symbol Value

Length between tpp 1

perpendiculars

Speed U„ 1

Displacement A 5.099 X 10-^

Moment of inertia for 1.318 X 10~=

roll

Moment of inertia for h'y 3.012 X 10-''

pitch

Moment of inertia for Izz 3.012 X 10-''

yaw Propeller diameter D 3.261 X 10-2 Number of blades Z 4 Advancement ratio J 0.915 Thrust coefficient KT 0.1914 Torque coefficient KQ 0.03817

Rudder lateral area 0.00115

a d d i t i o n a l fictitious p u s h i n g f o r c e is added to reduce the transient phase;

• stabilization: the fictitious p u s h i n g force is r e m o v e d and a t i m e

accurate 6DoF s i m u l a t i o n is p e r f o r m e d to let the ship achieve the d y n a m i c a l sinkage and t r i m f o r the chosen speed and displace-m e n t c o n d i t i o n s ;

• evolution: once the a t t i t u d e o f t h e ship reached a reasonable stable

c o n d i t i o n , the rudder is r o t a t e d at the prescribed t u r n i n g rate. T i m e resolved 6DoF s i m u l a t i o n is carried out.

5. C o m p u t a t i o n a l m e s h

The physical d o m a i n is discretized by means o f 90 b o d y - f i t t e d patched and overlapped blocks; o v e r i a p p i n g grids' capabilities are e x p l o i t e d to a t t a i n h i g h q u a l i t y meshes, f o r r e f i n e m e n t purposes and to handle the time changes o f the d o m a i n boundary. The w h o l e mesh counts f o r a t o t a l o f 6,166,528 g r i d cells. G r i d d i s t r i b u t i o n is such that the thickness o f the first cell o n t h e w a l l is always b e l o w 1 i n terms o f w a l l units {y* = 0 ( 1 ) , i.e. A/Lpp = O(20/Re), A b e i n g the thickness o f the cell). A n o v e r v i e w o f the c o m p u t a t i o n a l rnesh is s h o w n i n Fig. 5, w h e r e , f o r the sake o f clearness, c h i m e r a cells have been h i d d e n .

Instead o f g e n e r a t i n g a fixed b a c k g r o u n d mesh t h a t covers the w h o l e course o f the h u l l , a r e l a t i v e l y small b a c k g r o u n d mesh a r o u n d the m o d e l has been generated; this b a c k g r o u n d g r i d translates i n the h o r i z o n t a l plane and rotates a r o u n d the v e r t i c a l axis i n order to f o l l o w the m o t i o n o f the h u l l .

6. Results

In this paragraph n u m e r i c a l results are presented. The analysis is focused on the p r o p e l l e r behaviour d u r i n g the manoeuvre, w i t h par-t i c u l a r emphasis par-to par-the lapar-teral force and par-the a s y m m e par-t r i c loads d u r i n g the stabilized phase f o r the d i f f e r e n t p r o p e l l e r models under analy-sis, i.e. the t r a d i t i o n a l H o u g h and O r d w a y actuator disk (i.e. w i t h o u t lateral force correction), its m o d i f i e d versions and the BEMT m o d e l . The e f f e c t o f the lateral force is analysed by c o m p a r i n g the p r e d i c t e d speed drop, d r i f t and y a w rate w i t h e x p e r i m e n t a l m e a s u r e m e n t s o f free r u n n i n g manoeuvres.

For this m o d e l , an extensive f r e e r u n n i n g test p r o g r a m has been carried o u t at t h e lake o f N e m i near Rome ( I t a l y ) [ 1 0 ] and [ 1 1 ] ; in particular, three series o f t u r n i n g circle m a n o e u v r e s w e r e per-f o r m e d ; a m o n g t h e m , all measurements b u t one ( t h a t was thereper-fore neglected) are v e r y close to each other; however, i n order to avoid

(7)

R. Broglia et al. /Applied Ocean Research 39(2012)1-10 7

Fig. 5. Computational mesti: top, frontal view; bottom, rear view.

c o n f u s i o n , o n l y one o f t h e m (Serie 111) has been c o n s i i j e r e d as representative o f the t u r n i n g qualities o f the ship. For the sake o f c o m p l e t e -ness, also the p r i n c i p a l features o f the c o m p l e x f l o w f i e l d a r o u n d the h u l l d u r i n g the steady t u r n i n g phase w i l l be described, w i t h focus o n the c o m p l e x v o r t e x structures detached f r o m the h u l l .

I t has to be n o t e d t h a t s i m u l a t i o n s w i t h the H o u g h and O r d w a y models ( w i t h and w i t h o u t lateral force c o r r e c t i o n s ) w e r e p e r f o r m e d on b o t h the finest and the m e d i u m grids i n o r d e r to estimate g r i d uncertainties, whereas o n l y the c o m p u t a t i o n s w i t h the m e d i u m mesh was done f o r the BEMT m o d e l , i n order to save CPU time.

6.J. Manoeuvre analysis

I n t h e f o l l o w i n g analysis, f is the n o n - d i m e n s i o n a l time (i.e. t" =

tUo/Lpp) and f = 0 is the n o n - d i m e n s i o n a l time at w h i c h the r u d d e r

starts its r o t a t i o n ; t h e o r i g i n o f the earth fixed system o f reference is taken as the p o s i t i o n o f the m o d e l at the same instant, w h e r e the x-axis is d i r e c t e d as the a p p r o a c h i n g speed, the z-axis is p o s i t i v e u p w a r d , and finally the y-axis c o m p l e t e a r i g h t - h a n d e d system o f reference. The v e l o c i t y is n o r m a l i s e d w i t h the ship v e l o c i t y at t' = 0 ( n o m i n a l a p p r o a c h i n g speed), i.e. U' = U/UQ. I t has to be n o t e d that, i n the f o l l o w i n g , the y a w rate is made n o n - d i m e n s i o n a l u s i n g the actual v e l o c i t y U instead o f the a p p r o a c h i n g speed UQ, i.e. f = rLpp/U.

N u m e r i c a l s i m u l a t i o n s presented i n [ 7 ] have s h o w n that, i n order to achieve an accurate e s t i m a t i o n o f the t u r n i n g circle m a n o e u v r e , l a t -eral forces developed b y the propeller s h o u l d be p r o p e r l y accounted for. As a m a t t e r o f the fact, w h e n c o m p a r i n g the p r e d i c t i o n o f t r a j e c t o r y , n o n d i m e n s i o n a l m o d e l speed (U'), d r i f t angle ( P ) and n o n -d i m e n s i o n a l y a w rate ( f ) (Fig. 6) w i t h the stan-dar-d an-d the m o -d i f i e -d H o u g h and O r d w a y models, i t is e v i d e n t t h a t the i n c l u s i o n o f the p r o -peller lateral force {"heuristic" c o r r e c t i o n w i t h a; = 1/3 or Ribner's m o d e l ) provides a s t a b i l i s i n g e f f e c t t h a t n o t i c e a b l y i m p r o v e s the e s t i -m a t i o n o f the t r a j e c t o r y and the k i n e -m a t i c para-meters. Note t h a t the s i m u l a t i o n w i t h o u t the lateral force c o r r e c t i o n was s t o p p e d at early time because the discrepancy w i t h the e x p e r i m e n t s (especially f o r the absolute speed and the d r i f t angle) w e r e unacceptably large. On the c o n t r a r y , the s i m u l a t i o n s i n c l u d i n g the lateral force are i n good agree-m e n t w i t h the e x p e r i agree-m e n t s ; i n particular, i n the stabilized phase b o t h

Fig. 6. Trajectoi-y and kinematic parameters: Hough and Ordway model without side force and with different side force models.

Table 2 Trajectories parameters. Exp. Numerical a = 0 a = 1/3 Ribner Advance 2.85 2.99 (4.91%) 2.98(4.56%) 3.02(5.96%) Transfer 1.00 0.98 (2.00%) I.OO(-) 1.02(2.00%) Err. - 3.45% 2.28% 3.98% transient Tactical 2.56 2.34(8.59%) 2.51 (1.95%) 2.48(3.13%) Turning 2.52 NC 2.64(4.76%) 2.60 (2.44%) Err. steady

-

NC 3.36% 2.79%

models overestimate the speed loss w i t h an e r r o r a r o u n d 6%, and u n -derestimate the y a w rate w i t h an error o f a r o u n d 7.5%; t h e d r i f t angle is also w e l l p r e d i c t e d ( e r r o r a r o u n d 5%). It is w o r t h to note that, i n t h e first stage o f the t r a n s i e n t phase, b o t h sway and y a w accelerations are u n d e r e s t i m a t e d . This could be caused by several reasons, such as an u n d e r e s t i m a t i o n o f r u d d e r effectiveness, an o v e r e s t i m a t i o n o f i n e r t i a and added mass effects or some deficiencies i n the p r o p e l l e r l a t e r a l force m o d e l , w h i c h does n o t account f o r t r a n s i e n t effects. M o r e o v e r , discrepancies i n the t r a n s i e n t phase m a y be due to some n o n - l i n e a r p h e n o m e n a r e l a t e d to r o l l m o t i o n (caused, f o r e x a m p l e , by an u n -d e r e s t i m a t i o n o f t h e vertical p o s i t i o n o f t h e centre o f g r a v i t y a n -d / o r an over p r e d i c t i o n o f the l o n g i t u d i n a l i n e r t i a ) t h a t are progressively reduced w i t h the t r a n s i e n t phase. H o w e v e r , a deeper analysis o f t h e t r a n s i e n t phase are o u t o f the scope o f the present w o r k and w i l l be addressed i n f u t u r e d e v e l o p m e n t .

Comparisons f o r the t r a j e c t o r y parameters (advance, transfer, tac-tical and t u r n i n g d i a m e t e r s ) are r e p o r t e d i n Table 2; the overall agree-m e n t is c o n f i r agree-m e d to be rather satisfactory f o r the agree-m o d i f i e d agree-models, w h e r e a s large discrepancy is, again, observed w h e n l a t e r a l loads are not taken i n t o account. In the table, i n a d d i t i o n to the t r a j e c t o r y p a -rameters w i t h t h e i r d e v i a t i o n f r o m the e x p e r i m e n t a l values, average values f o r the errors d u r i n g the t r a n s i e n t (advance and t r a n s f e r ) phase and f o r the steady (tactical and t u r n i n g d i a m e t e r s ) are also g i v e n . I n the t r a n s i e n t phase, the o r i g i n a l and the m o d i f i e d m o d e l s p r o v i d e s i m i l a r results, b o t h v e r y close to the e x p e r i m e n t s , w i t h errors less than 4%; moreover, the Ribner's m o d e l p r o v i d e s a s t a b i l i s i n g e f f e c t very close to the m o d i f i e d H o u g h and O r d w a y w i t h O! = 1 / 3 . I t is to be n o t e d t h a t the s i m u l a t i o n w i t h o u t the lateral force ( o ; = 0) provides a rather s m a l l tactical d i a m e t e r i n the steady phase: f r o m the time h i s -tory, i t can be seen t h a t the ship is a d v a n c i n g w i t h a larger d r i f t angle, w h i c h causes a larger speed loss and a s m a l l e r t u r n i n g radius. On t h e contrary, b o t h m o d i f i e d models provide, again, s i m i l a r results i n g o o d agreement w i t h the e x p e r i m e n t s , the average e r r o r b e i n g a r o u n d 3%. If the c o m p a r i s o n is made i n t e r m s o f k i n e m a t i c a l parameters (speed drop, y a w rate and d r i f t angle) at the s t a b i l i z e d phase (see Table 3 ) , s i m i l a r conclusions can be d r a w n . 3

(8)

T a b l e s

Kinematic parameters (stabilized phase).

Exp. Numerical a = 1/3 Ribner U/Uo 0.54 0.50(7.41%) 0.51 (4.04%) f 46.3 42.74 (7.69%) 43.98> (5.01%) 16.2 17.0 (4.93%) 17.0 (4.93%) Err. steady

-

6.68% 4.66%

Fig. 7. Trajectory and kinematic parameters: comparison among different propeller models.

the m o i i i f i e i l ones and the BEMT m o d e l is p e r f o r m e d o n the m e d i u m g r i d . I t can be seen i n Fig. 7 that, f o r the s i m u l a t i o n w i t h the f i n e g r i d , the s i m i l a r i t y o f the p r e d i c t i o n s b e t w e e n the m o d i f i e d H o u g h and Or-d w a y moOr-dels ( b o t h the "heuristic" w i t h a = 1 /3 anOr-d the Ribner's cor-r e c t i o n ) and the good agcor-reement w i t h measucor-rements acor-re c o n f i cor-r m e d ; o n the c o n t r a r y , the BEMT m o d e l provides o v e r - e s d m a t e d values f o r the speed d r o p and the d r i f t angle, and s i m i l a r values f o r the y a w rate. The s i m u l a d o n w i t h o u t any lateral force provides results s i m i l a r to the BEMT m o d e l f o r b o t h the speed d r o p a n d the d r i f t angle, whereas for the y a w rate an o v e r - e s d m a t i o n can be observed.

The parameters o f the t r a j e c t o r y p r e d i c t e d by the various m o d -els are s u m m a r i z e d i n Table 4. To estimate the d i f f e r e n c e a m o n g the models, t h e results o f the m o d i f i e d H o u g h and O r d w a y m o d e l

{"heuristic" a = 1/3) are taken as reference. It can be seen that, also

for these parameters, i t is c o n f i r m e d that the m o d i f i e d H o u g h and Or-d w a y moOr-dels ( b o t h the "heuristic" anOr-d the Ribner c o r r e c Or-d o n ) p r o v i Or-d e s i m i l a r results, the differences b e i n g less t h a n 1 % d u r i n g the t r a n s i e n t phase and a r o u n d 3% d u r i n g the steady phase. On the c o n t r a r y , large d i f f e r e n c e is observed f o r the s i m u l a d o n w i t h o u t the lateral force. For the BEMT m o d e l s i m i l a r results are obtained d u r i n g the t r a n -sient phase, the d i f f e r e n c e b e i n g less t h a n 3%; c o m p a r i n g the values f o r the advance and the transfer, i t is e v i d e n t t h a t the BEMT m o d e l provides a smaller s t a b i l i z i n g e f f e c t than the m o d i f i e d H o u g h and Or-d w a y moOr-dels. This behaviour is c o n f i r m e Or-d i n the steaOr-dy phase, w h e r e b o t h tacdcal a n d t u r n i n g diameters are smaller t h a n those p r e d i c t e d by the m o d i f i e d models. Comparison b e t w e e n k i n e m a d c parameters p r o v i d e d b y the d i f f e r e n t models i n the stabilized phase is g i v e n i n Table 5; i t is c o n f i r m e d t h a t i n c l u d i n g lateral p r o p e l l e r effects (i.e. using either the BEMT or the m o d i f i e d H o u g h a n d O r d w a y m o d e l ) increases the accuracy o f the results.

In Fig. 8 t h e d m e histones o f n o n - d i m e n s i o n a l p r o p e l l e r lateral forces ( l e f t ) a n d lateral f o r c e / t h r u s t rado are reported, w h e r e colours are chosen consistent w i t h those i n Fig. 6, solid and dashed lines refer-ring to i n t e r n a l / l e e w a r d and e x t e r n a l / w i n d w a r d propellers, respec-dvely. Forces are made n o n - d i m e n s i o n a l b y using the w a t e r d e n s i t y

Fig. 8. lateral force: comparison among different models.

( p ) , the speed o f advancement (UQ) and the l e n g t h b e t w e e n p e r p e n -dicular (Lpp), i n p a r t i c u l a r :

y, _ ^prop

Yprop and T being the lateral force and the t h r u s t p r o v i d e d b y the propeller. F r o m these figures, a deeper i n s i g h t about p r o p e l l e r b e h a v i o u r d u r i n g a t i g h t m a n o e u v r e and its c o n t r i b u t i o n to the ship d y n a m i c response can be o b t a i n e d . I t is w o r t h n o t i n g t h a t b o t h the BEMT and Ribner models p r o v i d e lateral forces f o r the l e e w a r d a n d w i n d w a r d propeller i n opposite d i r e c t i o n ; the w i n d w a r d one provides a stabilising effect, whereas the l e e w a r d propeller tends to destabilize the course. This a p p a r e n t l y u n e x p e c t e d behaviour depends o n the stern fineness characteristics, w h i c h s t r o n g l y affects the local fiow field, because the w i n d w a r d p r o p e l l e r experiences a s t r o n g o b l i q u e f l o w f r o m the w i n d to the l e e w a r d side, whereas the flow a r o u n d the l e e w a r d propeller is i n the opposite d i r e c t i o n . The Ribner m o d e l provides higher lateral forces ( i n percent o f the t h r u s t ) w i t h respect to t h e BEMT m o d e l (20% against 5% o n t h e w i n d w a r d shaft, a n d 7% against 2.5% o n the l e e w a r d shaft, respectively); this leads to a m o r e stable vessel, c o h e r e n t l y w i t h the results discussed i n Fig. 7 a n d Table 4. O n the contrary, the m o d i f i e d H o u g h and O r d w a y ( o ; = 1 / 3 ) m o d e l develops lateral forces o f t h e same sign because i t assumes t h a t the i n f l o w angle w i t h respect to the p r o p e l l e r disk coincides w i t h the h y d r o d y n a m i c d r i f t o f the ship. Finally, as already n o t e d , the o r i g i n a l H o u g h and O r d w a y m o d e l ( o ; = 0 ) does n o t develop a n y lateral f o r c e (data are not i n c l u d e d i n the pictures), thus leading to an u n d e r -e s t i m a t i o n o f th-e ship d y n a m i c s t a b i l i t y .

In Fig. 9 time histories o f t h r u s t and t o r q u e developed by the propellers d u r i n g the m a n o e u v r e are r e p o r t e d . It can be observed that, a f t e r the r u d d e r a c t i v a t i o n , the t h r u s t and t o r q u e developed b y b o t h propellers increase, because o f the d r o p o f the advance c o e f f i cients due to speed r e d u c t i o n experienced b y the vessel i n t h e d r i f t -y a w m o t i o n . Moreover, this p h e n o m e n o n is n o t s -y m m e t r i c a l ; i.e. the e x t e r n a l / w i n d w a r d p r o p e l l e r develops higher loads w i t h respect to the l e e w a r d one, because the w a k e , and c o n s e q u e n t l y the i n f l o w i n correspondence o f the propeller plane, is a s y m m e t r i c a l .

The behaviour o f b o t h the o r i g i n a l and the m o d i f i e d H o u g h a n d O r d w a y models is v e r y s i m i l a r to each other (as i t c o u l d be expected), the e x t e r n a l and i n t e r n a l propellers e x p e r i e n c i n g an increase i n t h r u s t and t o r q u e o f about 50% and 40%, respectively. The BEMT m o d e l p r o -vides d i f f e r e n t results: the p r e d i c t e d stabilized t h r u s t is almost s i m i l a r to the previous values f o r the o u t e r propeller, whereas i t is n o t i c e a b l y l o w e r f o r the i n n e r one (20%). Finally, a d i f f e r e n t b e h a v i o u r d u r i n g the t r a n s i e n t phase b e t w e e n BEMT and m o d i f i e d H o u g h and O r d w a y m o d e l s can be also h i g h l i g h t e d : f o r the BEMT m o d e l , the o u t e r p r o -peller is m o r e loaded t h e n the i n n e r one; o n the c o n t r a r y , f o r the H o u g h & O r d w a y m o d e l , the p r o p e l l e r w h i c h experiences a h i g h e r load is the outer one.

(9)

R. Broglia et al./Applied Ocean Research 39 (2012) 1-10

Table 4

Trajectories parameters: comparison among different models.

a = 1/3 Q'=0 BEMT Ribner Advance Transfer Err. transient Tactical Turning Err. steady 3.22 1.12 2.78 2.90 3.06 (4.97%) 1.02(8.93%) 6.95% 2.50(10.07%) 2.42(16.55%) 13.31% 3.18(1.24%) 1.07(4.46%) 2.85% 2.58(7.19%) 2.59(10.69%) 8.94% 3.23(0.31%) 1.11 (0.89%) 0.60% 2.67(3.96%) 2.83(2.41%) 3.19% Table 5

Kinematic parameters (stabilized phase): comparison among different models.

a = 1/3 a = 0 BEMT Ribner U/Uo 0.55 0.51 (7.27%) 0.49(10.90%) 0.56(1.82%) f 39.58 46.62 (17.68%) 43.90 (10.91%) 40.64 (2.68%) P 16.24 17.99 (10.76%) 17.67 (8.81%) 16.59 (2.16%) Err. steady

-

11.87% 10.20% 2.22% ^ ^ t ^ ' - —

/

V.J . . . . Hit) .1=0 Llinard HM x^O Vtnduard HiO.,= lJlU!lMT<i - - • ;M0ii=Wmaiwo7j

Ribmr's iTimlel Letward

- ~ • RWiilr's model V/indward - BEI.ITUsmrd ' - - • S S . f f Wiitdward - ^ . ^ ^ . . . ! . . t - — — Hi.0 x=ÖL»wa7d HAO .1=11} Lu *.^Td HA0i'=!/3Viv{^<ifd RiintT'jKifxlrl Lf^v'ii SEKTLieward aEMTWi%du,ard

Fig. 9. Thrust and torque: comparison among different models.

6.2. Flow field

For the sake o f completeness, the l o n g i t u t j i n a l v e l o c i t y (i.e. the x c o m p o n e n t o f the f l o w v e l o c i t y i n the ship fixeij f r a m e o f reference) d u r i n g the stabilized phase at d i f f e r e n t cross-secdons a l o n g the h u l l is presented i n Fig. 10, w h e r e the c o m p l e x i t y o f the f l o w f i e l d a r o u n d the vessel clearly appears. A t section x = 0.3 ( b o w region) the genera-t i o n o f a clockwise v o r genera-t e x (seeing f r o m genera-the b o w ) can be observed: genera-this v o r t e x is due to the cross f l o w a r o u n d the bulbous b o w , t h e d i r e c d o n o f this transversal f l o w b e i n g f r o m the i n n e r t o the o u t e r side w i t h respect to the centre o f the t r a j e c t o r y (the lateral v e l o c i t y due to the y a w rate overtakes the d r i f t m o d o n , and t h e r e f o r e the n e t f l u x at the b o w is f r o m the i n n e r to the o u t e r side); once this v o r t e x is gener-ated, i t is d r i v e n by the i n c o m i n g f l o w , and t h e r e f o r e i t is convected t o w a r d s the p o r t side. A t section x = - 0 . 2 t w o counter-clockwise vortices, detached f r o m the l e e w a r d and w i n d w a r d bilges, can be o b -served. These vordces are convected d o w n s t r e a m as w e l l : the one on the p o r t / l e e w a r d side is stronger a n d i t is clearly observable up to the last section x = - 0 . 4 8 6 i n the t o p right region o f the f l o w field. The v o r t e x on the s t a r b o a r d / w i n d w a r d side is convected t o w a r d s the p o r t side and i t merges w i t h the intense keel v o r t e x (see section at

\

...

X __ J • ^

Fig. 10. Axial velocity at several cross-sections.

X = - 0 . 3 8 2 ) ; moreover, i t can be observed t h a t the w i n d w a r d shaft bossing generates an a d d i t i o n a l v o r t e x , w h i c h is convected d o w n -stream. A t section X = - 0 . 4 5 3 the s w i r l and t h e acceleration caused by t h e propellers, together w i t h the i n t e r a c t i o n o f t h e wakes o f the ap-pendages w i t h t h e propeller are evident.'The f l o w a r o u n d the r u d d e r and i n its w a k e is r e p o r t e d i n the last t w o sections, w h e r e i t is s h o w n that the r u d d e r is p a r t i a l l y i n the s l i p s t r e a m o f the o u t e r propeller. A t sections x = - 0 . 4 7 0 and x = - 0 . 4 8 6 , i t can be also observed t h a t the r u d d e r is i n the w a k e o f the skeg, w h i c h is the probable cause o f the s t r o n g i n e f f i c i e n c y o f the r u d d e r i t s e l f In the last cross-section, flow separation i n t h e suction side o f the rudder, as w e l l as a t i p v o r t e x generated b y t h e cross flow, is evident.

7. C o n c l u s i o n s

In present w o r k the i n f l u e n c e o f the p r o p e l l e r m o d e l l i n g o n the p r e d i c t i o n o f the d y n a m i c properties o f a m a n o e u v r i n g vessel has been i n v e s t i g a t e d ; to this a i m , the t u r n i n g circle m a n o e u v r e o f a t w i n screw ship w i t h a single r u d d e r have been e x t e n s i v e l y analysed b y means o f the uRANS solver / n o v i s c o u p l e d w i t h d i f f e r e n t p r o p e l l e r models. I n particular, m o d i f i e d H o u g h and O r d w a y and BEMT m o d -els have been considered and p r o p e r i y i n c l u d e d i n the CFD solver, i n o r d e r to account f o r the inplane loads w h i c h arise w h e n the p r o -peller w o r k s i n o b l i q u e flow, a typical s i t u a t i o n experienced d u r i n g t i g h t manoeuvres. It has been emphasized t h a t accurate n u m e r i c a l p r e d i c t i o n s carried o u t w i t h proper p r o p e l l e r models (able to p r o -v i d e a lateral f o r c e ) can be obtained, b o t h i n t e r m s o f t r a j e c t o r y a n d k i n e m a t i c response (speed d r o p and y a w rate); o n the contrary, unsat-i s f a c t o r y predunsat-ictunsat-ions w e r e obtaunsat-ined w unsat-i t h models t h a t do n o t account

(10)

R. Broglia et al/Applied Ocean Researclj 39 (2012) 1-10

f o r the side force developed by.the propellers, f o r unusual p r o p e l l e r -r u d d e -r c o n f i g u -r a t i o n s , like the one conside-red i n the p-resent pape-r. It has to be h i g h l i g h t e d that, using these models, the increase o f the c o m p u t a t i o n a l resources is negligible.

It has been d e m o n s t r a t e d that, w h e n u s i n g m o d i f i e d H o u g h and O r d w a y models, either the "heuristic" or the Ribner's correction, ac-curate p r e d i c t i o n o f the t u r n i n g circle m a n o e u v r e ( i n terms o f b o t h t r a j e c t o r y and k i n e m a t i c parameters) is achieved. I n particular, the c o m p a r i s o n w i t h free r u n n i n g test has s h o w n that b o t h the transient and the stabilized phases are w e l l captured, the averaged comparison errors b e i n g less t h a n 4%. Needless to say t h a t the advantages to use the Ribner's m o d e l , w i t h respect to the "heuristic" one, are related to t h e larger physical i n f o r m a t i o n contained i n the m o d e l itself, and the smaller n u m b e r o f parameters to tune.

The c o m p a r i s o n b e t w e e n the d i f f e r e n t models considered, i.e. the o r i g i n a l H o u g h and O r d w a y m o d e l , the m o d i f i e d ones and the BEMT, has been p e r f o r m e d o n the m e d i u m mesh. It has been c o n f i r m e d t h a t the "heuristic" and the Ribner's models p r o v i d e s i m i l a r results w i t h good agreement w i t h experiments, whereas differences can be seen w h e n c o n s i d e r i n g m o d e l s unable to y i e l d side forces. The BEMT m o d e l provides results s i m i l a r to the corrected H o u g h and O r d w a y models in the t r a n s i e n t phase, the d i f f e r e n c e w i t h the "heuristic" m o d e l being less t h a n 3%; s l i g h t l y larger differences (less t h a n 9%) w e r e observed in the stabilized phase.

It has to be p o i n t e d o u t t h a t propeller models considered i n this w o r k are based on a quasi-steady hypothesis o f the flow field, and t h e r e f o r e all those e f f e c t due to s t r o n g unsteadiness (such as t r a i l i n g a n d s h e d d i n g w a k e structures o f variable strength, added mass and d y n a m i c i n f l o w effects) are n o t e x p l i c i t l y considered; therefore, the r e l i a b i l i t y o f this models s h o u l d be also v e r i f i e d a n d v a l i d a t e d f o r unsteady manoeuvres, like zig-zag or P M M o s c i l l a t o r y m o d o n s ; this w i l l be addressed i n f u t u r e research w o r k s .

A c k n o w l e d g e m e n t s

The w o r k has been done i n the f r a m e w o r k o f t h e EDA p r o j e c t

"Submarine Coupled 6DoF Motions including Boundary Effects"

finan-cially s u p p o r t e d by the Italian Navy. The authors w i s h to thanks Dr. Salvatore M a u r o f o r p r o v i d i n g e x p e r i m e n t a l data. N u m e r i c a l c o m p u -tations presented here have been p e r f o r m e d o n the parallel machines o f CASPUR S u p e r c o m p u d n g Center (Rome); t h e i r s u p p o r t is g r a t e f u l l y a c k n o w l e d g e d .

References

[11 Atsavapranee P. Miller R, Dai C. Klamo J, Fry D. Steady-turning experiment and RANSE simulations on a surface combatant Hull form (model #5617). 28th ONR symposium. Pasadena; 2010.

|2] Broglia R. Di Mascio A, Amati G. A parallel unsteady RANS code for the numer-ical simulations of free surface flows. Proc. of 2nd international conference on marine research and transportation. Ischia, Naples, Italy; 2007.

|3] Di Mascio A, Broglia R, Favini B. A second order Godunov-type scheme for naval hydrodynamics. Godunov methods: theory and applications. Kluwer Academic/ Plenum Publishers; 2001. p. 253-261.

[4] Di Mascio A. Broglia R, Muscari R. On the application of the single-phase level set method to naval hydrodynamic flows. Computers & Fluids. 2007;36:868-886. | 5 | Di Mascio A, Broglia R, Muscari R. Prediction of hydrodynamic coefficients of

ship hulls by high-order Godunov-type methods. Journal of Marine Science and Technology 2009;14:19-29.

[6] Di Mascio A, Muscari R, Broglia R. An overlapping grids approach for moving bodies problems. 16th ISOPE, San Francisco, CA. USA; 2006.

|7] Durante D. Broglia R. Muscari R. Di Mascio A. Numerical simulations of a turning circle manoeuvre of a fully appended hull. 28"' symposium on naval hydrody-namics, Pasadena, CA, 12-17 September; 2010.

18] Favini B, Broglia R, Di Mascio A. Multigrid acceleration of second order ENO schemes from low subsonic to high supersonic flows. International Journal for Numerical Methods in Fluids. 1996;23:589-606.

[91 Hough GR, Ordway DE. The generalized actuator disk. Developments in Theo-retical and Applied Mechanics. 1965:2:317-336.

[10] Mauro S. Prove di Manovrabilita su Modello di Unita Logistica. CNR-INSEAN technical report. N6/ C2280; 1999.

I l l ] Mauro S. Prove di Manovrabilita su Modello di Unita Logistica. CNR-INSEAN technical report. N8/ C2280; 1999.

[12] Phillips WF, Anderson EA. Kelly Q]. Predicting the contribution of running pro-pellers to aircraft stability derivatives. Journal of Aircraft. 2003;40(6):1107-1114.

|131 Phillips AB, Turnock SR. Furlong M. Comparisons of CFD simulations and in-service data for the self propelled performance of an autonomous uderwater vehicle. In: Proc. of 27th symposium on naval hydrodynamics. Seoul, Korea. 2008.

114] Phillips AB, Turnock SR, Furlong M. Evaluation of manoeuvring coefficients of a self-propelled ship using a blade element momentum propeller model cou-pled to a Reynolds averaged Navier Stokes flow solver. Ocean Engineering. 2009;36:1217-1225.

|15] Purtell P. Proceedings of the 26th ONR symposium. Rome. Italy; 2006. [16] Purtell P. Proceedings of the 27th ONR symposium. Seoul, Korea; 2008. [17] Purtell P. Proceedings of the 28th ONR symposium. Pasadena. California (USA);

2010.

|18] Ribner HS. Propeller in yaw. NACATechnical report 3L09; 1943.

119] Spalart PR. Allmaras SR. A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale. 1994;1:5-21.

|20] stern F, Agdrup K. Proceedings SIMMAN 2008 workshop on verification and validation of ship manoeuvering simulation methods. Copenhagen, Denmark; 2008.

121) Stern F, Agdrup K, Kim SY, Cura-Hochbaum A, Rhee KP, Quadvlieg F. Experi-ence from SIMMAN 2008-the first workshop on verification and validation of ship manoeuvring simulation methods. Journal of Ship Research. 2011 ;550une (2)):135-147.

Cytaty

Powiązane dokumenty

The correlation dependence (r = 0.97) shows that a higher knee velocity significantly affects the velocity which the foot develops and that the total time of kick execution depends

W uzasadnieniu wyroku Sąd Najwyższy podkreślił, że założenie i uzasadnienie dopuszczalności pobierania opłat i składek od osób ubiegających się o wpis na listę

Тем не менее, в пандан к этому популярному стереотипу со- временные поэты иронически предлагают и иной подход: Давно пора, ядрёна мать Умом Россию понимать…

However, the results of the study are promising and reveal the potentiality of using microsimulation and driving simulator approaches to study vehicle interactions and estimate

the availability of production cost data in a form which enables the production costs to be determined directly from the (structu­ ral) design information on the basis of

de Vaux, and had the most experience of work on the new manuscripts, he received the lion’s share of them for publication: apocryphal works including Tobit, pseudepigrapha like

Źródło: opracowanie własne na podstawie: Strategia Rozwoju Transportu do 2020 roku (z perspektywą do 2030 roku), Ministerstwo Transportu, Budownictwa i Gospodarki Morskiej,

Nawet czytelnik pobieżnie tylko zapoznany z epoką i dziejami nauczania filozofii w szkołach zapyta, dlaczego Autor ogranicza się tylko do wieku XVII, skoro „filozofia