• Nie Znaleziono Wyników

(1) f. (2) f. (Q n ; n Z >0 ) f Q j =sup{ f(x) Q j (x) ; x I} 0(n ) (4) f I. a n (x c) n (1) (2) Q 1 = P 1,Q j = P j P j 1 (j 2) (3) (4) (2) (3)

N/A
N/A
Protected

Academic year: 2022

Share "(1) f. (2) f. (Q n ; n Z >0 ) f Q j =sup{ f(x) Q j (x) ; x I} 0(n ) (4) f I. a n (x c) n (1) (2) Q 1 = P 1,Q j = P j P j 1 (j 2) (3) (4) (2) (3)"

Copied!
19
0
0

Pełen tekst

(1)

ίϯύΫτू߹্ͷ࿈ଓവ਺ͷ੒ۭؒ͢ͷ᜚ີ෦෼ू߹

ฏ੒ 26 ೥ 8 ݄ খᖒɹప http://www.ozawa.phys.waseda.ac.jp/index2.html

ίϯύΫτू߹্ͷ࿈ଓവ਺͕ଟ߲ࣜͷҰ༷ऩଋۃݶͱͯ͠ಛ௃෇͚ΒΕΔঢ়گʹ͍ͭͯ

వΊͯஔ͜͏ɻ

̍ɽ༗քด্۠ؒͷ࣮਺஋࿈ଓവ਺ɹ

ఆཧ̍ʢϫΠΤϧετϥεʣɹ༗քด۠ؒ I = [a, b]⊂ R ্ͷ࣮਺஋വ਺ f : I → R ʹର͠

࣍͸ಉ஋Ͱ͋Δɻ (1) f ͸࿈ଓͰ͋Δ

(2) f ͸Ұ༷࿈ଓͰ͋Δɻ

(3) f ͸ଟ߲ࣜͷྻͷ I ্ͷҰ༷ऩଋۃݶͰ͋Δɻଈͪɺଟ߲ࣜͷྻ

(Pn; n∈ Z>0) ͕ଘࡏ͠f − Pn = sup{|f(x) − Pn(x)|; x ∈ I} → 0(n → ∞) ͱͳΔɻ (4) f ͸ଟ߲ࣜΛ߲ͱ͢Δແݶڃ਺ͷ I ্ͷҰ༷ऩଋۃݶͰ͋Δɻଈͪɺଟ߲ࣜͷྻ

(Qn; n ∈ Z>0) ͕ଘࡏ͠f −

n j=1

Qj = sup{|f(x) −

n j=1

Qj(x)|; x ∈ I} → 0(n → ∞) ͱͳΔɻ

மɹ (4) ͸ f ͕ I ͷҰͭͷ಺఺ c Λத৺ͱ͢Δ୯߲ࣜ an(x− c)nΛ߲ͱ͢Δແݶڃ਺

 n=0

an(x− c)n ʢͷҰ༷ऩଋۃݶʣͱͯ͠ද͞ΕΔͱओு͍ͯ͠Δ༁Ͱ͸ͳ͍ɻ΋ͦ͠͏ͳ Β f ͸ IntI ্࣮ղੳͱͳΓ Cͱͳͬͯ͠·͍ໃ६Ͱ͋Δɻ

ʢূ໌ʣɹίϯύΫτͳڑ཭্ۭؒͷ࿈ଓവ਺͸Ұ༷࿈ଓͰ͋Δ͔Β (1) ⇔ (2) ͕ै͍ɺଟ߲

ࣜ͸࿈ଓͰ͋Δ͔Β (3)⇒ (1) ͕ै͍ɺଟ߲ࣜͷ༗ݶ࿨͸ଟ߲ࣜͰ͋Δ͔Β (4) ⇒ (3) ͕ै͍

Q1 = P1, Qj = Pj − Pj−1(j ≥ 2) ͱ͢Ε͹ (3) ⇒ (4) ͕ै͏ɻނʹ (2) ⇒ (3) Λࣔͤ͹ྑ͍ɻ

೚ҙͷ ε > 0 ʹର͠ δ > 0 ͕ଘࡏ͠|x − y| < δ ͳΔ೚ҙͷ x, y ∈ I ʹର͠ |f(x) − f(y)| < ε ͕

੒ཱͭɻͯ͞ 0 <|Δ| ≡ max

1≤j≤m(xj − xj−1) < δ ͳΔ I ͷ෼ׂ Δ : a = x0 < x1 <· · · < xm = b ΛҰͭऔΓ Ij = [xj−1, xj],

fm(x) = f (a) +

m−1

j=0

(dj− dj−1) max(x− xj, 0), x∈ I, dj = (f (xj+1)− f(xj))/(xj+1− xj), j ≥ 0; d−1 = 0

(2)

ͱஔ͘ɻ͜ͷͱ͖ x∈ Ikʹର͠౳ࣜ

fm(x) = f (a) +

k−1 j=0

(dj− dj−1)(x− xj)

= f (a) +

k−1 j=0

dj(x− xj)

k−2 j=0

dj(x− xj+1)

= f (a) +

k−2 j=0

dj(xj+1− xj) + dk−1(x− xk−1)

= f (x0) +

k−2 j=0

(f (xj+1)− f(xj)) + dk−1(x− xk−1)

= f (xk−1) + f (xk)− f(xk−1)

xk− xk−1 (x− xk−1)

͕੒ཱͭɻ͜ΕΑΓ x∈ Ikʹର͠

f (x)− fm(x) = f (x)−

 x− xk−1

xk− xk−1f (xk) + xk− x

xk− xk−1f (xk−1)



= x− xk−1

xk− xk−1(f (x)− f(xk)) + xk− x

xk− xk−1(f (x)− f(xk−1)) ͱͳΔͷͰ

|f(x) − fm(x)| ≤ sup

0≤θ≤1

(θ|f(x) − f(xk)| + (1 − θ)|f(x) − f(xk−1)|)

≤ sup

0≤θ≤1

(θ sup

ξ,η∈Ik

|f(ξ) − f(η)| + (1 − θ) sup

ξ,η∈Ik

|f(ξ) − f(η)|)

= sup

ξ,η∈Ik

|f(ξ) − f(η)|

ΑΓ

f − fm = max

1≤k≤msup

x∈Ik

|f(x) − fm(x)|

≤ max

1≤k≤m sup

ξ,η∈Ik

|f(ξ) − f(η)| ≤ ε

ΛಘΔɻͯ͞

max(x− xj, 0) = 1

2((x− xj) +|x − xj|)

ΑΓ֤ j ʹର͠τxj| · | − Qnj → 0(n → ∞) ͳΔଟ߲ࣜͷྻ (Qnj; n ∈ Z>0) ͕ଘࡏ͢Ε͹

ʢୠ͠ τxj|x| = |x − xj|, x ∈ I ͱ͢Δʣ

Pn(x) = f (a) +

m−1

j=1

(dj − dj−1)1

2((x− xj) + Qnj(x))

= fm(x) +

m−1

j=1

(dj− dj−1)(Qnj(x)− |x − xj|)

(3)

Ͱఆ·Δଟ߲ࣜ Pn͸

f − Pn ≤ f − fm+

m−1

j=1

|dj − dj−1Qnj − τxj| · |

ΑΓ

lim sup

n→∞ f − Pn≤ f − fm ≤ ε

Λຬͨ͢ͷͰ (2)⇒ (3) ͕ࣔ͞ΕΔࣄͱͳΔɻͦ͜Ͱ࣍ͷิ୊ΛऔΓ্͛Δɻ

ิ୊̍ɹઈର஋ʹ෇ਵ͢Δവ਺ x → |x| ͸༗քด۠ؒ [−1, 1] ্Ͱଟ߲ࣜͷҰ༷ऩଋۃݶͱ͠

ͯද͞ΕΔɻଈͪଟ߲ࣜͷྻ (Pn; n∈ Z>0) ͕ଘࡏ͠

| · | − Pn = sup{||x| − Pn(x)| ; |x| ≤ 1} → 0(n → ∞) ͱͳΔɻ

ิ୊̍Λࣔͤ͹ॆ෼Ͱ͋Δ͜ͱɿɹ্ͷ Pnʹର͠ Qnj(x) = (b− a)Pnx−xj

b−a

ٴͼ ξ = x−xb−aj ͱஔ͚͹|ξ| ≤ 1 Ͱ x = xj + (b− a)ξ ͱͳΓ

xj| · | − Qnj= sup{||x − xj| − Qnj(x)|; a ≤ x ≤ b}

≤ sup{||(b − a)ξ| − Qnj(xj+ (b− a)ξ)|; |ξ| ≤ 1}

= (b− a) sup{ξ| − Pn(ξ)|; |ξ| ≤ 1} → 0 (n → ∞)

͕ै͏ɻ

ิ୊̍ͷূ໌ʢͦͷ̍ʣɿɹ|t| ≤ 1 ͳΔ t ʹର͠ (1 − t)1/2ͷϚΫϩʔϦϯల։Λߟ͑Δɿ (1− t)1/2 = 1

 n=1

(2n− 3)!!

(2n)!! tn= 1 +

 n=1



1 2

 1 2



· · ·

2n− 3 2

tn n!

an= (2n−3)!!(2n)!! ͱ͢Ε͹ an

an−1 = (2n−3)!!(2n−5)!!(2n−2)!!(2n)!! = 2n−32n = 1 2n3 Ͱ͋Δ͔ΒΨ΢εͷ൑ఆ๏ʹڌ Γӈลͷແݶڃ਺͸ [−1, 1] ্Ұ༷ʹઈରऩଋ͢Δɻt = 1 − x2ͱ͢Ε͹ [−1, 1] ্

|x| = 1 −

 n=1

(2n− 3)!!

(2n)!! (1− x2)n

͕੒ཱͪӈลͷແݶڃ਺͸ [−1, 1] ্Ұ༷ʹઈରऩଋ͢Δɻ

ิ୊̍ͷূ໌ʢͦͷ̎ʣɿɹଟ߲ࣜͷྻ (pn; n ∈ Z≥0) Λ p0(x) = 0, n ≥ 1 ʹର͠ pn(x) = pn−1(x)+12(x−pn−1(x)2) ͱؼೲతʹఆٛ͢Δɻ͜ͷͱ͖೚ҙͷ x∈ [−1, 1] ٴͼ೚ҙͷ n ∈ Z≥0

ʹର͠ෆ౳ࣜ

0≤ |x| − pn(x2) 2|x|

2 + n|x|

͕੒ཱͭࣄΛ n ʹؔ͢Δؼೲ๏Ͱࣔͦ͏ɻn = 0 ͷ৔߹͸ޙ൒ͷෆ౳ࣜ͸౳ࣜͱͯ͠੒ཱͭɻ n− 1 ͷ৔߹ɺଈͪෆ౳ࣜ

0≤ |x| − pn−1(x2) 2|x|

2 + (n− 1)|x|

(4)

ΛԾఆ͢Δɻͯ͞

|x| − pn(x2) = |x| − pn−1(x2)1

2(x2− pn−1(x2)2)

= (|x| − pn−1(x2))(1 1

2(|x| + pn−1(x2)))

= (|x| − pn−1(x2))(1− |x| + 1

2(|x| − pn−1(x2)))

ͷ࠷ޙͷ౳ࣜͷӈลͷ֤߲͸ؼೲ๏ͷԾఆͷલ൒ͷෆ౳ࣜΑΓશͯඇෛͱͳΔͷͰ|x| − pn(x2)≥ 0 ͕ै͏ɻҰํɺؼೲ๏ͷԾఆͷޙ൒ͷෆ౳ࣜΑΓ

|x| − pn(x2) 2|x|

2 + (n− 1)|x| ·



1− |x| + |x|

2 + (n− 1)|x|



= 2|x|

2 + (n− 1)|x| ·2 + (n− 2)|x| − (n − 1)x2 2 + (n− 1)|x|

2|x|(2 + (n − 2)|x|)

(2 + (n− 1)|x|)2 2|x|(2 + (n − 2)|x|)

(2 + (n− 1)|x|)2− |x|2 = 2|x|

2 + n|x|

͕ै͏ͷͰؼೲ๏͸׬݁͢Δɻͦ͜Ͱ Pn(x) = pn(x2) ͱஔ͚͹| · | − Pn≤ 2/n ͱͳΓิ

୊͕̍ै͏ɻ

மɿɹଟ߲ࣜͷྻ (pn; n ∈ Z≥0) ͸ฏํࠜ [0, 1] x →

x∈ R ͷۙࣅྻͰ͋Γ (Φ(p))(x) = p(x) + 1

2(x− p(x)2) Ͱఆ·Δࣸ૾

Φ : C([0, 1];R) → C([0, 1]; R) ͷෆಈ఺ x →√

x ʹऩଋ͢ΔϐΧϧͷஞ࣍ۙࣅྻͰ͋Δɻ

ิ୊̍ͷূ໌ʢͦͷ̏ʣɿɹ Kuhn ʹैͬͯ Pn(x) = x

1− 2(1 −x+1

2

2n

ͱ͢Ε͹ྑ͍ࣄ Λࣔͦ͏ɻҎԼɺϕϧψΠͷෆ౳ࣜ (1 + x)n ≥ 1 + nx(x ≥ −1, n ∈ Z>0) Λ༻͍Δɻ؆୯ͷ ҝ Qn(x) = (1− xn)2nͱஔ͘ɻx∈ (0, 1] ʹର͠

|x| − Pn(x) = x− Pn(x) = x

 1



1− 2Qn

x + 1 2



= 2xQn

x + 1 2



≥ 0

Ͱ͋Δ͔Βɺ౳ࣜ

x| − Pn(x)| = 2xQn

x + 1 2



͕ै͏ɻx∈ [−1, 0) ʹର͠

|x| − Pn(x) =−x − Pn(x) =−x

 1 +



1− 2Qn

x + 1 2



= 2|x|



1− Qn

x + 1 2



≥ 0

(5)

Ͱ͋Δ͔Βɺ౳ࣜ

x| − Pn(x)| = 2|x|



1− 2Qn

x + 1 2



͕ै͏ɻ0 < δ < 1 ͳΔ೚ҙͷ δ ΛऔΔɻx ∈ [−1, −δ] ʹର͠ 0 ≤ x+1

2

n

1−δ

2

n

Ͱ͋Δ

͔Β

1≥ Qn

x + 1 2



=

 1

x + 1 2

n2n

≥ 1 − 2n

x + 1 2

n

≥ 1 − (1 − δ)n

ͱͳΓ

sup{||x| − Pn(x)|; x ∈ [−1, δ]} = sup{2|x|



1− Qn

x + 1 2



; x∈ [−1, −δ]}

≤ 2(1 − δ)n

͕ै͏ɻx∈ [δ, 1] ʹର͠

0≤ Qn

1 + x 2



= 1 (1 + x)n

 1

1 + x 2

n2n

(1 + x)n

1

(1 + x)n

 1

1 + x 2

n2n 1 + 2n

1 + x 2

n

1

(1 + x)n

 1

1 + x 2

n2n 1 +

1 + x 2

n2n

1

(1 + x)n

1

1 + x 2

2n 2n

1

(1 + x)n 1 (1 + δ)n ͱͳΓ

sup{||x| − Pn(x)|; x ∈ [δ, 1]} = sup{2xQn

1 + x 2



; x∈ [δ, 1]}

≤ 2(1 + δ)−n

͕ै͏ɻ·ͨ

sup{||x| − Pn(x)|; x ∈ [0, δ]} = sup{2xQn

1 + x 2



; x∈ [0, δ]} ≤ 2δ, sup{||x| − Pn(x)|; x ∈ [−δ, 0]} = sup{2|x|



1− Qn

1 + x 2



; x∈ [−δ, 0]} ≤ 2δ ͱͳΔɻैͬͯ

| · | − Pn≤ 4δ + 2(1 − δ)n+ 2(1 + δ)−n ΛಘΔɻ͜ΕΑΓ

lim sup

n→∞ | · | − Pn≤ 4δ ΛಘΔɻδ > 0 ͸೚ҙނิ୊͕̍ै͏ɻ

(6)

̎ɽϕϧϯγϡλΠϯଟ߲ࣜ

f ∈ C([0, 1]; R) ʹର͢Δ n ࣍ϕϧϯγϡλΠϯଟ߲ࣜ Bn(f ) Λ

(Bn(f ))(x) =

n k=0

f

k n

 n k



xk(1− x)n−k

ͰఆΊΔɻ

ఆཧ̎ʢϕϧγϡλΠϯଟ߲ࣜʹґΔϫΠΤϧετϥεͷఆཧʣɹ༗քด۠ؒ I = [0, 1] ্ ͷ೚ҙͷ࿈ଓവ਺ f ∈ C(I; R) ͸ϕϧϯγϡλΠϯଟ߲ࣜͷྻ (Bn(f ); n∈ Z≥0) ͷ I ্ͷҰ

༷ऩଋۃݶͱͯ͠ද͞ΕΔɿ

f − Bn(f ) = sup{|f(x) − (Bn(f ))(x)|; x ∈ I} → 0 (n → ∞)

ʢূ໌ʣɹ࣍ͷิ୊Λ༻͍Δɻ

ิ୊̎ɹ࣍ͷ౳͕ࣜ੒ཱͭɿ (1)

n k=0

n k



xk(1− x)n−k = 1

(2)

n k=0

k

n k



xk(1− x)n−k = nx

(3)

n k=0

k2

n k



xk(1− x)n−k = n(n− 1)x2+ nx

ิ୊̎ͷূ໌ʢͦͷ̍ʣɹ (1) ͸ x ͱ 1− x ʹΑΔೋ߲ల։Ͱ͋Γn

k=0

n k



xk(1− x)n−k = (x + (1− x))n = 1 ΑΓै͏ɻ(2) ͸

n k=0

k

n k



xk(1− x)n−k =

n k=1

k

n k



xk(1− x)n−k =

n k=1

k n!

k!(n− k)!xk(1− x)n−k

=

n k=1

n· (n − 1)!

(k− 1)!(n − k)!xk(1− x)n−k = nx

n k=1

(n− 1)!

(k− 1)!(n − k)!xk−1(1− x)n−k

= nx

n k=1

n− 1 k− 1



xk−1(1− x)n−1−(k−1) = nx

n−1 k=0

n− 1 k



xk(1− x)n−1−k

= nx(x + (1− x))n−1 = nx

(7)

ΑΓै͏ɻಉ༷ʹ

n k=0

k(k− 1)

n k



xk(1− x)n−k =

n k=2

k(k− 1)

n k



xk(1− x)n−k

=

n k=2

k(k− 1) n!

k!(n− k)!xk(1− x)n−k = n(n− 1)x2n

k=2

(n− 2)!

(k− 2)!(n − k)!xk−n(1− x)n−k

= n(n− 1)x2

n k=2

n− 2 k− 2



xk−2(1− x)n−2−(k−2)= n(n− 1)x2

n−2 k=0

n− 2 k



xk(1− x)n−2−k

= n(n− 1)x2(x + (1− x))n−2= n(n− 1)x2 ΛಘΔͷͰ (2) ͱลʑ଍͠߹ͤΔͱ (3) ͕ै͏ɻ

ิ୊̎ͷূ໌ʢͦͷ̎ʣɹ t∈ R ʹର͠

(xet+ (1− x))n =

n k=0

n k



ektxk(1− x)n−k Λߟ͑Δɻt Ͱ྆ลΛඍ෼ͯ͠

nxet(xet+ (1− x))n−1 =

n k=0

k

n k



ektxk(1− x)n−k ΛಘΔͷͰ΋͏Ұճ྆ลΛඍ෼ͯ͠

n(n− 1)x2e2t(xet+ (1− x))n−2+ nxet(xet+ (1− x))n−1 =

n k=0

k2

n k



ektxk(1− x)n−k ΛಘΔɻ͜ΕΒͷ౳ࣜͰ t = 0 ͱஔ͍ͨ΋ͷ͸ิ୊̎ͷ౳ࣜʹ֎ͳΒͳ͍ɻ

ఆཧ̎ͷূ໌ɹ 0 < δ < 1 ͳΔ δ Λ೚ҙʹऔΓ

|f(x) − (Bn(f ))(x)| =

n k=0



f (x)− f

k n

 n k



xk(1− x)n−k

n

k=0

f(x) − f k n

  n k



xk(1− x)n−k

= 

0≤k≤n

|x−k/n|<δ

+ 

0≤k≤n

|x−k/n|≥δ

f(x) − f k n

  n k



xk(1− x)n−k

ͱධՁΛ෼ׂ͢Δɻ࠷ޙͷ౳ࣜͷӈลͷલ൒Λ



|x−k/n|<δ

sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}

n k



xk(1− x)n−k

≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}n

k=0

n k



xk(1− x)n−k

= sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}

(8)

ͱධՁ͠ɺޙ൒Λ

2f



|x−k/n|≥δ

n k



xk(1− x)n−k

2f n2δ2



|nx−k|≥nδ

(nx− k)2

n k



xk(1− x)n−k

ͱධՁ͢Δɻิ୊̎ΑΓ

n k=0

(nx− x)2

n k



xk(1− x)n−k

=n2x2

n k=0

n k



xk(1− x)n−k− 2nx

n k=0

k

n k



xk(1− x)n−k+

n k=0

k2

n k



xk(1− x)n−k

=n2x2− 2n2x2+ n(n− 1)x2+ nx =−nx2+ nx = n 1

4

 x−1

2

2

n 4 ΛಘΔɻ͜ΕΑΓධՁ

f − Bn(f )≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ} + f 2nδ2

͕ै͍

lim sup

n→∞ f − Bn(f )≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}

ΛಘΔɻδ↓ 0 ͱ͢Ε͹ f ͷҰ༷࿈ଓੑΑΓఆཧ 2 ΛಘΔɻ

̏ɽϘʔϚϯɾίϩϑΩϯͷఆཧ

ϕϧγϡλΠϯଟ߲ࣜΛఆΊΔखଓ͖ f → Bn(f ) ͸࣍ͷ༷ʹଊ͑Δࣄ͕ग़དྷΔɿ (B1) ɹ Bn : C([0, 1];R) f → Bn(f )∈ C([0, 1]; R) ͸࣮ઢܕࣸ૾Ͱ͋Δɻ

(B2) ɹ Bn͸ਖ਼஋Ͱ͋Δɻଈͪ೚ҙͷඇෛ஋࿈ଓവ਺Λඇෛ஋࿈ଓവ਺ʹࣸ͢ɿ f ∈ C([0, 1]; R), f ≥ 0 ⇒ Bn(f )≥ 0

(B3) ɹ೚ҙͷೋ࣍വ਺ f ʹର͠Bn(f )− f→ 0(n → ∞)

ఆٛٴͼิ୊ 2 ΑΓ (B1)(B2) ٴͼ (B3) ͸௚ͪʹै͏ɻ࣮ࡍิ୊ 3 ͸ ek(x) ≡ xkʹର͢Δ

౳ࣜ

Bn(ek) = ek, k = 0, 1 Bn(e2) =

 1 1

n



e2+ 1 ne1

Λड़΂ͨ΋ͷͰ͋Δɻ্ͷࡾͭͷੑ࣭ʹண໨ͨ͠΋ͷ͕ϘʔϚϯɾίϩϑΩϯͷఆཧͰ͋

Δɻ֤ x ∈ I = [0, 1] ʹର͠ dx(y) = |x − y| ͱஔ͍ͯఆ·Δവ਺ I y → dx(y) ∈ R Λ dx ∈ C(I; R) ͱ͢Δɻ

(9)

ఆཧ̏ʢϘʔϚϯɾίϩϑΩϯʣɹ༗քด۠ؒ I = [0, 1] ্ͷ࿈ଓവ਺શମͷ੒͢ϊϧϜۭ

ؒ C(I;R) ্ͷ࣮ઢܕਖ਼஋ࣸ૾ͷྻ (Kn; n∈ Z≥0) ʹର࣍͠͸ಉ஋Ͱ͋Δɻ (1) ೚ҙͷೋ࣍ؔ਺ f ʹର͠Kn(f )− f → 0 (n → ∞)

(2) 0≤ k ≤ 2 ͳΔ೚ҙͷ੔਺ k ʹର͠ Kn(ek)− ek→ 0 (n → ∞)

(3) sup{|(Kn(d2x))(x)|; x ∈ I} → 0 (n → ∞) ׌ͭ Kn(e0)− e0→ 0 (n → ∞) (4) ೚ҙͷ f ∈ C(I; R) ʹର͠ Kn(f )− f→ 0 (n → ∞)

ʢূ໌ʣɹ (4) ⇒ (1) ⇔ (2) ͸໌Β͔Ͱ͋Δ͔Β (2) ⇒ (3) ⇒ (4) Λࣔͦ͏ɻ

(2) ⇒ (3)ɿɹ dx(y)2 = |x − y|2 = x2− 2xy + y2Ͱ͋Δ͔Β d2x = x2e0− 2xe1+ e2͕੒ཱ

ͭɻKnͷઢܕੑΑΓ

Kn(d2x) = x2Kn(e0)− 2xKn(e1) + Kn(e2) ଈͪ

(Kn(d2x))(y) = x2(Kn(e0))(y)− 2x(Kn(e1))(y) + (Kn(e2))(y) ΛಘΔɻಛʹ

(Kn(d2x))(x) = x2(Kn(e0))(x)− 2x(Kn(e1))(x) + (Kn(e2))(x)

= x2((Kn(e0))(x)− 1) − 2x((Kn(e1))(x)− x) + ((Kn(e2))(x)− x2)

= x2(Kn(e0)− e0)(x)− 2x(Kn(e1)− e1)(x) + ((Kn(e2)− e2)(x) ΑΓ

sup{|(Kn(d2x))(x)|; x ∈ I}

≤ Kn(e0)− e0+ 2Kn(e1)− e1+Kn(e2)− e2

ΛಘΔͷͰ (3) ͕ै͏ɻ

(3) ⇒ (4)ɿɹ |x − y| < δ ͳΔ೚ҙͷ x, y ∈ I ʹର͠

|f(x) − f(y)| ≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}

Ͱ͋Γ|x − y| ≥ δ ͳΔ೚ҙͷ x, y ∈ I ʹର͠

|f(x) − f(y)| ≤ 2f 2f

δ2 |x − y|2 Ͱ͋Δ͔Β೚ҙͷ x, y∈ I ʹର͠

|f(x) − f(y)| ≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ} + 2f

δ2 |x − y|2

(10)

͕੒ཱͭɻ͜ΕΛ y ͷവ਺ͱݟ၏ͤ͹ɺ೚ҙͷ x∈ I ʹର͠

|f(x)e0− f| ≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}e0+2f δ2 d2x

͕੒ཱͭɻKnͷઢܕੑͱਖ਼஋ੑΛ༻͍Δͱ

|(Kn(f ))(y)− f(x)(Kn(e0))(y)|

=|(Kn(f − f(x)e0))(y)|

≤ (Kn(|f − f(x)e0|))(y)

≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}Kn(e0)(Y ) + 2f

δ2 (Kn(d2x))(y)

͕ै͏ɻ͜ΕΑΓ

(Kn(f )− f

≤ sup{|(Kn(f ))(x)− f(x)(Kn(e0))(x)|; x ∈ I}

+ sup|f(x)(Kn(e0))(x)− f(x)e0(x)|; x ∈ I}

≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}Kn(e0)+ 2f

δ2 sup{|(Kn(d2x))(x)|; x ∈ I}

+fKn(e0)− e0

ΛಘΔͷͰ (3) ΑΓ lim sup

n→∞ Kn(f )− f≤ sup{|f(ξ) − f(η)|; ξ, η ∈ I, |ξ − η| < δ}

͕ै͏ɻf ͸Ұ༷࿈ଓނ δ↓ 0 ͱͯ͠ (4) ΛಘΔɻ

̐ɽϘʔϚϯɾίϩϑΩϯͷఆཧͷҰൠԽ

ϘʔϚϯɾίϩϑΩϯͷఆཧͷҰൠԽΛ Lomel´ı-Garc´ıa ʹैͬͯઆ໌͢Δɻ༗քด۠ؒ [0, 1]

ΛίϯύΫτۭؒʹҰൠԽ͠ɺڑ཭ͷࣗ৐ d2xʹ૬౰͢Δ֓೦Λଋറവ਺ bounding function ʹҰൠԽͯ͠ߟ͑Δɻ͜ͷઅͰ͸ X ͸ίϯύΫτۭؒͱ͠ C(X;R) Λ X ্ͷ࿈ଓവ਺ͷ੒

͢ϊϧϜۭؒͱ͢Δɻ

ఆٛɹ f ∈ C(X; R) ʹର͢Δଋറവ਺ͱ͸௚ੵίϯύΫτۭؒ X × X ্ͷඇෛ஋࿈ଓവ਺

γ Ͱ γ−1({0}) ⊂ Diag(f) ͳΔ΋ͷͱ͢Δɻ͜͜ʹ

Diag(f ) ={(x, y) ∈ X × X; f(x) = f(y)}

ͱ͢Δɻf ͷଋറവ਺ γ : X× X → R ٴͼ x ∈ X ʹର͠ γx ∈ C(X; R) ͕ γx(y) = γ(x, y) Ͱ ఆ·Δɻ

ఆཧ̐ʢϩϝϦɾΨϧγΞʣɹίϯύΫτۭؒ X ্ͷ࿈ଓവ਺શମͷ੒͢ϊϧϜۭؒ C(X :R)

্ͷ࣮ઢܕਖ਼஋ࣸ૾ͷྻ (Ln; n ∈ Z≥0) ʹର͠ɺ࣍͸ಉ஋Ͱ͋Δɻ

(11)

(1) ೚ҙͷ f ∈ C(X; R) ʹର͠ଋറവ਺ γ ∈ C(X × X; R) ͕ଘࡏ͠

sup{|(Lnx))(x)|; x ∈ X} → 0

׌ͭɹLn(1)− 1 → 0 (n → ∞)

͜͜ʹ 1 ͸ఆ਺വ਺Λද͢΋ͷͱ͢Δɻ

(2) ೚ҙͷ f ∈ C(X; R) ʹର͠ Ln(f )− f→ 0 (n → ∞) ఆཧ 4 ͷূ໌ʹ͸࣍ͷิ୊Λ༻͍Δɻ

ิ୊̏ɹ Y ΛίϯύΫτۭؒͱ͠ α ͱ β Λ Y ্ͷඇෛ஋࿈ଓവ਺Ͱ β−1({0}) ⊂ α−1({0}) Λຬͨ͢΋ͷͱ͢Δɻ͜ͷͱ͖೚ҙͷ ε > 0 ʹର͠ M (ε) > 0 ͕ଘࡏ͠ α≤ ε + M(ε)β Λຬ

ͨ͢ɻ

ʢূ໌ʣɹ༩͑ΒΕͨ ε > 0 ʹର͠ Vε ≡ α−1([0, ε)) = α−1((−ε, ε)) ͸ Y ͷ։ू߹Ͱ͋Δ͔

Β Y\Vε͸ίϯύΫτू߹ͱͳΔɻβ ͸ Y\Vε্࠷খ஋ΛऔΔɻͦͷ఺ΛҰͭऔΓ x0 ∈ Y \Vε ͱ͢Δɻ͜ͷͱ͖ β(x0) = 0 ͳΒԾఆΑΓ α(x0) = 0 ͱͳΓ x0 ∈ Vε͕ै͍ໃ६Λੜ͡Δɻ

ैͬͯ β(x0) > 0 Ͱ͋Γ೚ҙͷ x ∈ Y \ Vε ʹର͠ β(x) ≥ β(x0) > 0 ͕੒ཱͭɻނʹ೚ҙͷ x∈ Y \Vεʹର͠ α(x)≤ α≤ (α/β(x0))β(x) ͕੒ཱͭɻҰํɺ೚ҙͷ x∈ Vεʹର͠

α(x) < ε≤ ε + β(x) ͕੒ཱͭɻैͬͯ

M (ε) = max(α/β(x0), 1) = max(α/min

x/∈Vε

β(x), 1) ͱஔ͚͹ྑ͍ɻ

ఆཧ̐ͷূ໌ɹ (1)⇒ (2) Λࣔͤ͹ॆ෼Ͱ͋ΔɻY = X×X ্ͷඇෛ஋࿈ଓവ਺ α ͕ α(x, y) =

|f(x) − f(y)| Ͱఆ·Δɻ͜ͷͱ͖ α−1({0}) = Diag(f) Ͱ͋ΓɺఆٛΑΓ γ−1({0}) ⊂ Diag(f) ͱͳ͍ͬͯΔͷͰɺิ୊ 3 ΑΓ೚ҙͷ ε > 0 ʹର͠ M (ε) > 0 ͕ଘࡏ͠

೚ҙͷ (x, y)∈ X × X ʹର͠ෆ౳ࣜ

|f(x) − f(y)| ≤ ε + M(ε)γ(x, y)

͕੒ཱͭɻ͜ΕΑΓ೚ҙͷ x∈ X ʹର͠ (Y ͷവ਺ͱͯ͠ͷෆ౳ࣜ)

|f(x) · 1 − f| ≤ ε · 1 + M(ε)γx

͕ै͏ɻLn͸ਖ਼஋ઢܕͰ͋Δ͔Β೚ҙͷ y ∈ X ʹର͠ෆ౳ࣜ

|f(x)(Ln(1))(y)− (Ln(f ))(y)| ≤ ε(Ln(1))(y) + M (ε)(Lnx))(y)

͕੒ཱͭɻ͜ΕΑΓ

Ln(f )− f≤ sup{|(Ln(f ))(x)− f(x)(Ln(1))(x)|; x ∈ X}

+ sup{|f(x)(Ln(1)− 1)(x)|; x ∈ X}

≤ εLn(1)− 1+ ε + M (ε) sup{|(Lnx))(x)|; x ∈ X}

+fLn(1)− 1

(12)

ͱͳΔͷͰ

lim sup

n→∞ Ln(f )− f ≤ ε

͕ै͏ɻε > 0 ͸೚ҙͰ͋ͬͨͷͰ (2) ͕ಋ͔ΕΔɻ

̑ɽετʔϯɾϫΠΤϧετϥεͷఆཧ

ίϯύΫτۭؒ X ্ͷ࿈ଓവ਺શମͷ੒͢ϊϧϜۭؒ C(X;R) ʹԙ͍ͯଖͷ෦෼ू߹͕᜚

ີͰ͋Δҝͷॆ෼৚݅Λ༩͑ΔετʔϯɾϫΠΤϧετϥεͷఆཧΛ୅਺ algebra ٴͼ ଋ lattice ͷ֓೦ͷೋͭͷଆ໘͔ΒవΊͯஔ͜͏ɻ

ఆٛɹ C(X;R) ͷ෦෼ू߹ A ʹର͠

ɾA ͸୅਺Ͱ͋Δ ⇔

def A ͸ੵͷఆٛ͞ΕͨϕΫτϧۭؒͰ͋Δ

ʢଈͪ೚ҙͷ f, g∈ A ʹର͠ fg ∈ A ͕ఆٛ͞Ε͍ͯΔʣ ɾA ͸ଋͰ͋Δɻ⇔

def

ೋͭͷA ͷݩʹର֤͠఺ͰͷେখΛऔΔࣄʹґͬͯग़དྷΔ

ೋͭͷവ਺͸A ʹଐ͢ʢଈͪ೚ҙͷ f, g ∈ A ʹର͠

f∨ g, f ∧ g ∈ A ͱͳΔɻ͜͜ʹ (f ∨ g)(x) = max(f(x), g(x)), (f ∧ g)(x) = min(f(x), g(x))

ɾA ͸఺Λ෼཭͢Δ ⇔

def ૬ҟͳΔ೚ҙͷೋ఺ x, y ∈ X ʹର͠

f ∈ A ͕ଘࡏͯ͠ f(x) = f(y) ɾA ͸ೋ఺Λิؒ͢Δ ⇔

def ૬ҟͳΔ೚ҙͷೋ఺ x, y ∈ X ٴͼ೚ҙͷ α, β ∈ R ʹର͠

f ∈ A ͕ଘࡏ͠ f(x) = α, f(y) = β ɾA ͸ೋ఺Λۙࣅิؒ͢Δ ⇔

def ૬ҟͳΔ೚ҙͷೋ఺ x, y ∈ X ٴͼ೚ҙͷ α, β ∈ R, ε > 0 ʹର͠ f ∈ A ͕ଘࡏ͠ |f(x) − α| < ε, |f(y) − β| < ε

ఆཧ̑ʢ෦෼ଋʹର͢ΔετʔϯɾϫΠΤϧετϥεͷఆཧɹίϯύΫτۭؒ X ্ͷ࿈ଓ വ਺શମͷ੒͢ϊϧϜۭؒ C(X;R) ͷ෦෼ଋ A ʹର࣍͠͸ಉ஋Ͱ͋Δɻɹ

(1) ɹA ͸ C(X; R) Ͱ᜚ີͰ͋Δʢଈͪ ¯A = C(X; R))

(2) ɹ A ͸೚ҙͷ f ∈ C(X; R) ʹରͯ͠ੜ੒͞ΕΔೋ఺Λۙࣅิؒ͢Δɻଈͪ೚ҙͷ f ∈ C(X; R), ૬ҟͳΔ೚ҙͷೋ఺ x, y ∈ X, ೚ҙͷ ε > 0 ʹର͠ g ∈ A ͕ଘࡏ͠

|f(x) − g(x)| < ε, |f(y) − g(y)| < ε ɹ

ূ໌ɹ (1) ⇒ (2): ԾఆΑΓ೚ҙͷ f ∈ C(X; R) ʹର͠ g ∈ A ͕ଘࡏ͠ ||f − g < ε ͱͳ Δ͔Β (2) ͕ै͏ɻ

(13)

(2) ⇒ (1): ೚ҙͷ f ∈ C(X; R) ٴͼ ε > 0 ΛऔΔɻԾఆΑΓ೚ҙͷೋ఺ x, y ∈ X ʹର͠

gx,y ∈ A ͕ଘࡏ͠ |f(x) − gx,y(x)| < ε, |f(y) − gx,y(y)| < ε ͕੒ཱͭɻҰ఺ x ∈ X Λݻఆ͠

Ux,y ≡ {ξ ∈ X; f(ξ) − gx,y(ξ) < ε} Λߟ͑ΔɻUx,y = (f− gx,y)−1((−∞, ε)) ނ Ux,y͸ y ∈ Ux,y

ͳΔ X ͷ։ू߹Ͱ͋Γ (Ux,y; y ∈ X) ͸ X ͷ։ඃ෴ͱͳΔɻX ͷίϯύΫτੑʹΑΓ༗ݶू

߹ F (x)⊂ X ͕ଘࡏ͠ (Ux,y; y ∈ F (x)) ͸ X ͷ༗ݶඃ෴ͱͳΔɻ

ͯ͞ gx = max{gx,y; y ∈ F (x)} ͱஔ͘ͱ gx ∈ A Ͱ͋Γ೚ҙͷ ξ ∈ X ʹର͠ f(ξ) − gx(ξ) <

ε ͕੒ཱͭɻͦ͜Ͱ Ux ≡ {ξ ∈ X; f(ξ) − gx(ξ) > −ε} = (f − gx)−1((−ε, ∞)) ͱஔ͘ɻ f (x)− gx(x) = f (x)− max

y∈F (x)gx,y(x) =− min

y∈F (x)(f (x)− gx,y(x))≥ − min

y∈F (x)|f(x) − gx,y(x)| > −ε ΑΓ x∈ UxͱͳΔͷͰ (Ux; x∈ X) ͸ X ͷ։ඃ෴ͱͳΔɻX ͷίϯύΫτੑΑΓ༗ݶू߹

F ⊂ X ͕ଘࡏ͠ (Ux; x ∈ F ) ͸ X ͷ༗ݶඃ෴ͱͳΔɻg = min{gx; x ∈ F } ͱஔ͘ͱ g ∈ A Ͱ͋Γ೚ҙͷ ξ ∈ X ʹର͠ −ε < f(ξ) − g(ξ) = f(ξ) − min

x∈Fgx(ξ) = max

x∈F(f (ξ)− gx(ξ)) < ε ͱ ͳΓf − g ≤ ε ͕ै͏ɻ

ఆཧ̒ʢଋͷಛ௃෇͚ʣɹ C(X;R) ͷ෦෼ۭؒ A ʹର࣍͠͸ಉ஋Ͱ͋Δɻ (1) ɹA ͸ଋͰ͋Δɻ

(2) ɹA ͸ઈର஋ʹब͍ͯด͍ͯ͡Δɻ͜͜ʹ f ∈ C(X; R) ʹର͠

|f| = f+− f, f+= f ∨ 0, f= f ∧ 0 ͱ͢Δɻɹ

ʢূ໌ʣɹ (1) ⇒ (2)ɿ೚ҙʹ f ∈ A ΛऔΔɻ0 ∈ A Ͱ͋Δ͔Β (1) ΑΓ f± ∈ A ͱͳΓ

|f| ∈ A ͕ै͏ɻ

(2) ⇒ (1) : ɹ − (f ∧ 0) = (−f) ∨ 0 ΑΓ |f| = (f ∨ 0) + ((−f) ∨ 0) ͕ै͏ɻ͜ΕΑ Γ|f| ≥ f ׌ͭ |f| ≥ −f ΛಘΔͷͰ |f| ≥ f ∨ (−f) ͕ै͏ɻҰํ f ∨ (−f) ≥ f, −f, 0 ΑΓ f ∨ (−f) ≥ f ∨ 0, (−f) ∨ 0 ΛಘΔɻ͜͜Ͱ supp(f ∨ 0) ∩ supp((−f) ∨ 0) = ∅ ΑΓ f ∨ (−f) ≥ (f ∨ 0) + ((−f) ∨ 0) ͕ै͏ɻނʹ |f| = f ∨ (−f) ΛಘΔɻ͜ΕΑΓ |f − g| = (f − g) ∨ (g − f), (f + g) + |f − g| = (f + g) + ((f − g) ∨ (g − f)) = 2(f ∨ g) ΛಘΔ ͷͰ f ∨ g = 12((f + g) + |f − g|) ∈ A ͕ै͏ɻ͜ΕΑΓ f ∧ g = −((−f) ∨ (−g)) =

1

2((−f − g) + | − f + g|) = 12((f + g)− |f − g|) ∈ A ͕ै͏ɻ

ఆཧ̓ʢఆ਺ΛؚΉ୅਺ͷ఺෼཭ͷಛ௃෇͚ʣɹ 1∈ A ͳΔ୅਺ A ⊂ C(X; R) ʹର࣍͠͸

ಉ஋Ͱ͋Δɻɹ

(1) ɹA ͸఺Λ෼཭͢Δɻ (2) ɹA ͸ೋ఺Λิؒ͢Δɻ (3) ɹA ͸ೋ఺Λۙࣅิؒ͢Δɻ

(14)

ʢূ໌ʣɹ (2) ⇒ (3) ⇒ (1) ͸໌Β͔Ͱ͋ΔͷͰ (1) ⇒ (2) Λࣔͤ͹ॆ෼Ͱ͋Δɻx = y ͳΔ

ೋ఺ x, y ∈ X ΛऔΔɻԾఆʹΑΓ f ∈ A ͕ଘࡏ͠ f(x) = f(y) ͱͳΔɻα, β ∈ R Λ೚ҙʹ ༩͑Δɻg ∈ C(X; R) ͕

g(ξ) = (α− β)f(ξ) − αf(y) + βf(x)

f (x)− f(y) , ξ ∈ X

Ͱఆ·ΔɻA ͸ 1 ΛؚΉ୅਺Ͱ͋Δ͔Β g ∈ A ͱͳΓ g(x) = α, g(y) = β Λຬͨ͢ɻ

ఆཧ̔ʢ෦෼୅਺ʹର͢ΔετʔϯɾϫΠΤϧετϥεͷఆཧʣɹίϯύΫτۭؒ X ্ͷ࿈

ଓവ਺શମͷ੒͢ϊϧϜۭؒ C(X;R) ͷ෦෼୅਺ A ʹର࣍͠͸ಉ஋Ͱ͋Δɻ (1) ɹA ͸ C(X; R) Ͱ᜚ີͰ͋Δʢଈͪ ¯A = C(X; R)ʣ

(2) ɹ A ͸೚ҙͷ f ∈ C(X; R) ʹରͯ͠ੜ੒͞ΕΔೋ఺Λۙࣅิؒ͢Δɻଈͪ೚ҙͷ f ∈ C(X; R), ૬ҟͳΔ೚ҙͷೋ఺ x, y ∈ X, ೚ҙͷ ε > 0 ʹର͠ g ∈ A ͕ଘࡏ͠

|f(x) − g(x)| < ε, |f(y) − g(y)| < ε

ʢূ໌ʣɹ (1) ⇒ (2)ɿఆཧ 5 ͷ (1) ⇒ (2) ͷূ໌ͱಉ͡Ͱ͋Δɻ

(2)⇒ (1)ɿ(2) ͸ A Λ ¯A ʹஔ͖׵͑ͯ΋੒ཱͭͷͰ ¯A ͕෦෼ଋΛࣔ͢ࣄΛࣔͤ͹ఆཧ 5 Α Γ (2)⇒ (1) ͕ै͏ɻA ͸ C(X; R) ͷ෦෼୅਺ނ ¯A ΋ͦ͏Ͱ͋Δɻఆཧ 6 ΑΓ ¯A ͕ઈର஋

ʹब͍ͯด͍ͯ͡ΔࣄΛࣔͤ͹ॆ෼Ͱ͋Δɻ೚ҙʹ f ∈ ¯A ٴͼ ε > 0 ΛऔΔɻิ୊ 1 ʹΑ Γ sup{||x| − P (x)|; |x| ≤ 1} < ε/(||f||+ 1) ͳΔଟ߲ࣜ P :R → R ͕ଘࡏ͢Δɻ͜ͷͱ͖

Q(f )≡ fP (f /f)∈ ¯A Ͱ͋Γ

|f| − Q(f)=f|f/f| − P (f/f)

=fsup{x| − P (x)|; |x| ≤ 1} < ε ͱͳΔ͔Β|f| ∈ ¯A ͕ै͏ɻ͜Ε͕ࣔ͢΂͖ࣄͰ͋ͬͨɻ

ఆཧ̕ʢఆ਺ΛؚΉ෦෼୅਺ʹର͢ΔετʔϯɾϫΠΤϧετϥεͷఆཧʣɹఆ਺ΛؚΈɺ

఺Λ෼཭͢Δ୅਺A ⊂ C(X; R) ͸᜚ີͰ͋Δɻ

ʢূ໌ͦͷ̍ʣɹఆཧ 7 ΑΓA ͸ೋ఺Λิؒ͢ΔͷͰఆཧ 8 ΑΓ ¯A = C(X; R) ͕ै͏ɻ

ʢূ໌ͦͷ̎ʣɹ্هఆཧ 8 ͷূ໌Ͱ͸ɺ୅਺A ͷดแ A ͕࠶ͼ୅਺Λ੒͢ࣄͱɺA ͕ઈ ର஋ʹब͍ͯด͍ͯ͡Δࣄ͕ຊ࣭తͰ͋ͬͨɻ͜ΕʹΑΓɺ୅਺ͷߏ଄͕ଋͷߏ଄ʹҠ২͞

Εɺશͯ͸ఆཧ 5 ʹશͯؼண͞ΕΔͱӠ͏࿦๏Λߏ੒ͨ͠ͷͰ͋ΔɻҎԼͰ͸ɺ͜ͷ࿦๏Λ

༻͍ͳ͍ Brosowski ͱ Deutsch ʹґΔ௚઀తͰॳ౳తͳূ໌Λղઆ͠Α͏ɻͦͷҝʹೋͭͷ

ิ୊Λ४උ͢Δɻ

ิ୊4 ɹ೚ҙͷ x0 ∈ X ͱͦͷ೚ҙͷ։ۙ๣ U ʹର͠ V ⊂ U ͳΔ x0ͷ։ۙ๣ V ͕ଘࡏ͠Ҏ Լͷੑ࣭Λຬͨ͢ɻ೚ҙͷ ε > 0 ʹର͠ ϕε ∈ A ͕ଘࡏ͠

(15)

(i) ɹ೚ҙͷ x∈ X ʹର͠ 0 ≤ ϕε(x)≤ 1 (ii) ɹ೚ҙͷ x∈ V ʹର͠ 0 ≤ ϕε(x)≤ ε

(iii) ɹ೚ҙͷ x∈ X\U ʹର͠ 1 − ε ≤ ϕε(x)≤ 1

ʢূ໌ʣɹ֤ x ∈ X\U ʹର͠ A ͷ఺෼཭ੑΑΓ fx ∈ A ͕ଘࡏ͠ fx(x) = fx(x0) ͱͳΔɻ gx(ξ) = fx(ξ) − fx(x0), ξ ∈ X Ͱఆ·Δ gx : X ξ → gx(ξ) ∈ R ͸ A ʹଐ͠ gx(x) =

gx(x0) = 0 Λຬͨ͢ɻ͜ͷͱ͖ hx ≡ gx2/gx2͸ hx(x0) = 0, hx(x) > 0, 0 ≤ hx ≤ 1 ͳ ΔA ͷݩͰ͋Δɻͯ͞ U(x) = {ξ ∈ X; hx(ξ) > 0} ͱஔ͘ɻx ∈ U(x) = h−1x ((0,∞)) ނ (U (x) ∩ (X\U); x ∈ X\U) ͸ X\U ͷ։ඃ෴ͱͳΔɻX\U ͷίϯύΫτੑΑΓ༗ݶू߹

{xj ∈ X\U; 1 ≤ j ≤ m} ͕ଘࡏ͠ X\U ⊂

n j=1

U (xj) ͱ͢Δࣄ͕ग़དྷΔɻ

ͯ͞ h = m1

m j=1

hxjͱஔ͘ɻ͜ͷͱ͖ h∈ A Ͱ͋Γ 0 ≤ h ≤ 1, h(x0) = 0 ׌ͭ೚ҙͷ ξ ∈ X\U ʹର͠ h(ξ) > 0 Ͱ͋Δࣄ͕ै͏ɻh ͸ίϯύΫτू߹ X\U ্࠷খ஋ΛऔΔͷͰ 0 < δ < 1 ͕ ଘࡏ͠೚ҙͷ ξ ∈ X\U ʹର͠ h(ξ) ≥ δ ͱͳΔɻͯ͞ V = {ξ ∈ X; h(ξ) < δ/2} ͱஔ͘ͱ V ͸ x0 ∈ V ͳΔ։ू߹Ͱ X\U ⊂ X\V ΑΓ V ⊂ U Ͱ͋Δࣄ͕෼͔Δɻk = min{ ∈ Z; 1/δ < } ͱஔ͘ɻ͜ͷͱ͖ k− 1 ≤ 1/δ < k Ͱ͋Γ k ≤ 1 + 1/δ < 2/δ ΑΓ kδ/2 < 1 < kδ ͕ै͏ɻ

ͦ͜Ͱ n∈ Z>0ʹର͠ ψn: X → R Λ

ψn(ξ) = (1− h(ξ)n)kn, ξ ∈ X

Ͱఆٛ͢Δɻ1, h ∈ A ނ ψn ∈ A Ͱ͋Γ 0 ≤ h ≤ 1, h(x0) = 0 ނ 0≤ ψn ≤ 1, ψn(x0) = 1 Ͱ

͋Δɻ೚ҙͷ ξ∈ V ʹର͠ 0 ≤ kh(ξ) ≤ kδ/2 < 1 ͱͳΔ͔ΒϕϧψΠͷෆ౳ࣜΑΓ sup{|1 − ψn(ξ)|; ξ ∈ V } = sup{1 − ψn(ξ); ξ∈ V }

≤ sup{(kh(ξ))n; ξ∈ V } ≤ (kδ/2)n→ 0(n → ∞)

͕ै͏ɻҰํɺ೚ҙͷ x ∈ X\U ʹର͠ kh(ξ) ≥ kδ > 1 ͱͳΔ͔Β࠶ͼϕϧψΠͷෆ౳ࣜ

ΑΓ

sup{|ψn(ξ)|; ξ ∈ X\U} = sup{ 1

(kh(ξ))nψn(ξ)(kh(ξ))n; ξ∈ X\U}

≤ sup{ 1

(kh(ξ))n(1− h(ξ)n)kn(1 + (kh(ξ))n); ξ ∈ X\U}

≤(kδ)−nsup{(1 − h(ξ)n)kn(1 + k(ξ))n)kn; ξ ∈ X\U}

≤(kδ)−nsup{(1 − h(ξ)2n)kn; ξ∈ X\U} ≤ (kδ)−n→ 0(n → ∞)

͕ै͏ɻ༩͑ΒΕͨ ε > 0 ʹର͠ (kδ)−n < ε ͳΔ n ΛऔΓ ϕε = 1− ψnͱஔ͚͹ิ୊ 4 ʹڍ

͛ͨੑ࣭͕શͯຬͨ͞ΕΔɻ

ิ୊̑ɹ M ͱ N Λޓ͍ʹૉͳ X ͷด෦෼ू߹ͱ͢Δɻ͜ͷͱ͖ 0 < ε < 1 ͳΔ೚ҙͷ ε ʹ ର͠ ψε ∈ A ͕ଘࡏ࣍͠Λຬͨ͢ɻ

(16)

(i) ɹ೚ҙͷ x∈ X ʹର͠ 0 ≤ ψε(x)≤ 1 (ii) ɹ೚ҙͷ x∈ M ʹର͠ 1 − ε < ψε(x)≤ 1 (iii) ɹ೚ҙͷ x∈ N ʹର͠ 0 ≤ ψε(x)≤ ε

ʢূ໌ʣɹ U = X\M ͱ֤ͯ͠ x ∈ N ⊂ X\M = U ʹରͯ͠ิ୊ 4 Ͱ༩͑ΒΕΔ x ͷ։ۙ๣

V (x)⊂ U ΛऔΔɻ(V (x); x ∈ N) ͸ N Λ෴͏ͷͰ༗ݶू߹ {xj ∈ N; 1 ≤ j ≤ m} ͕ଘࡏ͠

N

m j=1

V (xj) ͱ͢Δࣄ͕ग़དྷΔɻิ୊ 4 ΑΓ֤ j ʹର͠ ϕj ∈ A ͕ଘࡏ͠ 0 ≤ εj ≤ 1, V (xj)

্ 0 ≤ ϕj < ε/m, M = T\U ্ 1 − ε/m < ϕj ≤ 1 ͕੒ཱͭɻͦ͜Ͱ ψε =

m j=1

ϕj ͱஔ͘ɻ

͜ͷͱ͖ ψε ∈ A Ͱ͋Γ N(⊂

m j=1

V (xj)) ্ 0 ≤ ψε =

m j=1

ϕj =

m j=1

(ε/m) = ε ߋʹ M ্

ψε =

m j=1

ϕj > (1− ε/m)m ≥ 1 − ε ͕੒ཱͭɻ

Ҏ্ͷิ୊ 4 ͱ 5 Λ༻͍ͯఆཧ 9 ͷূ໌ʢͦͷ 2ʣΛ༩͑Α͏ɻॳΊʹ೚ҙʹ f ∈ C(X; R) ͱ ε > 0 Λ༩͓͑ͯ͘ɻε ͸ॆ෼খ͍͞΋ͷͱԾఆͯ͠ྑ͍ʢҎԼͷٞ࿦Ͱ͸ ε < 1/3 Ͱॆ෼ʣɻ

f ≥ 0 ͷ৔߹ɿɹ n ≥ fε + 1 ͳΔ੔਺ n ΛҰͭݻఆ͢Δɻ֤ j ∈ {0, 1, · · · , n} ʹର͠

Mj, NjΛ

Mj ={x ∈ X; f(x) ≥

 j + 1

3



ε} = f−1

 [

 j +1

3

 ε, ∞)

 , Nj ={x ∈ X; f(x) ≤

 j− 1

3



ε} = f−1

 (−∞,

 j− 1

3

 ε]



ͰఆΊΔɻMjٴͼ Nj͸ X ͷޓ͍ʹૉͳด෦෼ू߹Ͱ M0 ⊃ M1 ⊃ · · · ⊃ Mn =∅,

∅ = N0 ⊂ N1 ⊂ · · · · ⊂ Nn = X

ͳΔؔ܎Λຬͨ͢ɻิ୊ 5 ʹΑΓ֤ j ʹର͠ ψj ∈ A ͕ଘࡏ͠ X ্ 0 ≤ ψj ≤ 1, Mj ্ 1 εn < ψj ≤ 1, Nj ্ 0≤ ψj nε Λຬͨ͢ɻͦ͜Ͱ g = ε

n j=0

ψj ͱஔ͘ɻͯ͞೚ҙʹ x ∈ X ΛऔΔɻ1≤ j ≤ n ͳΔ j ͕།Ұͭଘࡏ͠ xj ∈ Nj\Nj−1͕੒ཱͭɻ͜ͷͱ͖

 j− 4

3

 ε =



(j− 1) − 1 3



ε < f (x)≤

 j− 1

3

 ε,

0≤ max

j ψj(x)≤ ε n

(17)

͕੒ཱͭɻ͜ΕΑΓ

g(x) = ε

j−1 i=0

ψj(x) + ε

n i=j

ψj(x)≤ εj + ε(n − j + 1)ε

n ≤ (j + ε)ε, g(x)− f(x) ≤ (j + ε)ε −

 j− 1

3

 ε =

 ε + 1

3

 ε < ε

͕ै͏ɻҰํ x∈ Nj\Nj−1, j ≥ 1 ͳΒ͹ f(x) > ((j − 1) − 13)ε = (j−43)ε ͕ै͏ɻ j ≥ 2 ͷ৔߹ x ∈

j−2

i=0

MiͱͳΔͷͰ

g(x) = ε

n i=0

ψi(x)≥ ε

j−2 i=0

ψi(x)≥ ε

j−2 i=0

1 ε

n

= (j− 1) 1 ε

n

ε

͕ै͏ɻ࠷ӈล͸ j = 1 Ͱ 0 ͱͳΔͷͰ݁ہ x∈ Nj\Nj−1ʹର͠

g(x)≥ (j − 1) 1 ε

n

ε

͕੒ཱͭɻ͜ͷͱ͖ x∈ Nj ΑΓ

f (x)− g(x) ≤

 j 1

3



ε− (j − 1)

 1 2

n

 ε =

2

3+ j− 1 n ε

 ε <

2 3+ ε

 ε < ε

͕ै͏ɻނʹ

|f(x) − g(x)| < ε

͕੒ཱͭɻx∈ X ͸೚ҙͰ͋ͬͨͷͰ

f − g ≤ ε

͕ै͏ɻ͜Ε͕ࣔ͢΂͖ࣄͰ͋ͬͨɻ

Ұൠͷ৔߹ɿɹ f ∈ C(X; R) ʹର͠ f + f͸લஈͷԾఆΛຬͨ͢ͷͰ g ∈ A ͕ଘࡏ͠

(f + f)− g < ε Λຬͨ͢ɻ͜ͷͱ͖ g− f∈ A ͕ٻΊΔ΋ͷͱͳΔɻ

̒ɽετʔϯɾϫΠΤϧετϥεͷఆཧͷෳૉ൛

͜ͷઅͰ͸ετʔϯɾϫΠΤϧετϥεͷఆཧΛෳૉ਺஋࿈ଓവ਺ʹ֦ு͢ΔࣄΛߟ͑Α͏ɻ ઌͣఆཧ 9 ͰR Λ C ʹஔ͖׵໋͑ͨ୊͸੒ཱ͠ͳ͍ࣄʹ஫ҙ͢Δɻ࣮ࡍɺίϯύΫτू߹

X = {z ∈ C; |z| ≤ 1} ্ͷ࿈ଓവ਺ f : X z → ¯z ∈ C ͕ෳૉ܎਺ (anj; j ∈ Jn)ʢ͜͜ʹ Jn ⊂ Z≥0, Jn<∞, n ∈ Z≥0ʣΛ࣋ͭଟ߲ࣜ pn(x) = 

j∈Jn

anjzjͷྻ (pn; n∈ Z≥0) ͷҰ༷ۃݶ Ͱ͋ͬͨͱ͢Δͱ f ͸ྖҬ D = IntX ={z ∈ C; |z| < 1} ্ͷਖ਼ଇവ਺ྻ (pn; n ∈ Z≥0) ͷ޿

(18)

ٛҰ༷ऩଋۃݶͱͯ͠ D ্ਖ਼ଇͱͳΔ͕ɺ͜Ε͸ໃ६Ͱ͋Δɻ࣍ͷ༷ͳ௚઀తͳܭࢉʹجͮ

͍ͯ΋ໃ६Λಋ͘ࣄ͕ग़དྷΔɿ π

2 = 2π

 1

0

r3dr =



X

(x2+ y2)dxdy =



X

z ¯zdxdy =



X

f ¯f

=



X

(f − pn) ¯f +



X

pnf =¯



X

(f − pn) ¯f

≤ f − pn



X|f| = f − pn



X

rdxdy = f − pn· 2π

 1

0

r2dr

=

3 f − pn

ΑΓf − pn ≥ 3/4 ͱͳΓໃ६ɻ͜͜ʹ



X

pnf =¯



X

pn(z)zdxdy = 

j∈Jn

anj

 1

0

rj+1



0

eijθedθdr = 0

Λ༻͍ͨɻ

ఆٛɹίϯύΫτۭؒ X ্ͷෳૉ਺஋࿈ଓവ਺શମͷ੒͢ϊϧϜۭؒ C(X;C) ͷ෦෼ू߹

A ʹର͠

ɾA ͸୅਺Ͱ͋Δ ⇔

def.A ͸ੵͷఆٛ͞ΕͨϕΫτϧۭؒͰ͋Δ ɾA ͸఺Λ෼཭͢Δ ⇔

def. ૬ҧͳΔ೚ҙͷೋ఺ x, y ∈ X ʹର͠ f ∈ A ͕ଘࡏͯ͠ f(x) = f(y)

ɾA ͸ෳૉڞ᫂ʹब͍ͯด͍ͯ͡Δ ⇔

def.೚ҙͷ f ∈ A ʹର͠ ¯f ∈ A

ఆཧ̍̌ʢఆ਺ΛؚΉ෦෼୅਺ʹର͢ΔετʔϯɾϫΠΤϧετϥεͷఆཧͷෳૉ൛ʣɹ

ෳૉఆ਺ΛؚΈɺ఺Λ෼཭͠ɺෳૉڞ᫂ʹब͍ͯด͍ͯ͡Δ୅਺A ⊂ C(X; C) ͸᜚ີͰ

͋Δɻ

ূ໌ɹ k = 0, 1, 2 ʹର͠AkΛ

A0 ={f ∈ A ; f(X) ⊂ R},

A1 ={u ∈ C(X; R); f ∈ A ͕ଘࡏͯ͠ u = Ref}, A2 ={u ∈ C(X; R); f ∈ A ͕ଘࡏͯ͠ v = Imf}

ͱஔ͘ɻఆٛΑΓA0 ⊂ A1ͱͳΔɻA ͸ෳૉϕΫτϧۭؒͰ͋Δ͔Β A1 =A2͕ै͍ɺߋ ʹA ͸ෳૉڞ᫂ʹब͍ͯด͍ͯ͡Δ͔Β A1 =A2 ⊂ A0͕ै͏ɻނʹA0 =A1 =A2ͱͳ ΔɻA ͸୅਺Ͱ͋Δ͔Β A0΋୅਺Λ੒͢ɻ૬ҧͳΔ೚ҙͷೋ఺ x, y ∈ X ʹର͠ f ∈ A ͕ ଘࡏ͠ f (x) = f(y) ͱͳΔ͔Β Ref(x) = Ref(y) ·ͨ͸ Imf(x) = Imf(y) ͕੒ཱͪ Ref ·

ͨ͸ Imf ʹΑͬͯೋ఺͸෼཭͞ΕΔɻA ͸ෳૉఆ਺ΛؚΉͷͰ A0 = A1 = A2͸࣮ఆ਺Λ

Cytaty

Powiązane dokumenty

Uogólnić trzy poprzednie zadania na sumy nieskończone.... Wskazówka: Wyprowadzić wzór analogiczny do wzoru z

[r]

[r]

[6] — O pewnym zagadnieniu dla równań różniczkowych typu hiperbolicznego, Zeszyty Naukowe Politechniki Krakowskiej (in

Let us mention that this idea has been already used in [3, 4, 8] to obtain second-order necessary optimality conditions for problems given by differential inclusions and

A direct comparison of the two notions of independence is not obvious: our notion and corresponding limit theorem are stated in the context of general algebras, while Theorem 2 in

• dla wygenerowanych danych trójwymiarowych dwóch klas z rozkładów normal- nych zaznacz na wykresie trójwymiarowym dane treningowe i klasyfikator qda (z macierzą kowariancji

p: Feng finishes his homework q: Feng goes to the football match.. (c) Write in symbolic form the