• Nie Znaleziono Wyników

Low Voltage Operation Type Low Power-Loss Voltage Regulator

N/A
N/A
Protected

Academic year: 2022

Share "Low Voltage Operation Type Low Power-Loss Voltage Regulator"

Copied!
6
0
0

Pełen tekst

(1)

Features

Low power-loss

(Dropout voltage: MAX. 0.5V)

Compact surface mount type package (Equivalent to SC-63)

Low voltage operation(Minimum supply voltage: 3.0V)

0.5A output : PQ07VZ5M2Z 1.0A output : PQ07VZ012Z

Variable output voltage(1.5V to 7V)

High-precision output type (Reference voltage precision: ±2.0%)

Low dissipation current at OFF-state(Iqs: MAX. 5µA)

Tape packaged type is also available.

(ø330mm reel: 3 000pcs.)

Overcurrent, overheat protection functions

Applications

Personal information tools

Amusement equipment

Outline Dimensions (Unit : mm)

Low Voltage Operation Type Low Power-Loss Voltage Regulator

• Please refer to the chapter " Handling Precautions ".

PQ07VZ5M2Z/PQ07VZ012Z

Absolute Maximum Ratings

07VZ5M

0.5±0.20.1 Epoxy resin

0.5

1.7

0.5

0.9

5.2 0.5

9.7MAX. 5.50.52.5MIN.

2.3 0.5

4 1.27 6.6 MAX.

±

±

±

( )

( )

()()

( )

3

1 2 3 4 5

( ) ( ) DC output Vo

( )Vo ( )Vc

GND DC input VIN 1

2 3

3 1

2

3

4 5

5 4

Internal connection diagram

ON/OFF control terminal

Heat sink is common to terminal Output voltage adjustment terminal Specific IC

(VADJ)

Parameter Symbol Rating Unit

VIN

Vi-o

Vc VADJ

Io PD

Tj

Topr

Tstg

Tsol

10 5 10 7 0.5

1 8 150 –20 to +80 –40 to +150 260 (For 10s)

V V V V A W

˚C

˚C

˚C

˚C

❇1

❇1

❇2

❇3

❇1 All are open except GND and applicable terminals.

❇2 PD: With infinite heat sink

❇3 Overheat protection may operate at 125<=Tj<=150˚C.

(Ta=25˚C)

Input voltage Dropout voltage

ON/OFF control terminal voltage Output adjustment terminal voltage Output current

Power dissipation Junction temperature Operating temperature Storage temperature Soldering temperature

PQ07VZ5M2Z PQ07VZ012Z

Notice In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/

(2)

Electrical Characteristics

Fig. 1 Test Circuit Fig. 2 Test Circuit of Ripple Rejection

V A VIN

VC

Ic

Iq 1kΩ

IO

VO

RL

0.33µF 47µF

+ R2

R1

VO=Vref x 1+ –––––R2

R1

[R1=1kΩ,Vref Nearly=1.25V]

1

5 4 3

A A V

Vref

2 47µF V

VIN

ei

eo 1kΩ

IO

RL

Vc 2.7V 0.33µF

+ R2

R1

f=120Hz(sine wave) ei(rms)=0.5V Io=0.3A

RR=20 log(ei(rms)/eo(rms)) VIN=5V

Vo=3V(R1=1kΩ) 1

5 4 3

2

Parameter Symbol Conditions MIN. TYP. MAX. Unit

––

––

f=120Hz sine wave, ei=0.5Vrms Tj=0 to 125˚C, Io=5mA Io=5mA to 0.5A Io=5mA to 1.0A

–– V

V

%

% V

% dB VIN=4 to 10V, Io=5mA

VIN=3V, Io=0.3A

VIN=3V, Io=0.5A V

–– V

–– µA

Io=0A V

❇4

Vc=0.4V, Io=0A µA

Vc=0.4V µA

Io=0A mA

❇4 In case of opening ON/OFF control terminal , output voltage turns off.

PQ07VZ012Z

(Unless otherwise specified, VIN=5V, Io=0.3A[PQ07VZ5M2Z], Io=0.5A[PQ07VZ012Z], Vo=3V(R1=1kΩ), Vc=2.7V, Ta=25˚C)

PQ07VZ5M2Z

3.0 1.5 ––

––

1.225 ––

45 ––

2.0 ––

––

––

––

––

––

––

0.2 0.2 1.25

±1.0 60 ––

––

––

––

––

4 ––

10 7.0 2.0 2.5 1.275

––

––

0.5 ––

200 0.8 2 7 5 PQ07VZ5M2Z

PQ07VZ012Z

VIN

Vo RegL

RegI Vref

TC Vref

RR Vi-O

VC(ON) IC(ON) VC(OFF)

IC(OFF) Iq

Iqs

Output voltage Input voltage

Load regulation Line regulation Reference voltage

Temperature coefficient of reference voltage Ripple rejection

Dropout voltage

OFF-state voltage for control Quiescent current

Output OFF-state consumption current ON-state current for control OFF-state current for control ON-state voltage for control

2

Fig. 3 Power Dissipation vs. Ambient Temperature

Oblique line portion : Overheat protection may operate in this area.

0 –20 0

PD

PD:With infinite heat sink

80

50 100 150

5 10

Power dissipation PD (W)

Ambient temperature Ta (˚C)

(3)

Fig. 4 Overcurrent Protection Characteristics (Typical Value) (PQ07VZ5M2Z)

Fig. 6 Output Voltage Adjustment Characteristics

Relative output voltage (%)

Output current IO (A) 0

20 40 60 80 100

0.5 1.0 1.5 2.0 2.5

0

0.1 1 10 100 1000

1 2 3 4 5 6 7 8

Output voltage VO (V)

R2 (kΩ) R1=1kΩ

Fig. 7 Reference Voltage Deviation vs. Junction Temperature (Typical Value)

Fig. 8 Output Voltage vs. Input Voltage (PQ07VZ5M2Z)

00 1 2 3 4 5 6 7

1 2 3 4

RL=∞

RL=6Ω RL=10Ω

Output voltage VO (V)

Input voltage VIN (V) Ta=25˚C, Vc=2.7V

VO=3V(R1=1kΩ,R2=1.4kΩ)

0 25 50 75 100 125

–6 –2 2 6

–8 –4 0 4

8 VIN=5V, Vc=2.7V

Vo=3V(R1=1kΩ,R2=1.4kΩ) Io=0.3A (PQ07VZ5M2Z) Io=0.5A (PQ07VZ012Z) 10

Reference voltage deviation ∆Vref(mV)

Junction temperature Tj (˚C) –10

–25

PQ7VZ012Z

PQ07VZ5M2Z

Fig. 5 Overcurrent Protection Characteristics (Typical Value) (PQ07VZ012Z)

Relative output voltage (%)

Output current IO (A) 0

20 40 60 80 100

0.5 1.0 1.5 2.0 2.5

Fig. 9 Output Voltage vs. Input Voltage (PQ07VZ012Z)

00 1 2 3 4 5 6 7

1 2 3 4

Output voltage VO (V)

Input voltage VIN (V) Ta=25˚C, Vc=2.7V

Vo=3V(R1=1kΩ,R2=1.4kΩ) RL=∞

RL=3Ω RL=6Ω

(4)

Fig.10 Circuit Operating Current vs. Input Voltage (PQ07VZ5M2Z)

0

0 1 2 3 4 5 6 7

10 20 30

Ta=25˚C Vc=2.7V (R1=1kΩ, R2=1.4kΩ)

Circuit operating current IBIAS (mA)

Input voltage VIN (V) RL=∞ RL=10Ω RL=6Ω

Fig.11 Circuit Operating Current vs. Input Voltage (PQ07VZ012Z)

Fig.12 Dropout Voltage vs. Junction Temperature (Typical Value) (PQ07VZ5M2Z)

–25 0 25 50 75 100 125

0.16

0.15

0.13 0.14

0.12

0.11

Dropout voltage ViO (V)

Junction temperature Tj (˚C) VIN =2.85V, Vc=2.7V

VO=3V(R1=1kΩ,R2=1.4kΩ)

Io=0.3A

Fig.13 Dropout Voltage vs. Junction Temperature (Typical Value) (PQ07VZ012Z)

–25 0 25 50 75 100 125

0.16

0.15

0.13 0.14

0.12

0.11

Dropout voltage ViO (V)

Junction temperature Tj (˚C) VIN =2.85V, Vc=2.7V

VO=3V(R1=1kΩ,R2=1.4kΩ)

IO=0.5A

Fig.14 Quiescent Current vs. Junction Temperature (Typical Value)

2.9

–25 0 25 50 75 100 125

3.4

3.2 3.1 3.0 3.5

3.3

VIN =5V, Vc=2.7V Vo=3V(R1=1kΩ,R2=1.4kΩ) Io=0.3A

3.6

Quiescent current Iq(mA)

Junction temperature Tj (˚C) PQ07VZ5M2Z

PQ07VZ012Z

0

0 1 2 3 4 5 6 7

10 20 30

Ta=25˚C Vc=2.7V (R1=1kΩ, R2=1.4kΩ)

Circuit operating current IBIAS (mA)

Input voltage VIN (V) RL=∞ RL=6Ω

RL=3Ω

Fig.15 Ripple Rejection vs. Input Ripple Frequency

0

0.1 1 10 100

20 40 60

10 30 50 70

Input ripple frequency f(kHz) VIN=5V, Vc=2.7V

Vo=3V(R1=1kΩ,R2=1.4kΩ) Io=0.3A, Co=47µF ei(rms)=0.5V

Ripple rejection RR (dB)

PQ07VZ012Z PQ07VZ5M2Z

(5)

Fig.16 Ripple Rejection vs. Output Current (PQ07VZ5M2Z)

PQ07VZ012Z PQ07VZ5M2Z

Tj=25˚C, VIN=5V, Vc=2.7V ei(rms)=0.5V

f=120Hz (sine wave) R1=1kΩ, R2=1.4kΩ, Co=47µF

Output current IO (A)

Ripple rejection RR (dB)

0 0.2 0.4 0.6 0.8 1.0

10 20 30 40 50 60 70 80 90 100

Typical Application

CO

VIN CIN

+ Vo

R2 R1

1KΩ Load

ON/OFF signal High : Output ON Low or Open: Output OFF

1

5 3

4 2

DC input

PQ07VZ012ZZ PQ07VZ012ZP Output current Sleeve-packaged products Tape-packaged products

PQ07VZ5M2ZZ PQ07VZ5M2ZP 0.5A output

1.0A output

Model Line-ups for Tape-packaged Products Fig.17 Rower Dissipation vs. Ambient

Temperature (Typical Value)

Cu area 740mm2

Cu area 180mm2 Cu area 100mm2 Cu area 70mm2 Cu area 36mm2

Power dissipation PD (W)

Ambient temperature Ta (˚C)

–20 0

0 1 2 3

20 40 60 80 100

PWB

Material : Glass-cloth epoxy resin Size : 50x50x1.6mm Cu thickness : 35µm

PWB Cu

(6)

The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.

Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:

(i) The devices in this publication are designed for use in general electronic equipment designs such as:

- - - Personal computers - - - Office automation equipment

- - - Telecommunication equipment [terminal]

- - - Test and measurement equipment - - - Industrial control

- - - Audio visual equipment - - - Consumer electronics

(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- - - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - - - Traffic signals

- - - Gas leakage sensor breakers - - - Alarm equipment

- - - Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- - - Space applications

- - - Telecommunication equipment [trunk lines]

- - - Nuclear power control equipment

- - - Medical and other life support equipment (e.g., scuba).

Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.

If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.

This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

Cytaty

Powiązane dokumenty

Choć więc rozumienie nie-ludzkich Innych pojęte po Gadamerowsku jako „mówienie w  ich imieniu” lub też po Heideggerowsku jako „przytomność” wobec nich

A le w tej sytuacji, która jest dwustronna, inni też wiedzą, że jestem obiektem, który w ie, że na niego się patrzy (za:.. Synder,

In principe is voor de halzijde de modelopstelling gelijk aan die van de halzijde bij Proevenserie Y, met deze aantekening dat de zijkanten van het geotextiel zodanig in de klei

W projekcie przedstawiono proces wykonywania trójwymiarowego modelu budowy geologicznej obszaru Tarnowskich Gór, na podstawie danych zawartych w pracy Lewandowskiego

Zwrot pożyczonych akcji.. w których pozycja jest otwierana i zamykana tego samego dnia. Jej zaletą jest to, że jest ona tańsza dla inwestora niż krótka sprzedaż z

Przed autorami scenariusza wystawy (J. Tabaka) oraz jej plastycznej oprawy (W. Kujawa) stanęło zadanie wydobycia z zabytkowych materiałów tytułowego m iejsca

In one of the earliest works in this field, Einstein showed that, for a dilute suspension of rigid particles in a Newtonian fluid with negligible inertia, the relative increase

A trick that uses a mathematical model to arrange ultrasound images of diseased coronary arteries in the correct sequence.. by Astrid van