• Nie Znaleziono Wyników

Intrinsic ultracontractivity for isotropic stable processes

N/A
N/A
Protected

Academic year: 2022

Share "Intrinsic ultracontractivity for isotropic stable processes"

Copied!
21
0
0

Pełen tekst

(1)

Intrinsic ultracontractivity for isotropic stable processes

in unbounded domains

Mateusz Kwa´snicki

mateusz.kwasnicki@pwr.wroc.pl Institute of Mathematics and Computer Science

Wroc law University of Technology

Based on:

MK, Intrinsic ultracontractivity for stable semigroups on unbounded open sets, preprint;

K. Bogdan, T. Kulczycki, MK, Estimates and structure of α-harmonic functions, Probab. Theory Rel. Fields 140 (2008).

(2)

Basic definitions d = 1, 2, 3, ...

D ⊆ Rd — open (unbounded)

(Xt) — isotropic α-stable process in Rd, α ∈ (0, 2) E0ei ξ Xt = e−t |ξ|α

Exf (Xt) = Z

pt(y − x ) f (y ) dy pt(y − x )  C min



tαd, t

|y − x|d +α



νx(y ) = Ad ,−α

|y − x|d +α νx(E ) =

Z

E

νx(y ) dy

(3)

Definition

For p : R+ → R+, definehorn-shaped region (HSR):

Dp=n

(x1, ˜x ) ∈ Rd : x1 > 0 , |˜x | < p(x1)o .

Definition

HSR Dp is nondegenerateif for some κ > 0,

p(u) > 0 =⇒ ∃x : (u, 0, ..., 0) ∈ B(x, κ p(u)) ⊆ Dp.

(4)

Killed process

τD — first exit time from D, τD = inf {t ≥ 0 : Xt ∈ D}/

(PtD) — semigroup of (Xt) killed upon exiting D, PtDf (x ) = Ex



f (Xt) ; t < τD



= Z

D

pDt (x , y ) f (y ) dy f ∈ L2(D) pDt positive, continuous and bounded on D × D νx(Dc) — killing intensity

(5)

Theorem (MK)

PtD are compact ⇐⇒ lim

|x|→∞ExτD = 0 . Remark: This holds true also for the Brownian motion

Theorem (MK)

PtD are compact ⇐= lim

|x|→∞νx(Dc) = ∞ .

Example

For nondegenerate HSR D = Dp, PtD are compact ⇐⇒ lim

u→∞p(u) = 0 .

(6)

From now on we assume thatPtD are compact There exists a complete orthonormal sequence (ϕn):

PtDϕn= e−λntϕn 0 < λ1 < λ2≤ λ3 ≤ ... → ∞

Theorem (MK)

ϕ1(x )  C (D) ExτD

(1 + |x |)d +α.

Remark: ExτD islocal:

ExτD  C (D) ExτD∩B(x ,1)

(7)

From now on we assume thatPtD are compact There exists a complete orthonormal sequence (ϕn):

PtDϕn= e−λntϕn 0 < λ1 < λ2≤ λ3 ≤ ... → ∞

Theorem (MK)

ϕ1(x )  C (D) ExτD

(1 + |x |)d +α.

Proposition (MK)

For a HSR D = Dp with sufficiently smooth p, ExτD  C (D)

f (x1)2− |˜x |2α2 .

(8)

Definition

(PtD) is said to be intrinsically ultracontractive (IU) if pDt (x , y ) ≤ C (D, t) ϕ1(x ) ϕ1(y ) .

(PtD) is IU if

D is bounded with smooth boundary (Chen,Song, 1997) D is bounded (Kulczycki, 1998)

If (PtD) is IU, then sup

x ,y ∈D

ptD(x , y )

e−λ1tϕ1(x ) ϕ1(y )− 1

 C (D) e−(λ2−λ1) t (t ≥ 1)

(9)

Theorem (MK)

The following are equivalent:

(a) (PtD) is IU;

(b) pDt (x , y ) ≤ C (D, t)

(1 + |x |)d +α(1 + |y |)d +α.

(c) sup

x

PxD\B(0,r )> t) ≤ C (D, t) (1 + r )d +α.

Corollary

D1 ⊆ D2, (PtD2) is IU =⇒ (PtD1) is IU .

Corollary

(PtD) is IU =⇒ PtD are Hilbert-Schmidt operators .

(10)

Theorem (MK)

The following are equivalent:

(a) (PtD) is IU;

(b) pDt (x , y ) ≤ C (D, t)

(1 + |x |)d +α(1 + |y |)d +α; (c) sup

x

PxD\B(0,r )> t) ≤ C (D, t) (1 + r )d +α.

Remark: Condition (c) is local at infinity

(11)

Theorem (MK)

The following are equivalent:

(a) (PtD) is IU;

(b) pDt (x , y ) ≤ C (D, t)

(1 + |x |)d +α(1 + |y |)d +α; (c) sup

x

PxD\B(0,r )> t) ≤ C (D, t) (1 + r )d +α.

Theorem (MK)

(PtD) is IU ⇐= lim

|x|→∞

νx(Dc) log |x | = ∞ , (PtD) is IU =⇒ lim

|x|→∞dist(x , ∂D) (log |x |)α1 = 0 .

(12)

Corollary

For a nondegenerate HSR D = Dp, (PtD) is IU ⇐⇒ lim

u→∞(log u)α1p(u) = 0 .

Example

If p(u) ∼ u−q (q > 0), then (PtD) is IU.

If p(u) ∼ (log u)−q, then

(PtD) is IU ⇐⇒ q > 1 α.

Example If D =

[

n=1

B(xn, rn), (disjoint balls, xn= (un, 0, ..., 0)), then (PtD) is IU ⇐⇒ lim

n→∞rnαlog un= 0 .

(13)
(14)

Example

Let kn= 2n, qn = (n + 1)−d−1 and D =

(

x ∈ Rd : |x | ∈

[

n=0 kn−1

[

m=0



n +m + qn

kn

, n + m + 1 kn

)

;

then (PtD) is IU, but |Dc| < ∞.

(15)

Boundary Harnack inequality (K. Bogdan, T. Kulczycki, MK) If

f , g ≥ 0 and f = g = 0 on B(0, 2) \ D, f (x ) = Exf (X (τD)), g (x ) = Exg (X (τD));

then f (x )

g (x ) ≤ C f (y )

g (y ) for x , y ∈ B(0, 1) ∩ D.

B(0, 2) D

B(0, 1) 0 x y

(16)

Boundary Harnack inequality (K. Bogdan, T. Kulczycki, MK) If

f , g ≥ 0 and f = g = 0 on B(0, 2) \ D, f (x ) = Exf (X (τD)), g (x ) = Exg (X (τD));

then f (x )

g (x ) ≤ C f (y )

g (y ) for x , y ∈ B(0, 1) ∩ D.

Remarks:

C does not depend on D

No smoothness assumptions on ∂D History:

D Lipschitz, C = C (D) (Bogdan, 1997) D arbitrary, C = C (D) (Song,Wu, 1999)

(17)

Boundary Harnack inequality (K. Bogdan, T. Kulczycki, MK) If

f , g ≥ 0 and f = g = 0 on B(0, 2) \ D, f (x ) = Exf (X (τD)), g (x ) = Exg (X (τD));

then f (x )

g (x ) ≤ C f (y )

g (y ) for x , y ∈ B(0, 1) ∩ D.

Key lemma (K. Bogdan, T. Kulczycki, MK) Under the same hypotheses,

f (x )  C



ExτD∩B(0,2)

 Z

D\B(0,1)

f (y ) ν0(y ) dy

!

for x ∈ B(0, 1) ∩ D.

(18)

Definitions

For x , y ∈ D, z ∈ Dc, w ∈ ∂D, GD(x , y ) =

Z 0

ptD(x , y ) dt —Green function PD(x , z) =

Z

D

GD(x , y ) νy(z) dy — ‘Poisson kernel’

MD(x , w ) = lim

y →w

GD(x , y )

GD(x0, y ) — Martin kernel

Theorem (K. Bogdan, T. Kulczycki, MK) (i) MD(x , w ) exists for all w ∈ ∂D;

(i) MD(·, w ) is α-harmonic in D ⇐⇒ w ∈ ∂MD, where

MD =



w ∈ ∂D : Z

D

νy(w ) EyτDdy = ∞

 .

(19)

MD =



w ∈ ∂D : Z

D

νw(y ) EyτDdy = ∞

 .

Example

For p : (0, 1) → [0, ∞) nondecreasing, definethorn:

Dp=n

(x1, ˜x ) ∈ Rd : 0 < x1 < 1 , |˜x | < p(x1)o . Then

0 ∈ ∂MDf ⇐⇒

Z 1 0

(p(u))d +α−1

ud +α du = ∞ .

For p(u) ∼ u| log u|−q: 0 ∈ ∂MD ⇐⇒ q ≤ 1

d + α − 1

(20)

Theorem (K. Bogdan, T. Kulczycki, MK) If f ≥ 0 is α-harmonic in D, then

f (x ) = Z

Dc

PD(x , z) f (z) dz + Z

MD

MD(x , w ) µ(dw ) . The representation is unique.

Remarks:

|∂MD| = 0

PD(x , ·) is density of Px-distribution of X (τD) on Dc\ ∂MD (Ikeda, Watanabe: on Dc\ ∂D)

(21)

A different point of view

A function f ≥ 0 isα-harmonicin D with outer chargeλ if f (x ) =

Z

Dc

PD(x , z) λ(dz) + Z

MD

MD(x , w ) µ(dw )

= PDλ(x ) + MDµ(x ) . (λ — a measure on Dc\ ∂MD)

Boundary Harnack inequality If

f = PDλ + MDµ, g = PDλ0+ MDµ0,

λ(B(0, 2)) = λ0(B(0, 2)) = µ(B(0, 2)) = µ0(B(0, 2)) = 0, then

f (x )

g (x ) ≤ C f (y )

g (y ) for x , y ∈ B(0, 1) ∩ D.

Cytaty

Powiązane dokumenty

In this paper we present a result on convergence of approximate solutions of stochastic differential equations involving integrals with respect to α-stable L´evy motion.. We prove

tions are exactly the boundary values ol those quasiconformal mappings of the upper half plane onto itself that fix the point at infinity (1 ]..

Przez najbliższy czas nie będziemy się spotykać, ale my chciałybyśmy, abyście spotkali się ze Słowem Bożym.. Jak

Let us observe that in [5] the authors prove that while applying the augmenting graph technique one can treat banner-free graphs (a banner has vertices a, b, c, d, e and edges ab,

In [13, Theorem 3.1], we proved that if f : X → X is an expansive homeomorphism of a compactum X with dim X &gt; 0, then there is a closed subset Z of X such that each component of Z

Generalization of a theorem of Hardy and Littlewood... Generalization of Ziziashvili’s

This also helps to characterise some semilattices for which the associated partial order is strongly continuous (Proposition 10).. The relevant definitions appear

We use M as a monster model used in “classical” stabil- ity theory and so as in [HS], we assume that |M| is strongly inaccessible (= regular and strong limit) and &gt; |L|, where |L|